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AUTOMATIC CONTINUITY IN ALGEBRAS OF
DIFFERENTIABLE FUNCTIONS

W. G. BADE, P. C. CURTIS, JR. and K. B. LAURSEN

Introduction.

The basic question in the branch of mathematics that has become known as
“automatic continuity” may be phrased in its fullest generality as follows: if T
is a linear map from the Banach space A to the Banach space B under what
(algebraic) conditions on 7, A and/or B may it be inferred that T is a hounded
linear map?

In this paper the space 4 will be C"([0, 1], the Banach algebra of n times
continuously differentiable, complex valued functions defined on the unit
interval [0,1] (with n=0, fixed), and for the purposes of these introductory
remarks, T may be thought of as an algebra homomorphism into the Banach
algebra B.

The theme of the present investigation may perhaps best be explained in the
following way: if A=C([0,1]), the algebra of continuous complex valued
functions on [0,1] and T: A — B is a homomorphism, then it has recently been
established that T may be discontinuous [4], [5], but it has been known for
some time that T is necessarily continuous (with respect to the sup-norm on A)
on some dense subalgebra of 4 [1, Theorem 4.1]. This fact is a straightforward
application of a basic result (Theorem 1.1 below) which establishes a bilinear
continuity for T. The class of Banach algebras to which this theorem applies
(the Silov algebras, cf. Definition 0.5 below) includes the algebras C"([0,1)],
but the analogue of the C([0, 1])-result just mentioned does not hold. Indeed,
as pointed out in [2, Theorem 6.3], there exists an algebra isomorphism of
C'([0,1]) into a Banach algebra B which is discontinuous on every dense
subalgebra of C!([0,1]). However, it turns out that if we consider the dense
subalgebras C*([0,1]) of C"([0,1]) (k>n) in their own topologies, then
continuity results may be obtained: for instance, in Corollary 1.18 it is shown
that any derivation (Definition 0.6) on C"([0, 1]) is continuous when restricted
to C?"([0,1]). And in Theorem 2.6 it is shown that if T: C"([0,1]) —» B is a
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homomorphism and B has finite dimensional (Jacobson-)radical, then T is
continuous on C2"*1([0, 1]).

We list now the basic concepts and facts needed in the sequel. For proofs we
may refer to Allan Sinclair’s book [11], in particular section 1.1.

DEeriNITION O.1. If T: A — B is a linear map and A, B are Banach spaces,
then the separating space of T, S(T) is defined by

&(T) = {ye B| 3{x,} <=4, x, > 0 for which Tx, — y} .

This space measures the discontinuity of T because ©T)= {0} if and only if T'is
continuous, by the closed graph theorem.

Lemma 0.2. Let A, B,C,D be Banach spaces, T: A — B be continuous, S: B
— C be linear and R:C — D be continuous. Then

i) S(S) is a closed linear subspace of C.
ii) S(ST)c S(S).
iii) (RS(S)) =S(RS) (" norm closure).
iv) RS is continuous if and only if RS(S)={0}.

DeriniTiON 0.3. If 4 is a Banach algebra, B a Banach space and T: A — B a
linear map, then the continuity ideal of T, #(T), is defined by

{xe A I y +— T(xy) is continuous} .

ReMARK 0.4. If T: A — B is a homomorphism then Lemma 0.2 iv) shows
that

F(T) = {xe 4| TE)S(T)={0}} .

As mentioned before the maps under consideration will have as their domain
of definition the Silov algebras C"([0,1]), n=0.

DerFiNiTiON 0.5. A commutative unital Banach algebra 4 viewed as an
algebra of functions on its maximal ideal space @, is a Silov algebra when the
following holds: if F, and F, are any two closed and disjoint subsets of &, then
there is a € 4 such that a(F,)={0} and a(F,)={1}.

The algebras C"([0,1]) (n=0) will always be equipped with their natural
Banach algebra norm

n (k)
11, = max ¥ 0L

te[0,1] k=0 k!
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DeriNiTION 0.6. If 4 is a Banach algebra and M a (two-sided) Banach A-
module, i.e. there is a continuous homomorphism and a continuous anti-
homomorphism into the bounded linear operators on M, usually denoted by
a-m and m-a, respectively, then a derivation D:A — M is a linear map
satisfying

D(fg) = f-Dg+Df¢g
for all f,g e A.

1. Implications of bilinear continuity.

If D is a derivation with continuity ideal # (D) then D is known to be
continuous as a bilinear map on # (D). This fact is noted in [2, Theorem 1.1]
and the proof depends on _# (D) being closed. In the case of a homomorphism,
the continuity ideal is not necessarily closed and weaker results on continuous
bilinearity should be expected. In fact, the best general result appears to be
Sinclair’s improvement of [1, Theorem 3.7], of which we quote the case we
shall need:

THEOREM 1.1 [9, Theorem 2.2]. Let A be a Silov algebra, B a Banach algebra
and T: A — B a homomorphism with separating space S(T) and continuity ideal

AT = {fed| T(NS(T) = {0}} .
Then there exists a finite set F < @ 4, the singularity set of T, such that if J(F) is
the minimal ideal of functions vanishing in neighborhoods of F, then J(F)c ¢ (T).
Moreover there exists a constant M such that

*) IT(fl = M S gl
for all f,g € J(F).

