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ON THE IVERSEN-TSUJI THEOREM FOR
QUASIREGULAR MAPPINGS

MATTI VUORINEN

1. Introduction.

Quasiregular mappings have turned out to be natural generalizations of
complex analytic functions to n-dimensional euclidean spaces for n=2. For the
basic theory of quasiregular mappings, we refer to the papers by Martio,
Rickman, and Viisala [3]-[5].

A result by Martio and Rickman in [6] extends the classical Iversen—Tsuji
theorem on bounded analytic functions to the case of bounded quasiregular
mappings. The purpose of the paper is to improve and generalize this result.

Preliminaries are given in section 2. In section 3 we first strengthen the
Iversen-Tsuji theorem by Martio and Rickman. In fact, the boundedness
assumption in [6] is replaced by a much weaker assumption and to this end we
need a result from [4]. After this we confine our attention to quasiregular
mappings defined in the unit ball and prove a Iversen—Tsuji type result where
we permit the exceptional set to be larger than in the Iversen-Tsuji theorem.
The new condition on the exceptional set is formulated in terms of the
continuum criterion, which was recently introduced by Martio in [2]. In
section 4 the results are applied to obtain an extension of a well-known
theorem by Lindelof concerning analytic functions. Some of our results are
perhaps new even for analytic functions.

2. Notation and preliminary results.

Our notation and terminology are mainly the same as in [3]-[5]. Only some
basic concepts will be given here.

We consider only spaces of dimension n 2. The inner product Y x;y; of two
vectors x,y € R"is denoted by (x|y). In the spaces R" and R"=R"U {co} we use
the metric given by the norm |x|= (x| x)? and the spherical chordal metric g,
respectively. All topological operations are performed with respect to R". For
Xo € R", r>0, B"(x,,r) denotes the ball

B"(xo,r) = {x € R"| |x—xol<r}
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and S$""!(x,,r) the sphere
§" M (xor) = {x € R"| |x—xo|=r},

respectively. We use the abbreviations B"(r)=B"(0,r), S" '(r)=S""1(0,r), B"
=B"(1), and S""1=8""1(1).

A continuum is a connected compact set containing at least two distinct
points. A path y is a continuous mapping y: 4 — A, AcR", where 4 is an
interval on the real axis. We denote y4 by |y| and we let A(E, F; G) denote the
family of all non-constant paths y:[0,1) — R" such that y(0) € E, y(0,1)<=G,
and y(t) » Fast — 1. A condenser E= (4, C) is a pair where 4 is a domain in
R" and C<c 4 is compact. For the conformal capacity cap E of a condenser E
we use the same definition as in [3]. We often need a result by Ziemer [14],
which gives an alternative definition of the conformal capacity as follows:
cap E=M(A(C,04; RM)=M(4(C,0A4; A))=M(A(C,04; A\C)). Here M de-
notes the n-modulus of a path family, see [11]. As in [4], we use the confor-
mal capacity also to classify sets E < R" according to whether their capacity is
zero or positive, denoted by cap E=0 or cap E >0, respectively.

2.1. DeFINITION. Let EcR" be a compact set. The continuum criterion holds
at y € E if there exists a continuum K <R", y € K such that M (I'g) < oo where

I'y=A(K,E; R" (cf. [2]). If the continuum crjterion holds at y € E we denote
M(y,E)<oo.

The omission of a continuum K from this notation is motivated by an
equivalent definition of the continuum criterion, which shows that no reference
to any particular continuum is needed, cf. [7, 2.20].

Some properties of the continuum criterion and examples of sets E satisfying
M(y,E)< oo for some y € E are given in [7]. All the information, which we
need on the continuum criterion, is given by the next two lemmas. The lemmas
follow from some results of Martio and Sarvas [7]. For details, see [13].

2.2. LEeMMA. Let EcR" be a compact set with y € E and M(y, E)<oo. Then

there exists a sequence r,>r,> . .. of positive real numbers tending to zero such
that

(1) 8" *(y,r)=R™E,
(2) M(A(S"*(y,r),E;R")) > 0 as j— oo

If ee $"°! and ¢ € (0,n/2) we denote by K(e, ) the open cone
K(e,9) = {x e R"| (ele—x)>]e—x|cosp} .
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Then e is the vertex of K(e, ¢). In what follows we will need the continuum
criterion only for sets EcdB".

