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SPECTRA OF OPERATOR EQUATIONS AND
AUTOMORPHISM GROUPS
OF VON NEUMANN ALGEBRAS!

HERBERT HALPERN

Abstract.

The spectrum of the operator Tx =Y ¢;(a)xy;(b) in the space of bounded
endomorphisms of a von Neumann algebra is computed. Also the spectrum of
a locally compact abelian group of automorphisms is computed.

1. Introduction.
In this article, we compute the spectrum of an operator equation of the form

@ Tx = ¥ {pia)xp(b) | 1=i<n}

in the algebra L(A) of bounded linear operators on a von Neumann algebra.
Here a and b are elements of 4 and ¢; and y; complex-valued functions so that
¢;(a) and y;(b) make sense, viz. @; or ¥, is continuous on Spa or Sphifaor b is
normal and ¢; or ; is holomorphic on (domains) containing Spa or Spb if a
or b is not normal. The technique employed also allows us to compute the
spectrum of an operator equation of the form (1) when A4 is a C*-algebra.

Next, we compute the spectrum of a o-weakly continuous representation of
a locally compact abelian group G as *-automorphisms. Although the
spectrum for such an automorphism group is defined differently from the
spectrum of an operator equation in that the present spectrum is the
intersection of the zero sets of the Fourier transforms of functions of L!(G) in
the kernel of the induced representation, we can use the same technique for
finding the present spectrum as we used for the operator equation (1) at least
when the representation is implemented by a unitary representation of G in A.
We also characterize the kernel of the representation induced on L'(G) as the
set of functions whose Fourier transform vanishes on the spectrum.
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2. Operator equations.
Throughout this article we use the following

NortaTioN. Let 4 be a von Neumann algebra with center Z, let = be the
spectrum of Z, let [£] be the (closed) ideal in 4 generated by & in = and let a(&)
be the image of a in A(&)= A/[£] under the canonical homomorphism of A4 into
A(&). Let L(A) be the Banach algebra of all bounded linear endomorphisms of
A.

The space L, (A) of g-weakly continuous endomorphisms of 4 into A4 is a
norm closed subalgebra of L(A4). We remark that if T is an operator in L, (A)
which is invertible in L(A), then T! is also in L,(A). In fact, let A” be the
enveloping von Neumann algebra of 4 and let 4 be embedded in A”. Thereis a
central projection p in A” such that A”p= Ap and A is isomorphic to Ap. Let
M, in L(A") be given by M, x=px. Now, if T is invertible in L(A), the second
transpose (T~ ')" is the inverse of T" in L(A"). The operator M,(T ~')" maps
A’p into A”p and is o-weakly continuous on 4”p. Since (T ~!)" is the inverse of
T" on A”, the map M (T ~')" is identified with T~ under the isomorphism of
A onto A”p.

We first compute the spectrum of the operator equation (1) when ¢, ; are
holomorphic. We use the technique of Lumer and Rosenblum [12].

THEOREM 1. Let a and b be elements of A, let ¢,,y; (1 <i=<n) be holomorphic
functions on domains containing a and b respectively; then the. spectrum of the
operator equation

Tx = Y ¢i(a)xy;(b)
in the Banach algebra L(A) of all bounded linear operators on the Banach space
A is
X = U Z o) | xeSpa@), feSpbi) .

ProoOF. Suppose « is in Spa(é) and a—a(&) does not have a left inverse in
A(é). There is a projection e, in 4 with e,(£)+0 such that

la—a)e, (O] <n™'.