Actually, the development that follows uses only the conclusion of this
theorem and not that T is a homomorphism; consequently, it is also valid for
any separable map [7, Theorem 2.2] and we shall simply assume, until further
notice, that

(1.2) Tis a linear map for which the continuity ideal #(T) (Definition 0.3) has
finite hull, and (*) holds.

ProposiTion 1.3. [T(f2)l SM| S|l gl for any fe #(T)NJ(F), g € J(F).

Proor. Suppose first that fe J(F), g € J(F) and {f,} =J(F) with f, — f. By
Theorem 1.1
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1T = M| £l gl
and passing to the limit we obtain | T(fg)||< M| f]l gl
If fe(T)NJ(F), {g,}<J(F) with g, — ge J(F), then, by the first
paragraph

IT(fglll = MIfIl lgall ,
and since fe #(T), T(fg,) — T(fg) so that

ITUI = M| f] gl -

With one additional assumption on A4 we are in a position to prove our main
result on bilinear continuity.

THEOREM 1.4. Suppose A is a Silov algebra in which each closed primary ideal
(i.e. contained in a unique maximal ideal) has finite codimension, suppose B is a
Banach space and T: A — B a linear map for which (1.2) holds. Then there exists
a constant N such that

IT(fRI < Niflligl, fef(T) gef(T).

Proor. Evidently the argument at the beginning of the proof of Proposition
1.3 will establish this Theorem, once the above inequality has been proved for
f,g € #(T). We do this in two steps. Suppose first that f € #(T) and g € J(F).
Since J(F)<.#(T), the assumption on closed primary ideals of 4 implies that
J(F) is a closed subspace of finite codimension in #(T). Hence we can select
vectors {hy,...,h,} <#(T) so that if H=span {h,,...,h,} then

SN =JFSH.

Let P be the projection of #(T) onto J(F) along H. Now fe #(T)so f=a+b
with a € J(F), b e H. As HS#(T), a € J(F)N#(T). We can write

b=3 (k.

i=1

where o; are continuous linear functionals on #(T). With g € J(F) we then
obtain the following estimates

ITWR)I < 1T+ ITE &) kel
< | T(ag)| +§1 (O I T

= Mia| ligh+ 11110 Zn:l losll IT (h: @)
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(by Proposition 1.3.)

< M{PIS g+ 1A gl (; flosl Ai)

where A;=supyy -1 I T(h;g)ll <00, as h; € #(T).
Letting
K = M|P|+ Y ll A,
i=1
we have then established that
ITUI = Kliflllgl, fef(T), geJ(F).

Now suppose f,g € #(T) and write g=c+d with ¢ € J(F) and d € H, hence
ce #(T)NJ(F). Then

ITUI = ITSII+IT(fA)]

IA

IIA

Kifilell+ 3 lloll 4; gl 1£1
i=1

IA

(k1P1+ 3 1ot a s

i=1

= N{fllel -

This proves the theorem.

The algebras C"([0,1]) are Silov algebras and it is easy to see that they
satisfy the hypotheses of Theorem 1.4. Moreover, we may assume without loss
of generality that the singularity set F for the mapping T is a singleton, say
F={0}: Suppose F={A,,...,4,} and let {e,,...,e,} be functions in C*([0,1])
that satisfy: e;=1 in a neighborhood of 4; and =0 in a neighborhood of 1,
j#i, i=1,...,p. Letting e,=1—-Y7?_, e; we have

T(f) = T(‘Z eif) - ¥ T = 3 100

i=0

It is well known that T, is continuous and T; has singularity set F,={4;},
i=1,...,p. Moreover, it is easy to check that (1.2) holds with respect to T
and F if and only if (1.2) holds for T; and F,, i=1,...,p.

Letting

M, = {feC"([0,1])| fO(0)=0, j=0,...,k}

we shall make heavy use of the following structure theorem:
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LemMma 1.5 ([2, Theorem 2.1], [3, Theorem 3.1]).

i) M2, =2*"'M,,, k=0,...,n—1.
i) Mf,,,=Z"M,,‘,,,

where z: t — t, t € [0,1].

The natural maps S, ,: M, , — MZ2, defined by

FMfif 0<k<n
S""‘(f):{z"f if k=n

for any fe M, ,, give rise to a way of norming M2 ,. We define the graph
norms ||, ; by

Ul = IAI+180x SN fe ML,

Letting B, ,=(M2 .||, k=0,...,n we make the following very useful
observation.

ProrosiTioN 1.6. Each B, , is a Banach algebra.
PRrOOF is routine.

REMARK. At least in the case B, , there is another way of describing and
norming the functions in question, in fact

20

B,, = {fe C'([0.1]) | 5= = 0 as 1~ 0, j=0,1,...,n}.