2.3. LEMMA. Let EcdB" be a compact set with y € E and M(y, E)<oo. Then
for every ¢ € (0,m/2), M(I'g)< 00 where K =K(y, )N B"(y,cos ¢) and
limM(T'x) = 0,

r-=0

where K,=B"(y,r)N K.

2.4. REMARK. There are sets E < dB" with M(y, E)<oo for some y € E and
cap (ENB"(y,r))>0 for all r>0. In fact, if one modifies the examples in [7]
one obtains a compact set E < dB" with M(y, E)< oo for some y € E such that
E={y}U (U (B;NdB"), where B;=B"(x,r,), x; € dB", and x; — y. Here the
ratio r;/|x;—y| tends to zero exponentially. Martio and Sarvas proved in [7]
that M (y, E) < oo implies that E has zero capacity density at y. In this sense the
condition M(y, E) < 0o measures the thinness of E at y.

3. The Iversen-Tsuji theorem.

We will prove in this section two Iversen—Tsuji type results for quasiregular
mappings. First we strengthen a result by Martio and Rickman in [6] and after
that we prove a related result where the exceptional set is permitted to be
larger.

Our Iversen—Tsuji theorem differs from the result of Martio and Rickman in
two respects. Firstly, the proof given here avoids some technical difficulties and
is shorter than the one in [6]. Secondly, our result is more general and
perhaps new even for analytic functions. In fact, we replace the assumption in
[6] that the mapping is bounded by the one that infinity is a capacity point of
the omitted values.

A point y of a compact set F <R" is called a capacity point, if cap (U N F)>0
for every neighborhood U of y. It is well-known that F contains capacity
points if and only if cap F>0. As a preliminary result we need the following
lemma, which is a consequence of [4, 3.11].

3.1. LeMMA. Let F =R" be a compact set, let the origin 0 be a capacity point of
F, and let r>0. Then for every ry>0 there exists 6>0 such that for every
continuum C c B"(r)\F with the euclidean diameter d(C)=r,

MI) =6
where I'=A(C, F; B"(r)).
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Proor. Let I'; = A(C, F N B"(r); R"). By [4, 3.11] and [14] there exists §>0
such that M(I'))=25. From a symmetry argument it follows that M(I)
=M(I',)/2= 6. The proof is complete.

3.2. TueoreM (Iversen-Tsuji). Let f: G — R" be a quasimeromorphic
mapping, let E <0G be a compact set of capacity zero, let y € EN (0G\E), and let
00 be a capacity point of R™\ f(G N U) for some neighborhood U of y. Then

(3.3) limsup|f(x)] = limsup (limsup|f(x)]) .
x>y zoy Xz
2€0G\E

ProoF. We denote by d and b the left and the right hand sides of the equality
(3.3), respectively. Obviously d=b. Suppose that @>b. Then we may fix
a,b € (b,d) with a> b. Performing an auxiliary Mobius transformation we may
assume that y=0. Choose r, >0 such that B"(r,)< U and

(3.9) limsup | f(x)|<b
for z € (0G\E) N B"(r,). Choose a sequence (x,) in B"(rl.)ﬂ G such that |f(x,)|
>a and |x,/<1/k for every k=1,2,.... Since y=0 € (0G\E), since E is

compact, and since cap E=0 we find, applying [4, p. 8] as in the proof of [6,
3.3], a path y,: [0,1] — G\E such that 7(0)=x;, (1) € 0G\E, and

yk[o’ 1) < Bn(rl/k) n G.

For each k we may choose a continuum C,<|y, /NG with

fCo = R\B"(b), fC,NS""(@a+b)2) + &,

and
fC.NS"Ya) + & .