For example, the spectral projection of (x—a)*(x—a) corresponding to the
interval [ —n? n?] suffices. There is a projection p, in Z with p,(£)=1 such
that

I (x—a)e,p,|l < n?
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due to the continuity of the map { — ||d({)|| on Z for fixed d in 4 [6, Lemma
10]. By replacing p, by the central support of e,p,, we may assume that p, is the
central support of e,p,. Then the sequence {e,p,} right zero divides « —a in the
terminology of Lumer and Rosenblum [12, v]. If « — a(&) does not have a right
inverse, then there is a sequence {e,p,} of projections in A of central support p,
with p,(&)=1 such that {e,p,} left zero divides « —a. Now if f is in Sp b(¢), there
is a sequence {f,g,} of projections of central support g, with g,(£)=1 such that
{fudn} cither right or left zero divides f—b. Since e,p,g, and f,p,q, have the
same central supports p,q,, there is a nonzero partial isometry u, whose
domain support is majorized by f,p,q, and whose range support is majorized
by e,p.q, [4, 1II § 1, Lemma 1]. Thus, the number Y ¢;(a)y;(f) is in the
spectrum of T [12, Theorem 9].

Now suppose y is not in X. Given any & € E, we show that there is a
projection p=p, in Z with p (&)=1 such that y is not in

{3 0:(@W:(B) | € Spa,ap, B e Spa,bp} .

On the contrary, suppose for every projection p in Z with p (£)=1 there is an
a,in Sp, and a B, in Sp,, bp with 3 ¢;(a,)¢;(B,)=7. There are {, and ¢, in £
with p"(( p)=pA(cfp)=l such that a«, and B, are in Spap({,) and Spbp(¢{,)
respectively [15, Lemma 6.2]. The projections p in Z with p (¢)=1 form a
directed set under the natural ordering for projections in Z and so we may find
a subnet {p;} such that

w, =a;—>0a B, =p—8
and
&, =& & (o &
The element « is in Sp a(£); otherwise, there would be a ¢ in A with
11 =cla—a)@l+ 11— (x—a))@I =0,
and consequently,
11 =cla;—a)El + 1 (1= (;—a)) ()l < 1

got some j so that a;—a would be invertible. Similarly, we see that § € Sp b(¢).
This contradicts the choice of y since y is now given by y=23 @;(@)y;(p).
Therefore, there is a projection p in Z with p (£)=1 such that y is not in

Y {@:@:(B) | o€ Spa,ap, B e Spy,bp} .

We have that ¢, and y; are holomorphic on Sp,,ap and Sp 4, bp, respectively
and that
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vi(ap) = @;(a)p, Y;(bp) = Y;(b)p

due to the Cauchy integral representation for ¢;(a) and ,;(b). We may find an
operator §, in L(Ap) with

S,(y=T, = (y—T,)S, = identity on L(Ap)
where T, is given by
Tx = Y @i(ap)xy;(ap)

for x in Ap. Setting M, equal to the multiplication operator M, x=xp for
x € A, we may rewrite the preceding relation as

MS,M,(=T) = (y=TIM,S,M, = M, .

Since there is a finite set {r;=p,, I 1= j<m} of projections of least upper bound
1, there is an inverse S for T in L(A) given by S=3 M, S, M, where g,=0 and

q; = lub{r, | 1sksj}—lub{q, | 1Sk<j—1}

for j= 1. Thus, the complement of X is contained in the complement of Sp T,
that is, Sp T< X.

We now obtain a more global and also an extended formulation of Theorem
1 when a and b are normal operators. For this the concept of central spectrum
is needed (cf. [8]).

DEeFINITION 2. An element ¢ in Z is said to be in the central spectrum Z —Spa
of an element a in A4 if ¢ (&) is in Spa(¢) for every ¢ € E.

In order to consider normal and self-adjoint operators together we extend a
result of P. R. Halmos [7] and also prove a spectral mapping theorem for
central spectra. We can also prove similar theorems for essential central spectra
(cf. [8]), but we do not need these in the present paper.

LEMMA 3. Let a be a normal operator on a Hilbert space H ; then there is a self-
adjoint operator b in the von Neumann algebra B generated by a and 1 on H and
a continuous function ¢ of Spb into Spa such that ¢(b)=a.

Proor. Setting Q equal to the spectrum of B, we can find a continuous
function ¢ of the Cantor set S in [0, 1] onto Sp a and a Borel function y of Spa
into S such that ¢y is the identity function on Sp a (cf. [7]). There is a unique
b in B such that b"(w)=y(a (w)) on an open dense subset 2, of 2 [10; § 11].
The range of b is contained in S and so b is self-adjoint. Then we have that ¢ (b)
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=a because

P(b) (@) = (b (@) = ¢ Y(a' () = ()

for all  in Q,.

