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PERTURBATIONS OF
CENTRE-FIXING DYNAMICAL SYSTEMS

FRANK HANSEN and DORTE OLESEN

1. Introduction.

Let « and B be o-weakly continuous representations of a locally compact
group G as automorphisms on a von Neumann algebra .#. If the action o,
=pB,a_, is pointwise inner, we say that f is an inner perturbation of the
dynamical system (4, G, ). Assuming that « leaves the centre of .# pointwise
invariant, we shall investigate under what conditions (on G, .# and «) an inner
perturbation is given by a strongly continuous unitary 1-cocycle in .# (that is,
ugp=u,0,(u,) in the sense that f=(Adu)oa.

If o is the constant mapping onto the identity automorphism this is the
wellknown problem concerning implementability of a pointwise inner group of
automorphism — in other words, the question of when a projective or ray
unitary representation lifts to a (genuine) unitary representation. The strongest
result in this direction has been obtained by C. C. Moore ([11, Theorem 5])
who showed that if .# has separable predual and G is a separable group with
H?*(G,T)=0, such an implementation exists. In the more special case of a
uniformly continuous representation, it was shown by J. Moffat in [8] that
implementability occurs for any von Neumann algebra and any connected
topological abelian group.

As far as the situation with non-trivial a is concerned, A. Connes showed in
[2, Théoreme 1.2.8] that an implementing unitary 1-cocycle for ¢ may be found
when G=R and # a factor with separable predual. When the perturbation is
assumed to be bounded - i.e. ¢ to be uniformly continuous — D. Buchholz and
J. R. Roberts proved in [1, Proposition 4.1] that such a 1-cocycle can be found
for G=R and any von Neumann algebra (or simple C*-algebra). In the latter
paper, references to the physical relevance of the perturbation problem are
amply supplied.

In this paper, we take an approach which stresses that vanishing
cohomology of G is sufficient but not always necessary to ensure
implementability. We show that if G is abelian connected and .# a factor with
separable predual, then an inner perturbation is given by a quasi-1-cocycle
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(ug+p=b(g, Wu,o,(u,) with b a continuous bihomomorphism from G x G into
the circle). In case G has vanishing cohomology, the perturbation is given by a
regular 1-cocycle.

If A4 is a simple C*-algebra with unit, « and f strongly continuous
representations and f a bounded perturbation of a then there exists a norm-
continuous quasi-1-cocycle u in 4 such that f=(Adu)-a.

In the general von Neumann algebra case (assuming that « is centre-fixing)
we show that when G is abelian with vanishing cohomology and .# has
separable predual, then an inner perturbation is given by a unitary 1-cocycle.

Finally, we obtain a proof of the result that when « is the constant mapping
onto the identity automorphism and f is a uniformly continuous
representation of a connected abelian group G then f§ is implemented by a
norm continuous unitary group.

2. Notation and preliminaries.

Let .# be a von Neumann algebra and denote by Aut .# the group of all *-
automorphism of .#, by Int .# the subgroup of inner *-automorphisms. In the
following we shall be interested in two topologies on Aut .#, both making it a
topological group. The uniform topology arises by regarding Aut .# as a subset
of the Banach space B(.#) of bounded linear operators on .#, and the g-weak
topology by regarding convergence of the automorphisms pointwise on the
elements of .# in the o(4, # ,)-topology, #, denoting the predual of .#.
Thus «; — a g-weakly if g(x;(x)) — ¢(x(x)) for every ¢ in 4, and x in 4.

Let a be a o-weakly continuous homomorphism from the locally compact
abelian (henceforth abbreviated l.c.a.) group G into Aut 4. We shall call the
triple (.#,G, ) a dynamical system. In the following we shall always assume
(A#,G,a) to be centre-fixing, by which we mean that « leaves the centre & of .#
pointwise invariant — a condition automatically fulfilled when .# is a factor.

Let (#,G,a) be a dynamical system. A o-weakly continuous map o:
G — Aut . is called a 1-cocycle (with respect to Ada) if for all g and hin G

Ogin = 00,040, (=0, Aday(ay)) .

