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SCATTERED C*-ALGEBRAS

HELGE ELBROND JENSEN

Introduction.

A topological space X is called scattered, if each subset of X has an isolated
point. The compact, scattered spaces are exactly those compact spaces X, for
which each Radon measure on X is atomic [9, section 19]. Owing to the Riesz
representation theorem the study of positive Radon measures on a compact
space X is equivalent with the study of positive functionals on C(X). It is the
purpose of this paper, using this equivalence, to extend the notion of scattered,
compact spaces to the natural generalization of C(X), thdt is to C*-algebras,
and to start a closer investigation of such algebras.

The author wants to thank Erling Stermer, who for a number of the
statements has formulated much shorter and more elegant proofs than the
original ones. All used results, for which direct references are not given, can be
found in Dixmiers books [1], [2].

1. Atomic functionals on C*-algebras.

The concept of atomic measures on locally compact spaces has been
generalized to C*-algebras in [5], but only in the separable case. Since we want
to study the general case, we will have to use another approach, which also
turns out to be more suitable for our primary purpose, than that in [5].

Let B denote the enveloping von Neumann-algebra of a C*-algebra A. It is
well-known, that each positive functional fon A extends in a unique way to a
positive, normal functional on B, which is again denoted by f. The extension is
pure, if and only if f is pure, and in this case the support of f is a minimal
projection in B. We will now use the following definition.

DeriniTION 1.1. Let f denote a positive functional with support e. Then f'is
called atomic, if for each projection e, € B with e, <e, there exists a minimal
projection e, € B, such that e;<e,.

That this definition is reasonable follows from
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THEOREM 1.2. Let f denote a positive functional on a C*-algebra A. The
following two conditions are equivalent.

(1) f is atomic

) f = 2 f,, where each f, is pure .

The sum in (2) may be finite or infinite (but countable). In the last case the
convergence is of course pointwise convergence. Before the proof we need a
lemma.

LemMA 1.3. Let m: A — L(H) be a not degenerate representation of the C*-
algebra A, let £ € H, and let

f(x) = (m(x)€]¢), xeA.

Suppose, that £=3 &, a finite or countable sum, where each functional
x — (n(x)&;| &) is pure. Then f=Y f,, where each f; is pure.

Proor. Let M denote the weak closure of n(A4), and let p;, be the central
support of the vector state w;, on M. Then p; is a minimal central projection,
because wy, is pure. If p=3 p; where the sum is over a maximal orthogonal
subset of the p;, we have p=¢, and therefore w;(y) = w:(py) =3 w,(p;y) for all
y € M. Since p;M is all bounded operators on p;(H), each functional f;(x)
= (p;m(x)¢ | £) is pure on A, which completes the proof.

ProOF OoF THEOREM 1.2. (1)=(2). By Zorn’s lemma the support of f in B,
denoted by e, is an orthogonal sum of minimal projections e; in B, and this sum
is countable. If f(x)= (n(x)¢ | &), let £;=¢;¢. Then =3 &, and the functional
x — (m(x)&; | &) is pure, since e; is minimal in B. By lemma 1.3, f=3 f; with f;
pure.

(2= (1). Let f=Y_ f;, with f; pure, and let p; be the central support of f; in B. If
e, is a non-zero projection in B with e, <e (the support of f) there exists a p;,
such that e,p;+0. Since p;B is a type I factor, there is a minimal projection
ey, € B with ey <e p;<e,.

The theorem just proved enables us to give a characterization of an atomic
functional f in terms of the corresponding representation 7.

PROPOSITION 1.4. A positive functional f on a C*-algebra A is atomic if and
only if n, is unitarily equivalent with a subrepresentation of a countable sum of
irreducible representations.
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2. Scattered C*-algebras.
These algebras are introduced as follows

DEerFINITION 2.1. A C*-algebra A is called scattered, if each positive functional
on A is atomic.

Our first structure result is

THEOREM 2.2. Let A denote a C*-algebra, and let B denote the enveloping von
Neumann-algebra. The following five conditions are equivalent.

(1) A is scattered.

(2) Each positive functional f on A is of the form f=Y f,, where each f, is pure.

(3) Each now-degenerate representation of A is unitarily equivalent with a
subrepresentation of a sum of irreducible representations.

(4) Each projection in B majorizes a minimal projection in B.

(5) The algebra B is isomorphic with an algebra [];; L(H).

Proor. (1)<>(2)<>(3), (1)=>(4) follows from the preceeding section, and (4)
<>(5) is standard.

When A is scattered, the above theorem especially shows, that the
enveloping von Neumann-algebra is of type I. Therefore we have

THeOREM 2.3. Each scattered C*-algebra is of type 1.

We recall at this point, that a C*-algebra is of type I, if and only if it is a
GCR-algebra ([7] for the non-separable case).

In the non-commutative case the simplest scattered C*-algebra is an algebra
of all compact operators on a Hilbert space H, denoted LC(H). Moreover, it
will follow below, that each C*-algebra, which is built up, using decomposition
series, of scattered C*-algebras, is again scattered.

ProposITION 2.4. Let I denote a closed, two-sided ideal in a C*-algebra A. The
following two conditions are equivalent.

(1) A is scattered.
(2) I and A/I are both scattered.

Proor. (1)=>(2). That I is scattered follows from standard-results on
extensions, using condition (3) in theorem 2.2. If f is a positive functional on
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A/I, then the natural lifting of f to A satisfies conditions (2) in theorem 2.2.
Therefore f satisfies this condition, and A/I is scattered.