To see this, suppose first that fe M2 ,. By Lemma 1.5 there is g € M,, , such
that f=z"g and an application of Leibniz’ rule will show that f9(¢)/f/ — 0 as
t— 0, j=0,...,n Conversely, if fP(t)/t! > 0, t—> 0, j=0,...,n then fe M, ,
and hence

dge 4, = {ge C"([0,1]) | tg¥(®) > 0 as t - 0,
j=0,...,n}
such that f=2z"g [2, proof of Theorem 2.1]. An application of Leibniz’ rule to

the function f(t)/t", t € ]0, 1], followed by repeated uses of I'Hopital’s rule will
show that g € M,, ,, that is, fe M2 .

The expressions used to characterize B, , may be used to define a norm on
B, .:
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: 1w
= su i e M? .
1{FA ;;o Sup feM,,
It is not hard to see that |||-||| is an algebra norm, equivalent with |-|, ,.

We are now in a position to establish the fact that will enable us to translate
the bilinear continuity of Theorem 1.4 into statements about linear continuity.
First a definition:

DeriniTION 1.7. For given n and any k=0,. . .,n we let 7 denote the canonical
map

M, ®M,,—~ M,
from the algebraic tensor product defined as the linear extension of the map:
f®g— fg, f.ge My,
We equip M, @M, , with the greatest cross norm 7y, defined by
y(®) = inf Y 1 £l gl

with the inf over all representations of the tensor

P
t = z fi®geM,,OM,, .
i=1

ProrosiTION 1.8. When k is n—1 or n, when the algebraic tensor product
M, ®M, , is equipped with the greatest crossnorm and M}, with the graph
norm, then

T: Mn,k® Mn,k - Bn,k

is a continuous and open map.

ProoF. 1 is obviously surjective and since C"([0, 1]) is separable the Borel
graph theorem [12, Appendix] will establish the openness, once we have shown
7 to be continuous. To do this it suffices to find C>0 such that

/gl = ClfIlgl  for any f,g e M, ,;

in fact, then if t=3"?., f;®g;, we obtain
p 4 14
T £ Y (i@ = Y 1figilwi £ C Y ofil gl
i=1 i=1 i=1

The argument is based on the following application of the mean value
theorem: if 0<i,j and i+ j<n, then

AU

t é ||f(i+j)“oo whenever fe Mn,i+j-—1 .
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Proor. Let i be given and let j=1. Then

fO0)
t

= 1Y £ 1" M, t0.9 >

where 7 € ]0,¢t[ and where the notation ||, 0, for s € [0,1] indicates the
sup-norm on the interval [0, s]. Suppose the claim is correct for the given i, for j
and for any interval [0,{]<[0,1]. Then

/Y0 _ |1t f"’(t)l
|| Tt T
lf““’( ) =
S = "fﬁ+j+l)"oo

where 0<1y <1<t

Now, let f,g € M, , and consider

(k)
& A&

z" te]0, 11 k=0 F
J' ar
drP\ ¢

f "’(t)g"'"’"’(t)

I
2]
[~

A

sup
te10.11 j=0 J! ;=0

n i i-p

< C

< s % yZo L Com|— 55

_ fO0)||g" """ )|
= IES]‘(‘)PHZJ:%:; w1 | T |

IIA

Sup Z Cn}pl” f(")"oo "g(j)"oo

te]0, 1 Jpl
Clsingl .

With this technical result behind us we are ready to state and prove the main
continuity results of this section.

A

TueOREM 1.9. Suppose T: C"([0,1]) — B is a linear map with singularity set
F={0} for which (1.2) is valid. If #(T)SM,, , has closure equal to M, ,, then
T is continuous on M, , #(T) B, ,, [here

M, ,#(T) = span{ab | aeM,,, beg(T)}
and the inclusion signifies that M, , #(T) is equipped with the graph normal].
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Proor. By Proposition 1.8, t: M, , &M, ,— B, , is open and continuous.
Moreover, M, ,&¢(T) is a subalgebra of M, ,®M, , and M, ,&¢(T)Nkerz
is dense in ker t (with respect to the greatest cross norm on M, ,®M, ,). To
see this, recall the algebra A, of [2], alluded to in the Remark following
Proposition 1.6. 4, has a bounded approximate identity {e,} (see [2]) and {e,,}
is an (unbounded) approximate idendity of M, ,: the mapping g+~ z"g:
A, — M, , is bicontinuous, and since e,a — a for each a € 4,, it follows
that e,z"a — z"a, hence e, f— f for every fe M, ,. Since each e, may be
chosen to vanish in a neighborhood of 0, it follows that e, f e J(F)< #(T)
for every fe M, ,.

Now, if YP_, f,®g; € kert, then

M=

fi®e,g,eM, ,®F(T)Nkert

1

for each m, because
14 14 p
T(Z fi®emgi> = z fiem8i = ey Z figi=0.
i=1 i=1 i=1

Since there are finitely many terms in the sum the density claim follows.
Let fe M, ,#(T). Since 7 is open 3 constant L>0 such that we can find

13

P
ﬁ®gi€Mn,n®Mn,n
=1

with
S fg=/ and Y Ifllgl < Lifl,.-
i=1 i=1

Since (M, ,®f#(T))Nkert is dense in kert we may assume
> fi®g € M, ,&¢(T). Since f; € M, ,=#(T), Theorem 1.4 applies:

IT(fig)l £ NIfillgd, i=1,....p.