Let (.#, G, p) be another dynamical system. The map o defined by o,=B,a_, is
then a 1-cocycle. Especially, ¢ is a homomorphism if and only if a and
commute. Conversely, given o and a 1-cocycle o, f=o0a is a representation of G.
We say that f§ is a perturbation of a by 6. When o is pointwise inner, we speak
of ¢ as an inner cocycle and of f=oo as an inner perturbation of a. If o is
uniformly continuous, i.e.

le,—i] =0 as g—0

we call f=ca a bounded perturbation of o (see also [1]).
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A unitary map u: G — .# is called a 1-cocycle with respect to « if it satisfies
the equation

Ugsp = Uty (uy)

for all g and h in G. If b is a bihomomorphism from G x G into the unitary
group in £, u is said to be a quasi-1-cocycle with respect to o if

Ugsrn = b(g’h)ugag(uh)
for all g and h in G.

We shall call a 1-cocycle 6: G — Aut.# implementable if there exists a
(suitably continuous) unitary 1-cocycle in .# such that ¢=Adu, and quasi-
implementable if 6 =Adu with u a unitary quasi-1-cocycle. In terms of the
perturbation f we shall say that B is given by a (quasi-)1-cocycle u when o
defined by o,=p,a_, is (quasi-)implementable.

In this paper, we list a number of sufficient conditions for (quasi-)
implementability.

3. The bihomomorphism associated to an inner perturbation.

DerFiniTION 3.1. Let (#,G,a) be a centre-fixing dynamical system and o:
G — Aut ./ a pointwise inner cocycle with respect to Ad«. Assume that u:
G — . is a unitary map such that 0 =Ad u. We define c to be the map from
G x G into the unitary group in the centre & of .# given by

C(g’ h) = ugag(uh)ah(u;)u: .

ProposiTioN 3.2. The map c¢ as defined in 3.1 is a skew-symmetric
bihomomorphism which is independent of the specific choice of implementing
family u for 6. When # has separable predual and G is separable (i.e. second
countable), ¢ is o-weakly (strongly) continuous.

ProoF. ¢ does. not depend on the map u, since another unitary map w:
G — # for which ¢=Adw is the pointwise product of a unitary map z:
G — Z and u. ¢ is skew-symmetric since

C(h’ g) = uhah(uy)ag(u:)u; = (ugag(uh)ah(u;)u:)* = C(g, h)*
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of o, and the fact that u,o,(4,) and u,,, both implement g, thus u,a;(u,)
=u,,,z with z a central unitary, we have that

() = (g (un)ui¥) B (o (widuf)
= oy (uy) (0 "o By) (ot (wuJusi
= 0t (Up)atp 1 g (Uit (1) ¥
=t (14004 (1)) (0 (1)) *
= 0y (Up1x2) (g 412)*

= o (Up+ 22 Uiy

I

“g(“hu)“:u = Upsy -

Now a standard argument shows that if v is a 1-cocycle with respect to f8, then
for any fixed unitary w we have that

h = wouy(w*)

is also a cocycle with respect to . Thus for every fixed g

h— c(g h) = ug(og(up)uF)By(uy)

is a cocycle with respect to B. But c(g,h) € & and f leaves & pointwise
invariant, thus h +— c(g, h) is a homomorphism. Since

c(gh* = c(hg)

we conclude that also g + c(g, h) for fixed h is a homomorphism.

Note that the weak, o-weak, strong and o-strong topologies on . all
coincide on the unitary group %, and that % equipped with this topology is a
Polish space when the predual .#, of .# is separable.

Given ¢: G — Int . #, #, separable, we know by e.g. [6, p.47] that there
exists a Borel function u: G — % such that 6 =Ad u. Thus c is a (jointly) Borel
bihomomorphism from G x G into % N Z, and by an argument similar to that
employed for a homemorphism in [14, p.67] ¢ is then (jointly) continuous
when G is separable l.c.a. and % N Z separable.