Denote I'y=A(fCy, F; R"\B"(b)), k=1,2,. .., where F=R"\ f(GNU). In view
of the conformal invariance of capacity points there is by Lemma 3.1, >0
such that M(I'}) =6 for every k. Let I', be the family of the maximal liftings of
the elements of I'} starting at C,. For terminology, see [5, 3.11]. From the
choice of r, and from (3.4) it follows that if a € I', then either

W NE+ @ or |dNSi(r) + &;

see [5, 3.12]. Because cap E =0 the family of the former paths has zero modulus
([14]) and the modulus of the family of the latter paths tends to zero, as can be
verified using a suitable modulus estimate ([11, 7.5]). By the modulus
inequality in [12, 3.1]
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0 <o= My = M(UTY £ K (/)MT)

which leads to a contradiction, since M(I',) — 0 as k — oo. Hence d=5b and
the proof is complete.

The maximum principle of Martio and Rickman [6, 3.9] assumes now the
following more general form.

3.5. COROLLARY. Let f: G — R" be a quasimeromorphic mapping of a bounded
domain G, let 0o be a capacity point of R™\ fG, and let E <0G be a compact set of
capacity zero. If limsup,_, | f(x)|SM for every point y € 0G\E, then |f|<M.

Proor. The proof follows from hte proof of [6, 3.9] except that we apply
Theorem 3.2 instead of [6, 3.3]. In fact, if we use the notation in the proof of [6,
3.9], it suffices to show that oo is a capacity point of R™\ f;G,. This is obvious if
we show that |f; (x)| M for x € E\F. This follows if we use the same method
as in the proof of Theorem 3.2 and apply the modulus inequality in [12, 3.1].

3.6. REmMark. For a recent proof of the Iversen—Tsuji theorem in the case of
analytic functions, see Garnett [1]. The proof of Theorem 3.2 seems to simplify
the known proofs even in the case of analytic functions, see for instance [1] and
[9, pp. 17-19].

In the above Iversen-Tsuji theorem the compact exceptional set E on the
boundary of the domain G was assumed to be of capacity zero. In the
remaining part of the section we will replace this assumption by M(y, E)<oo
for some y € E, which guarantees that E is very thin at y but y may still be a
capacity point of E, see Remark 2.4. In order to obtain a counterpart of the
Iversen—Tsuji theorem under such a weaker condition on E, it seems to be
necessary to restrict the tangential behavior of dG at y. This restriction is
needed to guarantee that there exists in GU{y} a continuum K 3 y with the
property M(4(K, E; G))<oo. For the sake of simplicity we consider only the
case G=B" although an extension to somewhat more general domains is
possible. These domains include for instance those which are locally
quasiconformally collared on the boundary in the sense of [11, 17.5].

3.7. THEOREM. Let f: B" — R" be a quasimeromorphic mapping, let E <3B" be
a compact set with M (y, E) < oo for some y € E, and let co be a capacity point of
R™ f(B"NU) for some neighborhood U of y. Then
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(3.8) limsup|f(x)] £ limsup (limsup|f(x)|)
x=y z—-y x=z
xeK(y,p) ze0B"\E

for every ¢ € (0,7/2).

Proor. We first remark that M (y, E) < oo implies by [2, 3.8] y € (dB"\E) and
hence the limit (3.8) makes sense. Fix ¢ € (0,7/2). Denote by d and b the left
and the right hand sides of (3.8), respectively. Suppose that d> b. Then we may
choose real numbers a, b € (b, @) with a> b. It follows from Lemmas 2.2 and 2.3
that there exists a decreasing sequence (ry), r, € (0, 1/k) of positive real numbers
with

(3.9) S""l(y,r) < R\E, k=1,2,...
(3.10) M(T)—->0 as k- oo

where I',=A4(D,E;B" and D,=S""'(y,r) U (K(y, )N B"(y,1/k)). Choose
X, € B"(y,1/k)N K(y, @) such that |f(x,)|>a, k=1,2,.... After relabeling we
may assume that B"(y,r,)c U and

(3.11) limsup|f(x)] < b

for every ze (0B"\E)NB"(y,r;). By (39) and (3.11) we may choose
yx € $"1(y,r) N B" such that | f(y,)| <b for every integer k. From the choice of
the sequences (x,) and (y,) it follows that there is for each k a continuum C,
<D, N B" with fC, =R™ B"(b) and

fCn s Ha+by2) + & fC,NS""Ha) + &.

