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A NOTE ON TANGENT BUNDLES IN A
CATEGORY WITH A RING OBJECT

G. E. REYES* and G. C. WRAITH

The aim of this note is to point out that certain infinitesimal structures
appearing in Algebraic Geometry (e.g. tangent bundle of a scheme, Lie algebra
of a group scheme cf. [5]) may be defined, and their basic properties proved in
the context of a finitely complete category with a distinguished ring object. We
assume that the category has some exponentials.

This possibility was first pointed out by F. W. Lawvere [10] in an
unpublished lecture. It was taken up by the second author who sketched a
proof that the tangent vectors over the neutral element of a monoid object
form a Lie algebra. The requirements on the category needed for the proof
were, however, unnecessarily strong. K

We present an improved version of that result based on work done by the
first author.

We are grateful to A. Kock for telling us about Lawvere’s work and for
valuable discussions. In particular, he explained to us his work on “differential
calculus” in this categorical context (Kock [7], [8]).

Throughout, we shall use the set-theoretical notation, well established for
toposes and related categories (see e.g. Osius [11], Boileau [1], Coste [2], etc.)
leaving to the sceptical reader the uninviting task of manipulating diagrams.

1. Infinitesimally linear objects and their tangent bundles.

Let E be a category with finite limits and some exponentials (namely those
which we shall have occasion to use) and let 4 be a commutative ring object
with unit element in E. We define

Dy=1—> A

D, =[aecA| a>=0] — A

D, = [(a,b) e A* | a*=b*=ab=0] — A*

Dy = [(a,b,c)e A* | a®=b*=c*=ab=bc=ac=0] — A°
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and we have the diagrams
[ Dy -% D, =23 D,

*) JorJy2Ja
l D, % D, =——3 D,

where

ig(d) = (d,0), iy(d) = (0,d)
]O(d) = (d’0’0)9 .’1(d) = (O’d,0)9 ]Z(d) = (O’Oad) .

Intuitively we think of 4 as a “line” and of D, as a “disembodied tangent
vector” or as “point with an infinitesimal linear neighbourhood”. Under this
interpretation it is natural to define the tangent space of “variety” M at a
“point” x as the “set” of maps from D; to M which take the base-point 0 of D,
to x, that is, !

T.M) = [fe M | f(0)=x] .
The tangent bundle of M becomes MP: together with the canonical projection

nMPr > M
sending f to its “base-point” f(0). Of course, we want T,.(M) to be a “vector
space” (or rather an A-module in our context), i.e. an abelian group with a
scalar multiplication

Ax T (M) - T(M)

satisfying the usual axioms. Notice that this operation can be defined in the
obvious way by

(a°f)d) = f(ad) .

As for the group structure, we first assume that M is a Euclidean A-module,
that is to say an A-module such that all “functions” in MP:, MP:, MP:1*D: are
“analytic”. This should mean, since d> =0, that the maps

a: MxM— MP
B:MxMxM— MP:
PMXMxMxM — MPixD:
defined by a(x, y)=Ad(x+ yd), that is,
a(x,y)(d) = x+yd
B(x,y,2) = Adyd,(x+yd, +zd,)
Y%, y,z,u) = Add,(x+ yd, +zd, +ud,d,)
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are isomorphisms (Compare Kock [8]). In Kock [0], A is said to be of line type
if

a: Ax A — AP

is an isomorphism. Assuming, then, that M is Euclidean, there is an obvious
group structure on T,(M):

Ad(x +yd)+2d(x+yd) = id(x+ (y+y)d) .
Although this assumption that M is Euclidean is too restrictive for the
examples we have in mind, the following corollary of it will do as well to define
our group structure:

1) the map

[h e MP:| h(0,0)=x] — T,(M)x T,(M)

given by
h — (Adh(d,0), Adh(0,d))
is an isomorphism whose inverse is given b):
(Ad(x + yd), Ad(x+ y'd)) > Adyd,(x+yd, +y'dy) .

In other words, this corollary says that a couple of functions in T, (M) may be
coded up by a single function in [h € MP: I h(0,0)=x]. Notice that if h codes.
up the couple (f,g) in T, (M), then f+g in the sense defined above is just
Adh(d,d). Of course, this will be our new definition of addition in T,(M)
whenever M satisfies condition 1).