ReMArk 3.3. If (#,G,a) is not centre-fixing, an inner perturbation f need
not give rise to a bihomomorphism.

To see this, take e.g. # =L*(R), G=R and a=f to be the translation group
(o,(f (s))=F (s—1)). Then any unitary function u, in L*(R) implements o, (Where
5,=Ba_,) so take e.g. t > u, to be the constant map onto some u. Then



PERTURBATIONS OF CENTRE-FIXING DYNAMICAL SYSTEMS 299

c(s,0(p) = u@Pup—s)u(p—1up) = ulp—s)ulp—t),

so c(1,1)=1, ¢(1,0)(p)=u(p—)u(p) and c(1,—1)(p)=u(p—1u(p+1). Thus
choosing e.g.

1 —oo<p<0
ulp) = {—1 0<p<oo

we see that ¢(1,0)£c(1,1)c(1,—1) and so ¢ is not homomorphic in ¢.

REMARK 3.4. In general, we have to use a “measurable choice” argument to
prove continuity of ¢, and this presupposes separability of .# .

In two important special cases we are, however, able to prove some kind of
continuity without such a type of argument, thus without separability
conditions on .#, and G. One case is where the cocycle ¢ is uniformly
continuous. For this, we refer to the lemma below. The other case is where a is
the constant mapping onto the identity automorphism, and ¢ = a pointwise
inner homomorphism from G into Aut.#. Indeed, here we have that

C(g’ h) = ug(ag(uh)u:)ﬁh(u;) = “gﬂh(u;) .

Thus the continuity of h + c(g,h) for fixed g is immediate and the skew-
symmetry of ¢ then implies that g — c(g, h) for fixed h is continuous. Thus c is
separately continuous. It now follows from e.g. [7, Lemma 9.2] that c is jointly
measurable, thus by e.g. [14, p. 67] jointly continuous, whenever .#, and G are
separable.

LeEmMA 3.5. Let (#,G,a) be a centre-fixing dynamical system, G a connected
l.c.a. group and o: G — Aut # a uniformly continuous cocycle with respect to
Adoa. Then o is pointwise inner and the map c defined as in 3.1 is norm-
continuous.

Proor. By [5, Lemma 5, Theorem 7] we may for each g in G such that
lo,—1ll <2 choose u, in A4 so o,=Adu, and

sp(u) < {ze C| Rez23)/4—|o,—1]?}.

Since G is connected, the fact that ¢ is inner on a neighbourhood of 0 in G
implies that it is inner everywhere. Furthermore, any family u chosen as above
on this neighbourhood is continuous at 0, thus the map c is continuous at (0,0).
But then the bihomomorphic property of ¢ implies that it is everywhere
continuous.



300 FRANK HANSEN AND DORTE OLESEN

ReMARK 3.6. The connection between ¢ and the 2-cocycle most often
considered in implementation studies is simple. In fact, when a measurable
implementing unitary map u: G — # is chosen, the central 2-cocycle is
defined to be the map

w: (g’ h) — ugag(uh)u;+h
(see e.g. [2, p.151]). It is thus immediate that

c(g,h) = w(g,hw(hg)*.

Assume .# to be a factor. Then w € H?(G,T), and if G has trivial cohomology,
w is symmetric, thus ¢c=1. If .# is a general von Neumann algebra, it follows
from [11, Theorem 1] that this is also true. Thus trivial cohomology of G
suffices to ensure c=1.

4. The factor case: quasi-implementability and implementability.

In this section we take .# to be a factor with separable predual .#, and
show that a quasi-implementation can be obtained even in cases where the
cohomology of G is non-trivial (notably G=R"). When G has trivial
cohomology, implementability occurs.

When dealing with bounded perturbations the separability assumption on
M , can be dropped and a norm-continuous implementing (quasi-)1-cocycle
can be found.

LEMMA 4.1. Let (M#,G,a) be a dynamical system, ¢ an inner cocycle with
respect to Ad a. Define ¢ as in 3.1. If # is a factor with separable predual and G
is separable connected or the integers there exists a continuous bihomomorphism
d from G x G into R such that for all g and h in G

c(g,h) = exp (id(g, h)) .