The relation between the spectrum and the central spectrum is given in the
next proposition.

ProOPOSITION 4. Let a be a normal operator in A; then Spa(&) is equal to
{c (¥ | ceZ—Spaj}.

Proor. First assume a is self-adjoint. There is no loss of generality in
assuming a=1. We show that

SO={c(®)| ae Z-Spa}

is a closed set. It is sufficient to consider the case of a sequence {c,} in Z—Spa
with lim ¢, (¢)=a and c,(¢)<a. There is a projection p in Z with p (£)=1 such
that ¢,p<ap. The set

S = {ceZ—-Spa| ci)__<__ap}

has a least upper bound ¢, since it is monotonely increasing and strongly
closed [7, 3.9 and 3.10]. Then we must have ¢,()=a and so S(¢) is closed.

We now show that an arbitrary f in Sp a(£) is contained in S(&). In fact, let
e(4) be the spectral resolution of a and let e=e(f+¢) —e(f—e¢) for 0<e<i. We
have that e(£)+0; otherwise, we have

B-a)(S) = (B—a(l—e)(?)

is invertible in 4(£). So we have

lae(B+e)(OI 2 (B-2)le@l = B—e.

Thereis a cin Z—Spae(f+¢) with2 ' <f+e<c (&) <P +e[7, 3.12]. Arguing
by contradiction, we can show that ¢ ({) is in Spa({) whenever { is in the
nonvoid open subset of { € £ with ¢ ({)>0 and so ¢ (¢) is in S(¢) [7, 3.10].
Since S(¢) is closed, we get that f e S(&). Hence, we have that Spa({) is
contained in S(¢). Because the reverse inclusion relation follows from
Definition 2, we have that S(&)=Spa(¢).

Now let a be a normal operator in 4. There is a self-adjoint operator b in A
and a continuous complex-valued function ¢ on Sp a with ¢ (b)=a [Lemma 3].
Notice that ¢(c) is defined for every ¢ in Z—Sp b, and that {¢(c) | ce Z-Spb}
is contained in Z—Spa. Thus, we get that
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Spa(é) = ¢(Spb(¥) = {@(c (¥)| ce Z—-Spb}
={©®| cez-Spa}

from the first part of the proof.

LemMa 5. Let a be a normal operator in A and let ¢ be a continuous complex-
valued function on the spectrum of a; then ¢(Z—Spa)=Z—Sp ¢(a).

ProoF. Let b be a self-adjoint operator in A and let Y be a continuous
complex-valued function on Spb such that y(b)=a (Lemma 3). Let 6=¢ .
Given cin Z—Spb and ¢ in Z, there is a d, in Z —Sp b with 0(d,) (&) =c (&) due
to the classical Spectral Mapping Theorem and Lemma 4. Using the fact that
E is extremally disconnect, we can find a sequence {d,} in Z—Spb with
16(d,)—cl|Sn~! for n=1,2,.... The operators

dy = lub{d, dy.y,. .. dysi}
are in Z—Spb [7, 3.10] and satisfy the relation
10(du)—cl < n7?

for every k=0. We have that d=glb, (lub,d,,) is in the strongly closed set Z
—Sp b and that 6(d)=c. Thus we have that c in Z —Sp ¢ (a) is the image of Y/ (d)
in Z—Spa under ¢. This proves that Z—Sp ¢(a) is contained in ¢(Z—Spa).
The opposite containment relation is clear and thus ¢(Z —Spa)=Z —Sp ¢(a).

We now can prove the extended global formulation of Theorem 1.

THEOREM 6. Let a and b be normal operators in A, let ¢; and y; (1=i<n) be
continuous functions on Spa and Spb respectively; then the spectrum of the
operator T in L(A) defined by

Tx = z @:(a)xy;(b)

is given by

e
I

Y X o) | aeSpald), pespb(@)

Y AZ eiWid) @) | ceZ-Spa, de Z-Spb}.