For our main result, the following corollary of M being Euclidean is critical:

2) If k € [k € MP:1xDs | k(0,0)=x] satisfies the condition
Adydyk(dy,0) = Ad,d,k(0,d,)
then there is a unique fin T,(M) such that
k = Add,f(dd,) .

To see this, assume that

k = Adldz(x+yd1 +Zd2+udld2)

is such that Ad,d,k(d,,0)= Ad,d,k(0,d,). Then y=z=0 so we may take f=Ad(x
+ ud).

We hope that the preceding discussion motivates the following axioms cn an
object M of E.
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Axiom 1. The diagrams
M = MPo i MPy 222 MP:
Q1 0,50,
M = MP & MP /——= MP:
obtained from (*) by applying the functor M are exact.
Axiom 1 implies that = is a group object in E/M. The group operation is
d, = M?,

where 4: D, — D, is given by 4(d)=(d,d), so the group structure is clearly
abelian. Furthermore, if m,: Ax M — M denotes projection to the second
factor, it should be evident from our discussion of 1) that we have:

THEOREM. If M satisfies axiom 1), then the tangent bundle
MPr = M
is a (AxM —" M)-module in E/M.

To formulate our next axiom on an object M of E, consider the diagram
D,xD, =223 D, xD, - D,
where py(d,,d,)=(d,,0), p,(d,,d;)=(0,d,) and . is multiplication.

AxioM 2. The diagram
MP: M, pqDxD, MMMy D, xD,

obtained by applying the functor M{™ to the diagram above, is exact.

It should be clear that axiom 2) formalizes corollary 2) of our discussion.
Our discussion above, and the arguments which led us to adopt axioms 1 and
2, suggest the following idea: “manifolds” are objects which are “locally
euclidean” and thus have a “locally linear” structure. We can formalize this
notion more precisely as follows:

Let D(n)=[aec A l a"*'=0] — A. We may call D(n) the n-th infinitesimal
neighbourhood of 0 in A. Let us define a unifold to be the limit of a finite
diagram of infinitesimal neighbourhoods of 0 in A. For example, D, and D, are
unifolds.

We may say that an object M of E is infinitesimally linear if the objects MY,
for U a unifold, satisfy all the formal consequences of supposing that M is an
A-module and that the elements of MY are analytic, ic. defined by
polynomials. This concept requires further elaboration to be properly defined,
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and we do not wish to go into the matter further at this point. Suffice it to say
that infinitesimally linear objects satisfy axioms 1) and 2).

Let us note that objects which satisfy axiom 1) or 2) have good stability
properties.

PrOPOSITION.

i) For any object N, if M satisfies axiom 1) or 2) so does MN.

i) If each object of a diagram D in E satisfies axiom 1) or 2) then so does
lim D.
—

The proof is an immediate consequence of the fact that axioms 1) and 2) are
defined in terms of limits.

To formulate our main theorem, let G be a monoid object in E satisfying
axiom 1) and let

145G

be the neutral element. Define T,(G), the “set” of tangent vectors at e by the
pullback diagram

T,(G) — GP::
¢ i
1 —% G
It is clear that T,(G) is an A-module object in E, obtained by pullback along e
from the (4 x G - G)-module G°* %> G.

THEOREM. Assume that G is a monoid object in E which satisfies axioms 1) and
2). Then T,(G) has a natural Lie-algebra structure.
Proof. We define the Lie-bracket operation
T.(G)x T,(G) ++> T,(G)

as follows: if f,,f, € T,(G), let h € GP1*P: be defined by
h(dy,d;) = (=f)d)g(—fId2)g f1(d1)g f2(d2)

Since Add,h(d,,0)=Ad,d,h(0,d,)=Ad,d,e there is a unique & € G*: such that
h(d,,d,) = h—(dldz) .

Clearly h € T,(G), since h(0)=e.
We define [f,, f,]=h. We need to show that in T,(G) the following
equations hold
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) L fL1+02 /11 =0
i) [fity+6,] = [ft]+[ft2]

iii) Jacobi’s idendity
U L 11+ 00 U i11+ U U 211 = 0.

