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SOME C*-DYNAMICAL SYSTEMS
WITH A SINGLE KMS STATE

DORTE OLESEN and GERT KJARGARD PEDERSEN

Introduction.

We show that a C*-dynamical system is not approximately inner, if the C*-
algebra contains an isometry which is an eigenoperator for the dynamics,
corresponding to a non-zero character. The simple C*untz-algebras 0,, 2=n
< oo, offer examples of such dynamical systems. We show that each C*-algebra
0, has exactly one KMS state ¢,. For n<oo the corresponding f-value
(inverse temperature) is logn. For n=00 the value for f is oo (ie. ¢ is a
ground state). These examples solve problems 11 and 13 in [11]. An example of
a system with a unique invariant trace (corresponding to f=0), but no ground
states (thus not approximately inner) was given in [6].

The authors are indebted to G. A. Elliott for stimulating conversations on
the subject and to S. Sakai for an inspiring series of lectures on unbounded
derivations, during which these problems were brought up.

Approximately inner dynamics.

A C*-dynamical system (2/,R,g) consists of a C*-algebra o and a
representation ¢ of R as *-automorphisms of &, such that each function
t— o,(A4), A€ s, is (norm) continuous. We denote by «* the dense
*-subalgebra of & consisting of analytic elements. Thus 4 € & if the function
t — g,(4) has an extension (necessarily unique) to an entire analytic (operator-
valued) function. If 0 < f < 0o we say that an invariant state ¢ of & is a f-KMS
state if

(i) ©(e.(A)B) = ¢(Bg,5(A)

for all ¢, all Bin & and A in &% Note that the limit case =0 (chaotic state)
means that ¢ is an invariant trace. In the other limit, =00 (ground state), we
modify the definition (i) to the demand that each analytic function

(i) {— ¢(Bg(4), Aes*, Bed,

Received October 19, 1977.



112 DORTE OLESEN AND GERT KJERGARD PEDERSEN

is bounded (by || 4| |B]}) in the upper half plane. This version of the KMS
conditions differs slightly from the traditional approach. It is, however,
equivalent to it (cf. [8, 8.12.13 Lemma]) and better suited to the present
situation.

We say that ¢ is approximately inner if there is a net {H;} in &/, such that

(iii) lexp (itH))Aexp (—itH)—e,(4)|| — 0,

uniformly in ¢t on compact subsets of R for each 4 in . It was proved in [9,
Theorem 2.3] that if o/ has a unit and ¢ is approximately inner there is a
ground state for the system (&, R, ¢). Moreover, by [9, Theorem 3.2], if there is
an invariant finite trace on &/ (corresponding to f=0) there is also a f-KMS
state for any f>0. Under mild extra assumptions on ¢ (e.g. (iii) being valid for
complex scalars if 4 € o2 [8, 8.'12.6], or even less, see [S] for the strongest
known result) the existence of some f,-KMS state, f,>0, will imply the
existence of g-KMS states for all 0.

The condition of being approximately inner is satisfied in C*-dynamical
systems of interest in C*-physics. Indeed, it is expected that every continuous
one-parameter group of automorphisms of the Fermion algebra is
approximately inner. Our first result put certain restrictions on the systems
that are approximately inner.

THEOREM 1. Let (, R, g) be a C*-dynamical system. If there is an isometry V
in of (i.e. V*V=1) which is an eigenoperator for g, but not a fixed point (i.e.
0,(V)=exp (ist)V, s+0), then g is not approximately inner.