Consequently,
14
ITOI = HT(i figi)“ < 3 ITGel
i=1 i=1
< S Nifillgl = N Y
i=1 i=
< NLIfly.,

which proves the theorem.

Math. Scand. 40 - 17
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It is known that a homomorphism defined on C(X), the algebra of
continuous functions on the compact Hausdorff space X, is continuous on
some dense subalgebra, and consequently splits into a continuous and a
singular part [1, Theorem 4.3]. No analogue of this is possible for C*([0, 1]) as
[2, Theorem 6.3] gives an example of an isomorphism of C!([0,1]) which is
discontinuous on every dense subalgebra of C([0,1]). However, by means of
Theorem 1.9 we are able to establish a partial analogue by showing that any
homomorphism of C*([0,1]) will be continuous on a fairly “large” part of
C2*([0,1]), namely J(F)N C?"([0,1]).

The argument is based on the following

LemMaA 1.10. M,, ,,< M2, and the injection M,, ,, — B, , is continuous.

Proor. If fe M,, ,, then standard applications of Leibniz’ and 'Hopital’s
rules will show that f/z" € M, ,, that is, f € M7 , by Lemma 1.5. To show that
3C>0 such that |f1, ,=C| f|l,, where | - ||, denotes the norm in C¢([0,1]) we
once again use the observation that was mentioned in the proof of
Proposition 1.8: if 0<i,j and i+j<p then

f “’(t)
v

S 1

for every t €]0,1] and every fe M, ;.; . So let fe M,, ,,:

- I f
Fluw = It | S 1 a5
and
7| _ SN
TR CARC
n k f(k—j)(t)
§ te]O 1] k=0 Jg tn+j

IIA

z Z ck.j"f(k+”)'|oo

k=0 j=0

Cllf 12

IIA

which finishes the proof.

CoroLrARY 1.11. Let v: C*([0,1]) — B be a homorphism into the Banach
algebra B with singularity set F. Then v is continuous on C2"([0,1]) NJ(F).
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ProoF. By virtue of the remarks following Theorem 1.4 we may assume that
v has one singularity point, 0. It is immaterial that v is no longer a
homomorphism. Combining Lemma 1.10 and Theorem 1.9 we obtain, for any
fe C([0,1)N I ({0}):

IVOOI < NLIflz2,20 = A1+ CONL| fll20 -

Consequently, the original homomorphism v is continuous on
C2([0, 11N J(F).

ReEMARK. We may extend the restriction of v (to J(F)NC2*([0,1])) by
continuity to

M2n,2n(F) = {fE C2n([0, 1]) I f(j)(t)=0 for

j=0,...,2n, all t € F}
and thus obtain a splitting

v=pu+i

on M, ,,(F). Clearly p is a continuous homomorphism and by arguments like
the relevant parts of the proof of [1, Theorem 4.3] it may be shown that A is a
homomorphism of M,, ,,(F) into the radical of v(M,, ,,(F)). In fact,
straightforward applications of the continuity of u and the definition of the
separating space will show that

S(vlcm) = S(A) = My, 20(F)) .

Returning now to the map T of Theorem 1.9 we address ourselves to the
possibility that the continuity ideal #(T) be slightly larger. If the norm closure
F(T)=2 M, .-, then it turns out that T becomes continuous on C?([0,1]). As
we shall see this situation arises when T is a derivation.

THeOREM 1.12. If #(T) 2M,, -, then T is continuous on B, ,_,.
We establish this after the following algebraic fact.

Lemma 1.13. M2, _ =2"M, ,_,=pM, ,_,, where pe M, ,_\M,, , is any
Sfunction that vanishes only at 0.

Proor. The conditions on p ensure that [3, Lemma 3.2] applies to show that
2"peM, , .. If f=2"ge M2, _,, then

zZu g
= pr——— = € Mnn— .
f=r P P €PMyaes

The other inclusion is obvious.
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ProoF oF THEOREM 1.12. Since z"e M, ,., we can find a function
p € #(T)\M, , which vanishes only at 0. Let

J = span (p,J(0)) .

Then J is a Souslin space, because J(0) is a countable union of separable
Banach spaces, e.g. functions in C*([0, 1]) vanishing on [0,1/m], m=2,3,...
and because J(0) is of codimension 1 in J. Consider the algebraic
tensor product of M, ,_,;®J of the normal linear spaces M, ,_, and J and
equip this tensor product with the greatest cross norm. Since

Mn,n—l ®J g Mn,n—l ®Mn,n—l
we may consider the map t of Proposition 1.8:
T Mn,n-l ®J'—’ Bn,n-—l .