The proof uses the principle of coalescence of commuting operations (cf.
Spanier [14, page 43]) to conclude that the monoid structure on 7,(G) induced
by G coincides with the abelian group structure given by axiom 1). We note

i@ f,(d) = f,(d) f(d)
and
(=N = f(=d) = f@d)~!

for f,, /2, f € T,(G). Let us use the symbol (a, b) for the commutator a~'b~'ab.
If f,, f2. f3 € T,(G) we have

L1, L2 f511(d1dads) = (f1(dy), (f2(d2), f3(dy))) -
Since d*=0, if we put d,=d,=d we get
(f1(d), (f2(d), f3(dy))) = e
so that, using (f,(d), f,(d))=e, we get
(f20d), f3(d3) = (f2(d), f1(d)™" f3(d3) f1(d)) -
This relation, along with the identity
(a,bc) = (a,b)(b™'ab,c)
and the Magnus identity (cf. Serre [65])
(b™'ab, (b,c))(c™'be, (c,a))(a"'ca, (a,b)) = e

give us identities ii) and iii) immediately.

2. Examples.

Axioms 1) and 2) are both of the form “M(™) takes the diagram D to a limit
diagram”. It will of course follow that every object M will satisfy axioms 1) and
2) if the diagrams D are colimit diagrams in E. This will in fact be the case in
some of the examples we consider below.

ExampLE. Let E be the category of affine schemes, which we may identify
with the category of representable set-valued functors on the category of
commutative rings with unit. If R is such a ring, we denote the corresponding



A NOTE ON TANGENT BUNDLES IN A CATEGORY WITH A RING OBJECT 59

representable functor, Hom (R, —), by h®. We take
A = A

so that
D, = h*
D, = hZe
D, = hExoVe2xm )

Dy, D,,D, x D, D, are exponentiable. We have
(hB)P1 = psyms(Rbz2)
(hB)P: = psyms(Rbz®Qb2)

All the affine schemes satisfy axioms 1) and 2) because

o STV

Z[x, y1/ (%, xy,y?) / \ z
b Lkl 2 \ . .

=0 Z[)/() =

is a pullback diagram, and so

is a pushout diagram of affine schemes, and because

Z[x]/(x?) X285, Zx,, x,0/ (0, x2) 2E2RE0 70k X7/, %)

is an equalizer diagram, so
D, xD;, =3 D;xD, - D,

is a coequalizer diagram of affine schemes. It is an easy exercise to check that if
G is a monoid affine scheme, then in T,(G) the identity [ f, f]=0 holds.

ExamPLE 2. Let E be the Zariski topos and let A be the generic local ring (cf.
Hakim [6]). Following Demazure-Gabriel [4], we identify schemes with
certain objects in E, namely those X which can be written as

X= U Ui
i=1
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where U, is an affine scheme and U; — X is open in the sense of Zariski. We
claim that every scheme satisfies axioms 1) and 2).
For the proof of the claim, we consider a new notion of open subobject:

U — X is D,-open if

UDl — XD‘
" b
U — X

is a pullback. Intuitively: if a “point” is in U, all “infinitely close points” are
also in U.

LEMMA.

1) (Transitivity). If V > U and U > X are D,-open, so is V — X.

2) (Stability under pull-back). For any map X’ — X if U = X is D,-open,
then U x x X' = X' is Dy-open.

3) (Topology axioms)

a) J>— Xand X Y X are D,-open.
b) Finite intersections of D -open subobjects are D,-open.
c) Arbitrary unions of D,-open subobjects are D -open.

The proof uses the Box lemma (cf. Kock—Wraith [9]) for 2) and the
exactness properties of topos for 3c).

CoroLLArY 1. If (U; > X),.; are D,-open, then
D,
(yu) =y wn.

CoroLLARY 2. If X=U,; U; where each U; — X is D,-open and satisfies
axiom 1) (respectively axiom 2)) then X satisfies axiom 1) (respectively axiom 2)).

To finish the proof of our claims, notice that every U = X which is Zariski
open is D,-open (but the converse is not true).

Finally, notice that the “set of vector fields” on X may be identified with
T, (X X), and hence it has a Lie-algebra structure.