PrOOF. Assume, to obtain a contradiction, that there is a net {H;} in o/,
satisfying (iii). Let V be an isometry of & such that o,(V)=exp (ist)¥, s+0, and
without loss of generality assume that s <0. Adding a suitable scalar multiple
of 1 to each H; we may further assume that H;=0 and 0 € Sp (H)) for every j.
From (iii) we obtain

(iv) lexp (itH )V — Vexp (it(H,+s1))|| — 0

uniformly on compact subsets of R. Since the expression in (iv) is bounded as a
function of t this implies that

= |fH)Y-V]H;+s1)| -0
for every fin L'(R). Since V*V=1 this gives
v) IV*f(H)V—F(H;+s1)| — 0.

f (exp (itH )V — Vexp (it(H;+ s1))) f (t) dt




SOME C*-DYNAMICAL SYSTEMS WITH A SINGLE KMS STATE 113

Choose fsuch that f(s)=1 and supp f=]—o00,0[. Then f(H ;)=0since H;20,
but || f(H j+s1]21 because s € Sp (H;+s1). This contradicts (v).

The theorem above is valid in more general situations. Indeed, let G be any
locally compact abelian group, and consider a C*-dynamical system (%, G, ).
We say that g is approximately uniformly continuous if there is a net {g"} of
uniformly continuous representations of G in Aut (&) such that

le?.(4)—e(A)]l - 0.

uniformly on compact subsets of G for each 4 in 7. In the one-parameter case
this condition, although formally weaker, is equivalent to ¢ being
approximately inner (cf. [8, 8.12.7 Proposition]).

THEOREM 1'. Let (s#, G, @) be a C*-dynamical system where G is connected. If
there is an isometry Vin of such that ¢,(V)=(t,y)V for some non-zero y in G, then
0 is not approximately uniformly continuous.

Proor. By van Kampen’s theorem G =R" x G,, where G, is compact. Write y
= (¥4, 7o) With 7, in R" and y, in G,. If y, #0 the result follows from Theorem 1
by restricting ¢ first to R" and then further to R, for a suitably chosen one-
parameter subgroup of R".

If y, =0 we may assume that G is compact. Since G is connected, G has no
elements of finite order. Thus G can be totally ordered by a “positive” semi-
group G, such that

-6,NnG, =1{0}, -6G,UG, =6

(see e.g. [8, 8.4.2 Lemma]). Without loss of generality we may assume that
v ¢ G,. It follows from Arveson’s theory of spectral subspaces that each
uniformly continuous representation ¢? of G in Aut (/) is implemented by a
uniformly continuous unitary group {U%, | t € G} in &” with Sp (U¥) <G,
(see [7, Proposition 5.1] or [8, 8.5.2 Theorem]). Since UY is the minimal
positive representation of G implementing ¢, and Sp (U") is finite it follows
that 0 € Sp (UY). Now assume that ¢¥ — ¢ pointwise in norm on &/, and
proceed to obtain a contradiction exactly as in the proof of Theorem 1.

ReMARk. To each C*-dynamical system (&, G, ¢) corresponds a dual system
(o %G, G,0) by [12, Proposition 3.1]. Here &/ % G is the crossed product of &/
with G and ¢ is the dual action of G on & % G given by

6,(B)() = (1,7)B(1)

for each continuous function B: G — o with compact support (and these
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elements lie dense in o ¥ G). Each element ¢ in G is embedded as a unitary
multiplier U, of &/ % G, where U, may be regarded as a d-function on G. It
follows that ¢,(U,)= (t,y)U,. From Theorem 1’ we see that when G is connected
(ie. G is torsion free), then the dual action ¢ is never approximately uniformly
continuous on &/ X G.

Cuntz’'s C*-Algebras.

We recall some of the results from [2]. Let 2 <n < 0o. Given n isometries {S,}
on a Hilbert space # such that 3 S,S¥=1ifn<ooand ¥ §,S¥<1if n= 00, we
denote by ¢, the C*-subalgebra of #(#) generated by {S,}. Each O, is a
simple, separable C*-algebra with unit, admitting no non-zero finite (or semi-
finite) traces (0, is a C*-algebra of type III in the language of [3]). Moreover,
0, is independent of .

If a=(;,a,,. . .,a) is a multiindex of length =1(x), where 1 <o, <n+1 for
each k, we define

S, = 8,8, ... 5,

The C*-subalgebra &, of @, generated by 1 together with elements of the form
S,S¥, where I(a)=1(p), is isomorphic to the Glimm algebra ®*° M, if n<oo. If n
=00, the algebra & , is the example &/ in [1] (see also [4, 4.7.17]). Thus F
is primitive, but not simple, and its non-trivial closed ideals form a decreasing
sequence (£,) such that

F I, =C, I)F., =F(H), neN.