Proor. (i) Assume G=R". By 3.2 ¢ is continuous, thus there is an open ball
¥ around O such that

T n
c(g,h) e {z eT| —5<Argz<§}

for all g and h in ¥, Arg denoting the principal value of the argument. Set
d(g,h) = Argc(g, h)

for g and h in ¥, then d is continuous, skew-symmetric and bihomo-
morphic on ¥" x ¥, that is, a continuous skew-symmetric bilinearform into R.
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Now ¥~ generates R", thus we may extend d to R"x ¥~ by setting d(g, h)
=md(g’,h) where g is arbitrary in R", g=mg' withme Z and g € ¥ and h e
7. This extension is easily checked to be well-defined and a bihomomorphism
of R"x ¥". Analogously, we may extend d to a bihomomorphism d of R" x R".
Then exp (id) defines a bihomomorphism from R” x R" into T which coincides
with ¢ on ¥ x ¥/, thus is identical to c.

(i) Assume G=K, K compact connected separable. Then c¢ defines a
continuous homomorphism @ from G into G by

o(g)(h) = c(g,h) .

Now &(G) is a compact connected subgroup of the discrete group G, thus @(G)
={0}. But this implies that c is identically 1.

(iif) Assume G to be connected. By the structure theorem for l.c.a. groups,
G=R"x K, K compact connected. When G is separable, so is K. We fac-
torize c: GXG— T

c((gk), (g, k)
= ¢((g,0), (g, 0)c((g, 0), (0,k)c((0, k), (g, 0)c((0, k), (0, k)
and note that
¢((g,0), (g',0)) is a bihomomorphism from R"xR" into T
c((g,0), (0,k") is a bihomomorphism from R"x K into T
¢((0,k), (g',0)) is a bihomomorphism from K xR" into T
¢((0,k), (0,k")) is a bihomomorphism from K x K into T

By (ii), c((0,k),(0,k")) is identically 1. Arguing as in (ii) we see the
bihomomorphisms from R"x K (or K xR") define continuous homomor-
phisms from K into R”" thus are identically 1. So we conclude that

c((g k), (g,k)) = c((g0),(g,0) = exp (id((g,0), (g',0)))
with d: R"x R" — R bilinear.
(iv) G=Z. A direct computation shows that
c(n,m) = c(l,m)" = c(1,1)’™ = 1.

By lemma 4.1, all connected separable l.c.a. groups G fall into the class of
groups for which the map c has a continuous square-root. The following holds
for all such groups:

THEOREM 4.2. Let (#,G,a) be a dynamical system, o an inner cocycle with
respect to Ada. Assume M to be a factor with separable predual, G to be
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separable. Whenever ¢ as defined in 3.1 has a continuous square root c* there

exists a strongly continuous mapping u: G — % such that 6 =Ad u and for all g
and h

ug+h = c(h’g)*ugag(uh) .

Proor. When # is a von Neumann algebra with separable predual, % is a
Polish group in the strong topology, thus /% is a standard Borel space in the
Borel structure coming from the quotient topology. It is also wellknown that
Aut . is Polish in the topology of pointwise normconvergence on the predual.

Let 1: Int # — Aut .# denote the injection map, and let ¢: %/% — Int #
take u=uZ into u-u*=Adu.

U|Z —2— Int M4 —— Aut A
\,/

10@: U/Z — Aut 4 is an injective Borel map from a standard space into a
Polish space, thus the image Int .# is a Borel subset of Aut.# and ¢ a Borel
isomorphism. It follows that if G is lc.a. separable and n: G — %/Z a 1-
cocycle, then = is continuous if and only if 6=¢@on: G — Int .# is continuous.

[
Let % X G denote the “c-semi-direct” product of  and G, i.e. define

a

(u,8)" (v,h) = (c(h,g) ua,(v),g+h).