We claim that 7 is continuous, surjective and open. The continuity of t
follows as in Proposition 1.8. The surjectivity is immediate from the definition
of J and Lemma 1.13, and since M, ,_,;®J as the algebraic tensor product of
two Souslin spaces is itself a Souslin space [8], the Borel graph theorem yields
the openness of 7. (A readily accessible reference for the basics of Souslin
spaces (or analytic spaces) is in the appendix of F. Treves’ book [12]. This
appendix is devoted to a proof of the Borel graph theorem). The rest of the
argument is identical with the last part of the proof of Theorem 1.9:

Since 7 is open there exists a constant L such that for every f € B, ,_, we can
find

P
Z fl®gu € Mn,n—l ®J
i=1

such that f=3 fig, and

1% fill gl < Liflnn-1 -
By Theorem 1.4

IT(figdl = Cllfill gl

and hence
q q
ITOI = Zl IT(fig)l £ Y Clfil gl < CLIflyn-1 -
i= i=1

ReMARK. There is another way to prove Theorem 1.12 without tensor
products, using uniqueness of norm and Lemma 1.13: Choose p € #(T) such
that M2, _,=pM, ,_, and norm M2 ,_, with the norm:
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o, = ufu+H£H
14

to get a Banach algebra norm equivalent to ||, ,_, by uniqueness of norms for
semi-simple algebras. Now, if fe M?,_,, f=pg with ge M, ,_,, so

ITOI = IT@I = K,lgll,
since p € #(T); this yields
ITOI = Kligh = KllIfll, = KpLIflan-1 -

CoroLLARY 1.14. If #(T) 2M,, ,_, then T is continuous on C*"([0,1]).

Proor. It is clear from the definition of the graph norms that B, ,<B, ,_,,
isometrically. Consequently, Lemma 1.10 shows that T'is continuous on M, ,,
and since M,, ,, is a closed subspace of C**([0,1]) of finite codimension, the
Corollary follows.

We end this section by a short study of a certain class of operators to which
the results of this section may be applied.
Let A be a commutative Banach algebra and let M be a left Banach-A-

module, i.e. a Banach space together with a continuous homomorphism g:
A — B(M).

DEerFINITION 1.15. A linear map S: A — M is of class G if there exists a
bilinear map L: A x A — M with the property that L(a, -) is continuous for
each a € A such that

S(ab) = ¢(@)S(b)+L(a,b)
for every a,b € A. The continuity ideal #(S) of S € G is
F(S) ={aeA | b — S(ab) is éontinuous}
= {aeAd l b — g(a)S(b) is continuous} .
ExaMpLESs. Suppose M is a two-sided module with respect to left module

multiplication ¢,(-) and right module multiplication g,(-) and suppose D:
A — M is a derivation, i.e., D satisfies

D(ab) = ¢,(a) D(b)+D(a) 0, (b)

for every a,b € A. Then D is of class G, because b — D(a)g,(b) is continuous
for each a € A.
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LEMMA 1.16. Assume A to be a Silov algebra. Let S € G. Then #(S) is a closed
ideal with finite hull F, called the singularity set of S. Moreover, there exists a
constant M such that

IS@b)l = Mial bl
for every a,b € _#(8).

Proor. If {a,} = #(S) with a, — a then g(a,)S(b) — 0(a)S(b) for every b € A
and since

le(a)Shll = Cla,|l IISbI ,

the uniform boundedness principle yields the continuity of b > ¢(a)Sh, and the
boundedness of S as a bilinear map on #(S)x #(S). The finiteness of
F=hull (#(S)) follows from [7, Theorem 2.2].

We now specialize to A=C"([0,1]). If'S: C*([0,1]) > M is a map of class G
with singularity set F={t,,...,t,} we may choose, as usual, functions
e,...,e, € C"([0,1]) such that e; is identically one in a neighborhood of ¢;
and vanishes on a neighborhood of F\{¢;}. Then S;=So¢; is a map of class G
with one singularity point, t;, for which we may borrow an argument from [2]
to prove the following

Lemma 1.17. Let S: C"([0,1]) & M be a map of class G with one singularity
point, which we may take to be 0. Then M, ,_, S #(S).

ProOF. As in [2, Theorem 3.2], since #(S) is known to be closed and M, ,
has finite codimension, it suffices to show that z" € #(S Im, ), i.e. that (z")$ is
continuous on M, ,. By the factorization argument in [2, proof of Theorem
3.2], if {fi}=M,, , and f, — O then there is a sequence {q;} =M, , and a
be M, ,c#(S) so that z"f,=q,b and a, — 0. Then

e(@")S(f) = e(a)S(b)+e(b)S(a)—e(fIS(z") — 0
as k — oo.

CoroLLARY 1.18. Every map S of class G defined on C"([0, 1]) is continuous on
C*([0,1)).

Proor. As we remarked before Lemma 1.17 and before Lemma 1.5 we may
assume that S has one singularity point, 0. By the previous Lemma
M, -1 S#(S) and then Corollary 1.14 applies.
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2. C*"*1continuity of C"-homomorphisms.