In any case there is a unique tracial state 7, on &,. If n<oo we have 7,
=@ A Tr). If n=00, 1 is the complex homomorphism & — F /f,.

The *-algebra generated algebraically by {S,} is denoted by £,. Each
element A in 2, has a unique representation.

(Vi) A= Z Sﬁ*A..k+A0+Z A,,S’i )
k k

where 4, € #,N #, for all k in N. Moreover, || 4| S||4]| for every k and the
map =n,: 0, - F, determined by ny(A4)=A, if 4 € 2,, is a projection of norm
one. Note that if 4 and B are elements in &, represented as in (vi) then

(vii) no(AB) = ; s:*A_,,B,,s‘;+AOBO+; ASiSk*B_, .

LemMa 1. (cf. [2, 1.10. Proof of Proposition]). For each point €' on the circle
T define o,(S)=€"S, for all k. Then g, has a unique extension to a *-
automorphism of 0,, and we obtain a C*-dynamical system (0,,T,0). Moreover,
&, is the fixed-point algebra of ¢ in 0, and ?,< (0O,).
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Proor. The only choice of g,(4), if A € 2, represented as-in (vi) is
(viii) 0(A) = Y e"™MS*A_ + A+ M4, St
k k

With this definition ¢, becomes a linear *-preserving continuous map of 2,
onto itself with inverse g _,. Take A, B in 2, represented as in (vi), and show by
straightforward computations that g,(AB)=g,(4)g¢,(B). Thus each g, is a *-
automorphism of 2, and extends by continuity to a *-automorphism g, of 0,,.

Clearly the function t — g, is a representation of T (identified with R/2nZ)
in Aut (@,). Moreover, since |A,|| <]/ A4| for all k and each A4 in 2,, it follows
from the expression (viii) that ¢t — g,(A) is continuous for each 4 in #2,, and
therefore also for each 4 in @,. Thus (0,,T,g) is a C*-dynamical system.

If Be 2,N%, then B is a fixed-point for ¢. By continuity %, (0,)°.
Conversely, if B € (0,)%, take ¢>0 and choose 4 in 2, such that |B—A4| <e.
Using the expression (viii) we get

IB= Aol = S IB-4] <e.

U 0/(B— A)dt
.

Since ¢ is arbitrary it follows that B € & . Finally, from the expression (viii) it
is immediate that every 4 in 2, is analytic for g, ie. 2,< (0,

LEMMA 2. Let ny: O, — &, be the projection of norm one mentioned above. If
1, is the unique tracial state on & ,, define ¢,=1,°n, on O,. The state ¢, satisfies
the equations:

(ix) @.(8;ASF) = n"'p,(A), A€0, (with co~!=0);
(X) (pn(S’;*AS'{) = nk(pn(EkAEk)9 A € 07:

Lk

where E,=SiS%* and n<oo .

Proor. Since 1, is a trace on &, we have for all 4,B in &,
1,(S,ABSY) = 1,((S,4AS})(5,BS})) = 1,(5,BASY) .

Thus 1,(S;-Sf) is also a trace on &,, and the unicity of 7, implies that
7,(S; SP)=1,(8,5H7,(-). However, each element V,=S§,S¥ is a partial
isometry in &, with

V.V =SSt V¥, =S5SF.
If n<oo this implies that

1= Z Tn(shsl?‘) = "Tn(Slsf) ’
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whence 1,(S,S¥)=n"". If n= 00 the same reasoning gives 1,(S,S¥)=0. In both
cases we have (ix).
Assume now that n<oo. Applying (ix) successively we obtain (x) since

@n(ST*AS]) = ne,(S,ST*AS1S})
= ... = n'p,(S{S{*AS|S*) = n*e,(E,AE) .