Let I',=A(fC,, F; R"\B"(b)), k=1,2,..., where F=R"\f(B"NU). As in the
proof of Theorem 3.2, it follows from Lemma 3.1 that there exists 6 >0 such
that M(I',) = 0 for every integer k. Let I', be the family of the maximal liftings
of the elements of I" | starting at C,, see [5, 3.11]. Applying [, 3.12] it follows
from (3.10), (3.11), and [11, 7.5] that M(I',) — 0 as k — oo. By the modulus
inequality in [12, 3.1]

0 <6< MTY)sM(UTY = K (NHMTY

which leads to a contradiction as k — co. Hence d<b and the proof is
complete.

4. Some applications.

In this section we will give various applications of the above results. The
main application, Theorem 4.1, extends a well-known theorem by Lindelof [8,
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p- 75]. Lindel6f’s theorem states that a bounded analytic function of the unit
disc, which is continuous on the boundary except at one boundary point b, and
which has a limit along the boundary at b, has actually the same limit along the
closure at b.

4.1. THeoreM. Let f: G — R" be a quasimeromorphic mapping with
cap (R"\fG)>0, let Ec0G be a compact set of capacity zero, and let
y € EN (0G\E). Suppose that there is a continuous mapping f: G\E — R" such
that f|G=f and such that the limit

. limf(x) = «
:ayG\E
exists. Then also the limit
4.2) ‘ lim £ (x)
ce\E

exists and equals a.

Proor. Performing an auxiliary Mobius transformation we may assume that
a=0. Suppose that the limit (4.2) does not exist. Then there is a sequence (x;)
in G\E tending to y with

lim|f(x)l = b >0.

Denote F=R" fG. Since cap F >0, there is d e (0,5) with cap (F\B"(d))>0.
Choose ¢>0 such that

F((G\E)N B"(y,0)) = B"@/2) .

If we modify Lemma 3.1 and the proof of Theorem 3.2, we obtain a
contradiction. The proof is complete.

43, THeoreM. Let f: B"— R" be a quasimeromorphic mapping with
cap (R™\fB") >0 and let Ec9B" be a compact set with M(y, E)< oo for some
y € E. Suppose that there is a continuous mapping f: B"\E — R" such thatf| B"
=f and such that the limit
4.4) lim f(x) = «

x—y

xedB"\E
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exists. Then the angular limit
lim f(x)
Xy

xeK(y, )

exists and equals o for every ¢ € (0,7/2).
Proor. Follows from Theorem 3.7 and from the proof of Theorem 4.1.

4.5. REMARK. It is interesting to compare Theorems 4.3 and 3.7 with some
results of Ohtsuka in [10]. The author is grateful to Professor Ohtsuka for this
reference.

Let B={(x,y) | O<y<l1}, let F be a compact set on the real axis, and let
f: BUF — R? be a bounded continuous function with f(x) — 0 as x — oo
and x € F and let f be analytic in B. It follows from [10, Theorem 4] that f
tends to 0 in any strictly narrower substrip of B if F has positive average linear
measure near x= +00. For terminology, see [10, p. 149]. If one maps B by
h: z — —e~" onto the upper half plane, this result gives a sufficient condition
for the fact that foh~! has 0 as the angular limit at the origin. The condition
on F is the best possible; see [10, Theorem 5].

In the final application of the results we discuss asymptotic values of
quasimeromorphic mappings. A point z € R" is an asymptotic value of f: G
— R"at y € 0G if there exists a path y: [0,1) - G with y(t) — y,f(y(t)) — z as
t— 1

4.6. COROLLARY. Let us consider the situation of Theorem 4.3. If K, and K,
are continua in B"U{y}, yeK,, i=1,2, such that M(A(K,E; B")<o0o0, i=1,2,
then the limits

limf(x) and lim f(x)
x—y x=y

xeK, xeK,
both exist and equal the value o in (4.4). Thus f has a well-defined asymptotic
value along a path y: [0,1) — B", y(t) — y as t — 1 if M(4(jy|,E; B")< oo.

Proor. From the proof of Theorem 4.3 it follows that the cone K(y, ¢) can
be replaced by any continuum K <B"U{y}, y € K with M(4(K, E; B")< 0.
Hence the proof follows.
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