As Corollary 1.18 indicates there is some reason to expect that if a mapping
of the types considered here is defined on C" then it-may well be continuous
when restricted to C* for suitable k>n. In the case of homomorhisms,
supporting evidence is to be found in Dales’ and McClure’s work on higher
point derivations [3]: Let d,,d,,...,d, be a non-degenerate higher point
derivation on C"([0,1]) associated with the point 0. Construct a mapping of
C"([0,1]). into B(C**?!) (the algebra of (k+1)x (k+1) complex matrices, i.e.
assuming a basis chosen on C**!, the algebra of linear operators on C**!) as
follows:

fec'([0,1]) —» (“ij(f))?,j=o ,

where «;=0 if j>i and «;(f)=d;_;(f) if j<i. The rules for matrix
multiplication and the definition of a higher point derivation immediately
show f— (a;(f)) to be a homomorphism. Now, by [3, Example 2.5] we have
k<2n, provided that d, 0. Moreover, as the proof of [3, Theorem 3.3] shows,
each functional d; is a linear combination of (extensions of) the canonical
higher derivations f — f?(0), i=1,...,k. With k<2n it follows that all d; and
thus f — (a;;(f)) are continuous on C?*([0,1]).

It turns out that a similar result holds for an arbitrary homomorphism v of
C"([0,1]) into a finite dimensional Banach algebra: v becomes continuous
when restricted to C2"*1([0,1]) (Corollary 2.4). It is not yet known whether
2n+1 is best possible. (Added in proof May 16, 1977: In a paper in
preparation we shall prove, among other results, theorem 2.6 with 2n+1
replaced by 2n.)

The proof of this is based on the following stability result which should be
compared with [10, Lemma 2.3]. Note that the result is not a direct corollary
of [10, Lemma 23] because (with the notation introduced below)
2 ¢ C"([0,1]) for o € 10,n[\{1,2,...,n—1}.

THEOREM 2.1. Let n=0, let v be a homomorphism of C"([0, 1]) with singularity
set F and let t, € F. Let e, € C"([0,1]) be a function that is identically one in a
neighborhood of t, and vanishes on a neighborhood of F\{t,}. Let vo=v-e, and
denote the separating space of v, by S. Let

foeM, ., = {feC' (0,1 | fO(t,) = 0, j=0,...,n}.
If zo(t)=t—t,, t € [0,1] and S,= (v(|zo|*f0)S) for a>0 then S,=S; for all
o, B>0.
Proor. For any a>0, |z,|* is a multiplier of M, , ., that is,

IZOIGMn,n,to = Mn,n,to M
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Since M, , ,, is of finite codimension in C"([0, 1]), &, is the separating space of
v, =V(|2|"fo)vo, considered as a mapping on M, , ... If 0<a<pf then S, &,,
because if

m= 1i:n v(Izol’ fo) vo (f2)
where f, — 0, then |z,| ~*f, — 0 and
V(lzolp—afk) = V(lzoiafo)vo(lzolp_afk)

V(|Zo|ﬂfo)"o(fk) —m.

For O<a let &, be the separating space of the map
ﬁa: fH VO(IZOlaf)a fE Mn,n,to .

This is well-defined since |zo|*f e M, , ,, if fe M, , ... Arguing as above we see
that

€, 6,6 if0o<a<p.

ax =

Now suppose that for certain a and B, 0<a<p we have &,=&;. We then
assert that &, =&, for all ¢ 2. First, if &,=&, then S,,,=6,,, for all y =0,
for

Spey = (v(fol2olNSp)
by Lemma 0.2 iii) and hence
Spay = (V(folzol)S)
= &1y
Next, we claim that for each y=0
Syiy = Spiyimp-ap m=0,1,2,....

We have proved the case m=0. Assume equality holds for m=k. Letting
¥ =(B—a)+y we then have

6ﬁ+y+(k+l)(ﬁ—a) = eﬂ+y’+k(ﬂ-a)
= 6a+y' = Ga+(ﬁ—a)+y = 6ﬂ+y
= Cuty -
If ¢>a, pick =B +m(f—a)>¢ and then S,2S,28;=C,. Hence &,= &, for
any ¢{=a.

To complete the argument suppose there exist o, f, 0<a<pf such that
S, + S;. By the above &, &;. Moreover, if we pick a,,, m=1,2,... such that
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Ot O, <oyt Ha,y, <a<f,

then
(2.2) Gt ta, 2 Gyt 4, form=12,.. .

Otherwise, if for some M, &, , 10, =&, 1 1ay,, then .=, , ., for
all {zoy+ ... +oy. In particular S,=&,; which would be a contradiction.
However (2.2) can not hold for all m by the general stability theorem [6,
Proposition 2.1]. This completes the proof of the theorem.

If A and B are Banach algebras with identities and v: 4 — B is a
homomorphism then v defines a homomorphism v of 4 into #(B), the bounded
linear operators on B, via the left regular representation:

V(@b = v(a)b, a€A beB.

Since B has a unit ||¥(a)|| = ||v(a)||, and consequently v is continuous if and only
if ¥ is continuous.