It is easily checked that % X G is a group. Let k denote the quotient map from

a

% onto ¥/%, and define the subgroup E of # X G to be

a

E= {(u,g)e%i Gl k(u)=n(g)}.

We claim that E is abelian. To see this, note that when ¢,=Adu and ¢,=Adv
we have
uag(v) = C(g, h)vah(u) s
thus
(u,8)" (v,h) = (c(h, g)tua,(v),g+h)
= ((c(g, W¥)*c(g, hvay(u), g+ h)
= (C (g’ h)*vah(u)a g + h)

= (v,h)" (u,8) .
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This shows that E in the factor case is an abelian extension of the l.c.a. group G
over 4 N% =T, and it now follows from [9, section 2.2, page 52] that E
must be Lc.a. Thus the exact sequence

T->E—->G

splits (see e.g. [3] or [11, comment before theorem 4]), i.e. there exists a
continuous homomorphism from G into E, g — (u,, g). But this is exactly what
we wanted, since g — u, is then continuous and satisfies that o,=Ad u, and

ug+h = C(h’g)&ugag(uh) .

COROLLARY 4.3. Let (A, G,a) and o be as in 4.2. When G=R, a separable
compact connected abelian group K, a product of the form R x K or the integers,
o is implementable.

Proor. We want to see that for G as above, c=1. By the proof of lemma 4.1,
it suffices to show this for G=R. This is true due to the fact that the vector-
space of skew-symmetric bilinearforms from R xR into R is 0-dimensional.

REMARK 4.4. Let G=R", then the vectorspace of bilinearforms from R" x R"
into R can be identified with the space of real nx n-matrices. The skew-
symmetric forms correspond to the skew-symmetric n x n-matrices, and so
form a real vector-space of dimension 4n(n—1). This yields a rather precise
description of the implementation possibilities in theorem 4.2.

E.g. for n=2 we get that either

d((s,1), (r,p)) = 0 or d((s,t), (r,p)) = a*(sp—ri)

with a € R. Thus the family u, is either a 1-cocycle or satisfies that
ia( "
A -r
Uariap = €207 "t s, (Ug, ) -

LEMMA 4.5. Let- (A, G,a) be a dynamical system, o a uniformly continuous 1-
cocycle with respect to Ad a. Assume M to be a factor. When G is connected or
the integers there exists a continuous bihomomorphism d: G x G — R such that
for all g and h in G

c(g,h) = exp (id(g,h)) .

When G =R, a compact connected abelian group K, a product of the form R x K
or the integers, d is identically 0.

ProoF. That c is definable and continuous follows from lemma 3.5. The rest
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of the argument goes as in lemma 4.1 (where the separability of G was only
assumed in order to ensure continuity of c).

The above lemma ensures that both conclusions of our next theorem are
non-void.

THEOREM 4.6. Let (#, G, o) be a dynamical system, o a uniformly continuous 1-
cocycle with respect to Ad a. Assume # to be a factor. When c as defined in 3.1
has a continuous square root, ¢ is quasi-implementable, and a norm-continuous
implementing quasi-1-cocycle u: G — % may be chosen. When c=1, u may be
chosen a 1-cocycle.

Proor. Note that the group Int .# in its uniform topology is homeomorphic
to %/T in the quotient norm-topology ([ 1, Proposition 2.3]). We are thus able
to “identify” o: G — Int.# with its corresponding projective 1-cocycle m:
G — %/T. From this point we may proceed word-to-word as in the proof of
theorem 4.2, the only difference being that we now regard # in its norm-
topology instead of its strong topology.

Recall that a C*-algebra A is said to be simple if it contains no non-trivial
closed two-sided ideals. If 4 is a simple C*-algebra with unit 1, its centre
consists of the “scalars” C-1. For simple C*-algebras we have a result
analogous to theorem 4.6.

ProrosiTION 4.7. Let A be a simple C*-algebra with unit, « and B strongly
continuous representations of the l.c.a. group G as automorphisms on A. Assume
that o,= P o _ , defines a uniformly continuous map from G into Aut A. Then o is
pointwise inner, and when the map c as defined in 3.1 has a continuous square-
root, o is quasi-implementable.