ProposiTION. Consider the C*-dynamical system (0,.T, ) defined in Lemma 1
and let @, be the invariant state of O, defined in Lemma 2. Then ¢, satisfies the
KMS condition at B=logn if n<oo, and ¢, is a ground state (i.e. f=00) for
0.

Proor. Assume first that n< o0o. Take A, B in 2, represented as in (vi). Since
this representation is unique we have E;A_,=A_, and A,E,= A, for all k>0,
where E,=S%S%*. Thus by (vii) and (x) we get

¢,(AB) rn<z S*A_,B, St + AoBo+Y. AkEkB_k)
k k

"‘L "th(A—kBk)"’T..(AoBo)"‘; T, (4B _y) .

Put {=ilogn. Since g,(S,)=¢"S, it follows that g,(S,)=n""S, and o (S})=nS}.
Thus by (vii) and (x) we get

@x(Be;(4)) f..(g S1*B_,Ayn™"*S} + BoAo +2k: B,Sin*Si*A -k)

=) T5(B- 1A +1,(Bodo)+ Y, n*1,(B,A_}) .
k k
Since 7, is a trace on &, we see from these results that ¢,(4AB)=¢,(Bg,(4)).
Replacing 4 with g,(A4) we get

(,D,,(Q,(A)B) = (Pn(BQleogn(A)) .

Since 2, is dense in (0,)? it follows that the equation above is valid for any 4 in
(0,0 and B in 0,, so that ¢, is a logn—KMS state.

If n=o00, we know from (ix) that 7 (E,)=0 for every k. Consequently, for
A,Bin 2, and {=t+is we have

P (BQC(A»

= Ty (; St*B_,Ae™™S} + ByAo+ Z B, Ste~iSk* 4 k)
k
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= roc<z e™St*B_ A, Sk +BoAg+ ), e “B,EA _k)
k k

= ¥ e, (S*B_ A, S4)+ T (Bodo) -
k
Thus the function { — ¢, (Bg;(A)) is bounded in the upper half plane. By the
Phragmen-Lindelof theorem the supremum of the function in the region is the
supremum on the real line, i.e.

9o (Be(A)l = 1B 4] .

Another application of the Phragmen-Lindelof theorem shows that each
function { — ¢, (Bg,(4)) is bounded in the upper half plane for every B in @,
and A4 in (0L); ie., ¢ is a ground state for 0.

THEOREM 2. Let 2<n=<o00. The C*-dynamical system (0,,T,g) defined in
Lemma 1 has exactly one KMS state (viz. ¢,). The only admissible B-value is
logn if n<oo and oo if n=oo0.

ProoF. Assume first that n <oo. From the Proposition we know that ¢, is a
KMS state corresponding to f=log n. Assume now that ¢ is a f-KMS state for
some f (0SB =< 00). If f< oo this implies that ¢ is a trace on &, (cf. (i)), whence
@ =@, by the unicity of 7,. If f=00 we take {=t+is and compute

(xi) ?(Ske;(SH) = e *p(SiS¢¥) = e "eP(S,SY) .

The function { — @(S,0,(S¥)) is not bounded in the upper half plane unless
@(S,S¥)=0. But 3 S, S¥=1 and ¢(1)=1, a contradiction. Thus f=logn is the
only admissible value.

In the case n=o00 we know from the Proposition that ¢ is a ground state
for 0. Assume now that ¢ is a f-KMS state for some f (0= 00). If <00
this gives

P(SiS¥) = @(Steip(Sy) = e Pp(SESY = e’ .

However, ¥ S,S¥ <1 so we have a contradiction. If =00 we see from (xi) that
@(S,S¥)=0 for all k. By the Cauchy-Schwarz inequality this implies that
©(S,5§)=0 for all multiindices a, f (with [(x)=1(B)) unless /(a)=1(f)=0. But
the elements S,S§, 1<I(a)=1(p), generate the maximal ideal £, in # _ and
& ./ #,=C. Consequently p=¢,.
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