In the particular case where B is finite dimensional and A= C"([0,1]) we
may assume, first, that our homomorphism v maps into %(B) and secondly,
through a direct sum splitting of B as in [2, proof of Theorem 5.1], we may
then assume that the singularity set of v consists of one point. With this
reduction we have the following

COoROLLARY 2.3. Let v be a homomorphism of C"([0, 1]) with kernel K. Assume
codim (K) < 0o and hull (K)={t,}. Let # (v) be the continuity ideal of v. Then for
all >0 and fe M, , .,

lzol*f€#(v), and |zo]"**fe K.
In particular K2 M?

n,n,to*

Moreover zkfe #(v) for k=1,2,....

Proor. By the finite codimension of K, z3™=|z|*" € K for m sufficiently
large, and consequently |z,|?™ f € K for large m and every f € C"([0, 1]). Taking
ep,=1 in Theorem 2.1 we then obtain

&, = (v(Iz*) &) = {0}

for any >0 and any fe M, , . that is, |z|*f € # (v). Next since codim (K)
<00, J=v (&) is closed, so M, , ,,=J. Also since

n,n,to =

FW) = {fec(0,1]) | v(N)S={0}},
it follows that J# (v) < K. Therefore
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K 2 Jf(V) 2 Mn,n,tof(v) ‘ZOI Mn n,to
= |zo|az'(l)Mn,n,to = |zoln+aMn,n,zo >

the last equality following from the fact that zoM,, ,, ,,=120|M,, , ,,- TO see this
last observation let f (t)=f(t) for t = t, and f; (t)=0for t <t,, and let f,=f—f,.
Theﬂ fly f2 € Mn,n,x(p

zof = lzol fi—lzol f2» and  |zol f = 2o fi—20 f> -

Therefore z,M =|zo|M,, ., Clearly

n,n,to

M; = Z(Z)"Mn,n,ro <K

n,n,to

and zKfe #(v) for k=1,2,... as required.

It seems quite probable that K > M2

om0 = 20Mp, .1, Dut we have been unable
to prove this.

COROLLARY 2.4. Let v:C"([0,1]) — B be a homomorphism into the finite
dimensional Banach algebra B. Then v is continuous on C*"**([0,1]).

Proor. By the remarks preceding Corollary 2.3 we may assume that v has a
one-point singularity set, {to}. Let f€ My, 3n41., and let g=|zo| " 1f. It is
elementary that g e M, , ., in fact by the general version of the mean value
theorem mentioned in the proof of Proposition 1.8 we get that there exist
constants c; , and C (for 0=<j<k=n) such that

f (k)
Igll, = sup Z ( ,.H> ®
t¥ty k= 0
k (k + j) t
é Sup Z Z CJ" f n'El)'U
t¥ty k=0 j= )

< sup Z Z Cj,k"f(k+"+l)”oo

tty k=0 j=0
S Cliflzner -
Thus, fe M, 44,20+1,1, implies that there exists a g € M, , ,, such that
f=lzl""'g and ligl, S Cliflza+1>
since |zo|"** € M, .1, by Corollary 2.3, and thus there is an N such that

IVOI = lv(zol"* 'g)Il < Nlighs < NCIlf 2041 -

Because M, 2q+1.1 18 closed and of finite codimension in C2"*([0, 1]), the
Corollary is proved.
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We shall prove a stronger version of Corollary 2.4 by showing that if
v:C"([0,1]) — B is a homomorphism and B has a finite dimensional radical
then v is continuous on C2"*!([0, 1]). This requires the use of Theorem 2.5; we
present a proof of this theorem which was suggested by the referee and which
considerably shortens our original argument.

THeOREM 2.5. Suppose n=0. Let v be a homomorphism of C"([0,1]) into B,
where B is a Banach algebra. Suppose v is continuous on C*([0, 1]) for some k> n.
Then v is continuous on C*"*1([0,1]).

PrOOF. Suppose v has singularity set F={t,...,t,} and suppose
e; € C*([0,1]) are chosen identically 1 in a neighborhood of ¢; and vanishing
on a neighborhood of F\{t;} for j=0,...,p. Let v;=vee; and v,,,=v
—2¥_ov;. Since v,,, is known to be continuous [1, Corollary 3.9] it will
suffice to show that each v; (j=0,...,p) is continuous on C*"*'([0,1]).
Moreover, by the stability result (Theorem 2.1), it suffices to show that # (v,),
say, contains a power of z,, because then we may argue exactly as in the proof
of Corollary 2.4 to obtain the desired continuity result.

So suppose v,=ve, has singularity point t, € [0,1] and is continuous on
some C*([0, 1]) by virtue of v being continuous on C*([0, 1]). The continuity of
v on C*([0,1]) means that B is a Banach-C* module under the module
multiplication ¢(f)b=v(f)b for every b € B and fe C*([0,1]).