(2)=(1). Let f'be a positive functional on A. Then f=f, +f,, where f; and f,
are positive functionals, and | fi||=|f;|Il, f,(I)=0. Since, according to
condition (2) in theorem 2.2, f; and f, are both countable sums of pure
functionals on I and A/I respectively, the same holds for f, using extensions
results. Therefore A4 is scattered.

ProposiTioN 2.5. Let (1,) be a totally ordered family of two-sided closed ideals
in a C*-algebra A, such that the closure of Ul is equal to A. If each I, is
scattered, then A is scattered.

Proor. Let B,, resp. B, denote the enveloping von Neumann-algebra of I,
resp. A. For each o there is a central projection p, in B, such that B,=p,B. (See
[8, proof of lemma 1.17.3].) From the assumptions it follows, that p, — 1.
Therefore, since each B, satisfies condition (4) in theorem 2.2, so does B.

From proposition 2.4 and proposition 2.5 we get the following

PROPOSITION 2.6. Let A be a C*-algebra with a decomposition series (I,)o <<
If each algebra 1,,,/1, is scattered, then A is scattered.

This especially shows, that if 4 has a decompositon series (I,)o<,< > Such

that each algebra I,,,/I, is isomorphic with an algebra LC(H,), then A is
scattered.

3. Some separable C*-algebras, which are scattered.

In this section A always is a separable C*-algebra. As usual A* and A denotes
the dual space and the spectrum of A4 respectively. Then we have the following
result.

THEOREM 3.1. The following three conditions are equivalent.

(1) A* is separable in the norm topology.

(2) A is countable.

(3) A has a countable decomposition series (I ), such that each algebra I, /I,
is isomorphic with an algebra LC(H ) for a separable Hilbert space H,.

If A satisfies these equivalent conditions, then A is scattered.

We will prove the implications (1)=>(2)<>(3)=>(1). The last statement of the
theorem will then follow from proposition 2.6. First we need a few lemmas.
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LemMa 3.2. If A is countable, the A is of type 1.

ProoF. Let m: A — L(H,) be an irreducible representation, and suppose,
that m(4)NLC(H,)={0}. Then it follows from [3], that there exists an
uncountable family of pairwise inequivalent, irreducible representations with
the same kernel as =. When A is countable, we must therefore have

n(4) N LC(H,) + {0},
so A is of type L

LemMA 3.3. Suppose, that A has continuous trace, and that A is countable.
Then A contains a non-zero closed ideal I, which is isomorphic with an algebra
LC(H) for a separable Hilbert space H.

Proor. Let Prim (4) denote the set of all prime ideals. Since Prim (A) is
locally compact and countable, it has an isolated point, say I, (see [9, section
8.5]). If I denotes the intersection of the ideals in Prim (A)\I,, it follows, that I
+{0}, and that I consists. of only one point. Therefore I has the desired
proporty (by [2, section 4.7]).

LEMMA 3.4. Suppose, that A is scattered and A is countable. Then A* is
separable.

Proor. We may assume, that A has a unit. Let {g,} be a sequence of pure
states, dense among all pure states, and let

K = {Z“ngn | Hy —Z_ 0, Hy rational, Z#"=1} .

Then K is countable. Let f be a state. Since A is scattered, f=3 A, f; where each
f; is a pure state, and 4,>0, > A;=1. If >0 is given, we can for each i choose
g € {8}, and y; rational, u;>0, such that

I Acfi— pignll < €-27%.

Since there is no restriction to assume Y u;=1, we have Y ug, € K, and
| f—3 wig, || <e. Therefore K is in the state space, so A* is separable.

Proor or THEOREM 3.1. The implication (1)=(2) is well-known (and easy,
using [4]). Let us next suppose, that A is countable. Then 4 is of type I (lemma
3.2), so A contains a non-zero ideal I, which has continuous trace. According to
lemma 3.3 I has a closed ideal I, isomorphic with LC(H,), where H, is
separable. By repeated use of this argument it follows by transfinite induction,
that A has a decomposition series with the property in (3), and this series is
countable, since A is separable. This proves (2)=(3).
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Let us finally suppose, that (3) is satisfied. We then have
’q = U(Ip+1/Ip)A'
p

Since each I, /I, is isomorphic with an algebra LC(H ), it follows, that Ais
countable. Moreover, A4 is scattered (proposition 2.6), and therefore A* is
separable (lemma 3.4).

The equivalence (1)<>(2) in theorem 3.1 is a generalization of the well-known
fact [9, section 19], that for a locally compact space X, the dual space C,(X)*
is separable in the norm topology, if and only if X is countable. Moreover,
from theorem 3.1 we get the following result, which was earlier obtained by
Tomiyama [10] in a different formulation.

COROLLARY 3.5. Let A denote a C*-algebra. Then A* is separable, if and only
if A has a countable decomposition series (I ,), such that each algebra I, /I, is
isomorphic with an algebra LC(H,) for a separable Hilbert space H,.

Proor. If A* is separable, then A is separable (by [6, section 3]), and
theorem 3.1 gives the desired conclusion. On the other hand, if 4 has a
decomposition series as mentioned above, then, since LC(H,,) is separable, one
concludes by induction, that A is separable, and theorem 3.1 can therefore be
applied.

It should be remarked, that arguing as in the first half of the proof of
theorem 3.1, one could use Tomiyama'’s result to prove the first part of this
theorem, and then lemma 3.4 could be omitted. But that the stated conditions
imply, that the algebra is scattered, seems not to follow directly from corollary
3.5. Concerning this point, it is the authors conjecture, that the converse of
theorem 3.1 is also true, and more generally, that each scattered C*-algebra
has a decomposition series as mentioned after proposition 2.6.
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