Especially we note that when G is connected, ¢ is quasi-implementable, and
that when G=R, a compact (connected abelian) group K or a product of the
form R x K, ¢ is implementable.

Proor. It follows from [12, Corollary 2.5, Remark 2.3] that ¢ is pointwise
inner, and that the implementing unitary family ¥ may be chosen norm-
continuous at 0. Thus we deduce that ¢ is a bicontinuous map into T.

From [1, Lemma 5.2] we know that %/T and Int A4 are homeomorphic when
/[T is equipped with the quotient norm-topology and Int A with the uniform
topology. This allows us to proceed the argument exactly as in 4.6.
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For the last part of the statement note that lemma 4.5 carries over to the
simple C*-case.

5. The general von Neumann algebra case.

In this more general setting we deal with implementability only, leaving out
the quasi-aspect. In fact, lemma 4.1 carries over only when ¢ is norm-
continuous, and a theorem dealing abstractly with a square-root seems out of
place. We note that corollary 5.2 is a direct extension of [2, Théoréme 1.2.8].

THEOREM 5.1. Let (M, G, ) be a centre-fixing dynamical system, ¢ a pointwise
inner 1-cocycle with respect to Ad a. Assume M , to be separable, G to be R, a
compact connected separable abelian group K, a product of the form R x K or the
integers. Then o is implementable.

1
Proor. Define X G and E as in the proof of theorem 4.2. Note that it

a

follows from [11, theorem 1] that E is abelian. (For G=R we may also

conclude this from [3].) Defining i(z)= (z,0) and k to be the projection from E
onto G,

ANy 1 E-k, ¢

is a short exact sequence, i.. i is an injective homeomorphism from % N % onto
i(NZ) and k is a continuous and open surjection with kernel equal to

(ANZ).

It is well-known that £ is isomorphic to a space L™ (X, u) of (equivalence
classes of) measurable functions on a standard measure space X with finite
measure u. Thus # N Z identifies with the measurable functions on X with
values in T, U(X,T), equipped with the o-weak topology (or equivalently the
strong operator topology on I?(X)). This topology coincides with the L'-
topology, and so [11, theorem 4] allows us to conclude that the above exact
sequence splits.

We obtain the following direct corollary:

COROLLARY 5.2. Let # be a von Neumann algebra with separable predual, let
@ be a normal semi-finite faithful weight and ¢* the corresponding modular
automorphism group. Assume B to be a g-weakly continuous one-parameter group
of automorphisms of # such that for every t in R there is a unitary u, which

Math. Scand. 41 - 20
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satisfies
B = (Adu)-a? .

Then B is itself a modular group corresponding to a weight .

6. An implementation result for groups with non-trivial cohomology.
In this section we do not presuppose the group G to be locally compact.

LEMMA 6.1. Let G be a connected abelian topological group, ¢ a uniformly
continuous representation of G as automorphisms of the von Neumann algebra
M. Then c defined as in 3.1 with a=1 is identically 1.

Proor. In this setting we have that

leg =11 = llugo,(uf)— 11 = louuy)—ugl = lop—11],

i.e. an evaluation of c¢(g, h) which is independent of g. It easily follows that ¢ is
identically 1.

From the above lemma one may then proceed to obtain the implementation
result first proved by J. Moffat in [8], that if G is a connected abelian
topological group, ¢ a uniformly continuous representation of G as
automorphisms of the von Neumann algebra .#, then ¢ is implemented by a
norm-continuous unitary group.

ReMARK 6.2. If A is a simple C*-algebra with unit, G a locally compact
connected abelian group and ¢ a uniformly continuous representation of G as
automorphisms of A, lemma 6.1 carries over unchanged to show that any
implementing unitary family consists of mutually commuting elements. Thus
we may reason as in 4.7 to conclude that there exists an implementing norm-
continuous unitary representation. A constructive proof of this result can be
found in [13].
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