We do not know whether the identity [ £, f]=0 is true for schemes, although
we suspect it is.

ExampLE 3. The example of the category of affine schemes can obviously be
relativized to affine A-schemes, for any ring A. For A=R however, we can
broaden the scope to include more functions than polynomials. Let C® be the
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algebraic theory (in the sense of Lawvere) whose n-ary operations are smooth
maps R" — R. Since the theory of (commutative) R-algebras is the subtheory of
C*™ whose n-ary operations are the polynomial maps R" — R, a C*-model can
be thought of as an R-algebra with further structure. If M is a smooth manifold,
then C*(M), the R-algebra of smooth R-valued functions on M, has an obvious
C>-model structure. In particular, C*(R") is the free C*-model on n generators
(the co-ordinate projections) and C*(R) is just R itself with the obvious C*-
model structure. Not all C®-models are of the form C*(M), since the
underlying R-algebra of such a model is reduced and we shall see below how to
manufacture C®-models with nilpotent elements. However, we can associate to
a finitely presented C®-model a variety defined by the zeros of a finite number
of smooth functions as follows: if

C*R) 3 C*(R") — X

is a co-equalizer diagram, we get (by applying the functor Homew (—,R)) the
equalizer diagram
Homcm (X, R) — R"=3 R™.

More generally, we may be interested in sub-theories T of C* containing (R-
algebras). For example, we have the Nash theory of functions algebraic over
polynomials (cf. Palais [12]) or we may consider the smallest T containing a
given class of smooth functions, say exponentials or trigonometric functions.
These ideas are essentially due to Lawvere [10].

For the sake of the lemma below we introduce the condition on the theory T
that whenever a smooth functions belongs to T, then all its partial derivatives
do also.

LemMA 1. Let B be a local R-algebra with residue field R and maximal ideal m.
If m is a nil ideal, then B has a unique T-model structure.

Proor. We have B=R@m, with every element of m nilpotent. So every n-ple
of elements of B can be written as b+#, where b={b,,...,b,> is a sequence of
elements of R and n={#,,.. .,n,) is a sequence of elements of m. If fis an n-ary
operation of T, we simply define f(b+#) by means of a Taylor expansion
about b, which terminates because the #; are nilpotents.

If X is a T-model, we denote by Spec (X) the corresponding object of the
dual category (T-mod)°P.

LeMMA 2. Let B be a local R-algebra as above and let X be a T-model. Then
the underlying R-algebra of the co-ordinate T-model of Spec (X) x Spec (B) is
X ®grB.
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Proor. First we can show that X ®g B has a unique T-model structure, by
exactly the same techniques as above. It is then straight forward to show that
this T-model is the co-product of X and B in T-mod.

LeMMA 3. Let B a finite dimensional local R-algebra with residue field R. Then
Spec (B) is exponentiable in (T-mod)°P.

Proor. Follow exactly the same lines as that for the case of R-algebras.

We then get
A = Spec (C*(R))

D, = Spec (R)
D, = Spec (R[X]/(X?)
D, = Spec (RLX, YJ/(X?, Y2, XY))

To show that D, is given as above, we use the fact that every smooth function f
can be written in the form f(x)=a+ bx + x2g(x).

Then every object of (T-mod)°P satisfies axioms 1) and 2). Indeed, the use of
Lemma 2 makes the proof identical to that for Example 1.

ExaMPLE 4. Let E be the category of formal k-schemes, where k is a field. A
formal k-scheme is a finite lim preserving set-valued functor on the category of
finite dimensional k-algebras. The category E is equivalent to the category of
commutative k-coalgebras and is equivalent to the dual of the category of
linearly compact topological k-algebraic and continuous maps (cf. Demazure
[3]). It is cartesian closed.

We let 4 be the forgetful functor from finite dimensional k-algebras to sets. It
is a ring object of line type. As in the example 1), we have

D, = K
D, = pHx1/6)
D, = pHxVe, 32 x)
For any formal k-scheme X and any finite dimensional k-algebra B, we have
X¥(-) = X(B®,-).

The verification of axioms 1) and 2) proceeds precisely as for affine schemes.
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