The Banach space C"([0, 1]) is a Banach C*-module under multiplication of
functions and v, is a C*-module homomorphism from C*([0,1]) into B,
because

volfifo) = v(f)vo(f2)
for every f, € C*([0,1]) and f, € C*([0,1]). Let }
Filvo) = {fe C([0,1]) | v()S(vo)={0}} .

Clearly, #,(vo) is a closed ideal in C*([0,1]), because v is continuous on
C*([0,1]). Thus £,(vo) 2 M, i ., that is, z§*! € #,(v,). Let, as usual,

Fvo) = {fe C([0,1]) | vo(f*) is continuous}
= {fe C*([0,1]) | v(f)v, is continuous}
= {fe (0,1 | v()S(v)={0}}
and note that #,(vo)=# (vo) N C*([0,1]). Hence z§** € #(v,) and the proof is

complete.

Finally, we prove a generalization of Corollary 2.4:
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THEOREM 2.6. Let v: C"([0,1]) — B be a homomorphism and assume about B
that B=v(C"([0,1])). Suppose R=radical (B) is finite dimensional. Then v is
continuous on C*"*1([0,1]).

ProOF. By the remarks following Theorem 2.1 we may replace v by the
homomorphism v: C*([0, 1]) — £(B), defined by v(a)b=v(a)b for every b € B
and every a € C"([0, 1]). Since ||v(a)| = ||¥(a)|| we are done when the continuity
of ¥ on C?"*1([0, 1]) has been established. We note first that since R is an ideal,
R is invariant under v:

beR, fe C"([0,1]) = ¥(f)b = v(f)beR.

Since R is finite dimensional we may choose a projection P € #(B) onto R and
define a map

¥p: C"([0,1]) — B(B)

by Vp(f)=PV(f)P, fe C"([0,1]). The invariance of R shows that ¥, is a
homomorphism:

vp(f1f2) = PV(f)V(f)P = Pi(f)) PV(f)P
= PV(fYP-PV(f)P = ¥p(f1)Vp(f2), f1, /2 € C'([0,1]).
Vp(f)lr=vp(f) is also a homomorphism: If b € R then
ve(f1 )b = Tp(fi £)b = Vp(f1) Vp(f2) b
= vp(f)vp(f2) b

by the invariance of R. Since R is finite dimensional vj is continuous on C?"*!
(Corollary 2.4) i.e. there exists an M such that

(NIl £ Mlifllz0+y for every fe C***1([0,1]).
But

Ve (f)bll = 17 (f) Pbll = |ve(f) Pb]|
ve (NI IPBI
= M|\ fllza+ 1 IP] 1B

AN

SO

Wp(N)I = sup [¥p()bI

Iy st
MIP S ll2n+1

IIA

which shows that ¥p is continuous on C3"*1([0,1]).
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Let Q=1— P and consider vy: C"([0,1]) —> #(B) defined by 7, (f)=Q7¥(f)Q.
This also defines a homomorphism:

Vo(f1 ) = Q¥(1 f2)Q

= QW) Q = Q) (Q+P)V(f)Q
V(1) V(1)@ = Q¥(£)Q-Q¥(f2) Q
Vo(f)Vo(fa),  for f, f, € C*([0,1]) .

Consider the map Qv: C"([0,1]) —» B and note that since S(v)=R, Qv is
continuous by Lemma 0.2. iv), [The fact that S(v)< R may be seen this way:
Let ¢ be a multiplicative linear functional on B and note that ¢@v is a
multiplicative linear functional on C"([0, 1]). By the continuity of ¢ and ¢v and
Lemma 0.2 iv) we get © Sker ¢. This being true for any ¢, we get S £ R]. Since
Qv is continuous there exist a C such that

IQv(NI = Cliflla
and hence
(N bl = 1Q¥(f) @bl = 1Qv(f)Qbll
= 1QvNNIQhI = Cliflalel bl ,

that is [[Vo () S ClQ| [If [l which proves the continuity of V. Consider next
the following matrix representation of v:

Rl 0 } {Qb}
e {Pﬁ(f)Q 7p(f)f |Pb

which is a schematic writing of the identity
V(b = (P+Q)V(f) (P+Q)b .

We have already discussed the continuity properties of the diagonal entries 7,
and ¥p. So consider the function Pv(c)Q: C*([0,1]) —» #(QB, R). Denote this
map by Vpy and note that

po(f1 f2) = PV(f)V(f2)Q

Pi(f)(P+Q)V(f2)Q
Pi(f)PF(f)Q+ PV(f)QV(/2)Q
Tp(f1)Vpo (f2) +Vpo (f1)Vo(f2) -

]



270 W. G. BADE, P. C. CURTIS, JR. AND K. B. LAURSEN

#(QB,R) is a two-sided C?>"**-module with left module multiplication given
by v and right module multiplication given by ¥p. With respect to these actions,
Vpg is a derivation, as the above identity shows. By Corollary 1.18 we then
obtain the continuity of ¥py on C2"*1)([0, 1]). Consequently, ¥ and thus v are
continuous on C*"*2([0, 1]). But then Theorem 2.5 tells us that v is continuous
on C?"*1([0,1]), and this completes the proof.
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