Proor. First we notice that the equivalence of the two expressions for X is
obtained from Lemma 5. There is no loss of generality in assuming that both a
and b are self-adjoint (Lemma 3). There are sequences {¢;;}; and {y;}; of
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holomorphic functions on Spa and Sp b that converge uniformly to ¢, and ¥,
respectively. Setting

Tix = Z @ij(@xy;(b)  for j=1,2,...,

we obtain a sequence {T;} of mutually commuting operators in L(A)
converging to T. The sequence {3 ¢;;(0)y;;()} converges to ¥ @, (@)y;(p) for
every a in Spa(¢) and B in Spb(&).

Now let y be an element in X given by y=3 ¢,(a)/;(B) with a in Spa(&), B in
Sp b(&). We obtain a contradiction from the assumption that y is not in Sp T.
There is an S in L(A4) with

M=SG-DI+I1-@-T)S|I =0.
Setting y;=3; ¢,;()¢;;(B) for j=1,2,..., we may find a j such that
1=SG=TH+I1-(;—=THS| < 1.

This means y;— T; is invertible. This is impossible (Theorem 1). Hence, we have
that X is contained in Sp T.

Conversely, assume that’y is not in X. We notice that X is a closed set. In
fact, let {3,} be a sequence in X with lim ,=4,-and let «, and f, be in Spa(&,)
and Spb(¢,) respectively with §,=3 o;(o)¥;(B,). By passing to subnets, we
may assume that (a,, f,, £,) converges to (a,f,&) in CxC x E. We have that
o € Spa(&), B € Spb(&) (as we have already shown), and

o = lim Y i )Yi(B,) = X @:(@y:(B)

is in X; and consequently, we get that X is closed. Now there is a
neighborhood V of 0 in the complex plane so that y is not in X +2V. Also there
is a j, such that j=j, implies

X; = .:U= (X 0i;@¥(B) | aeSpa(l), BeSpb(e)}

is contained in X + V. Thus y is not in Sp T;+ V for every j=j, (Theorem 1).
This means that y is not in Sp T. Indeed, there is an £>0 such that | T—T,|| <e
implies Sp T<Sp T;+ V' [13, 1.6.17]. So we have that Sp T X.

Now we can characterize the spectra of operator equations of the form (1)
on C*-algebras.

ProposiTION 7. Let B be a C*-algebra, let B be the enveloping von Neumann
algebra of B, let a (respectively b) be an element of B” and let @; (respectively yr)
(1=Li<n) be holomorphic functions on Spa (respectively Spb) or continuous
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complex-valued functions on Spa (respectively Spb) if a (respectively b) is a
normal operator. Suppose the operator Tx =Y @,(a)xy;(b) on B’ maps B into B.
Then the spectrum of S=T|B in L(B) is equal to the spectrum of T in L(B").

Proor. First let a € SpS. We may assume there is an ¢>0 such that
l(e—S)x| 2 ¢l x|l for every x in B; otherwise, there is a sequence {x,} of ele-
ments of unit norm in B with lim (x— S)x,=0 and so « is certainly in SpT.
There is a nonzero continuous linear functional w on B which vanishes on
(o — S)(B) since (a—S)(B) must be a proper closed subspace of B [9, 2,12.1].
Let @' be the unique extension of w to a o-weakly continuous linear
functional on B”. Because o'((a—T)B”) is contained in the closure of
w((e— S)(B)), we see that the range of (x— T)(B”) is a proper subset of B".
So we get a— T is not invertible in L(B").

Conversely, suppose that o is not in SpS. Then the double transposes
((@x=8)"1!)" and (x—S)* are .-weakly continuous maps of L(B”). Here
B is identified with the second dual of B. Since ((x—S)~!)" is the inverse of
(a—S)y*=a—T, we get that a is not in SpT.

CoROLLARY 8. Let B be a C*-algebra on the Hilbert space H, let A be the von
Neumann algebra generated by B, let a (respectively b) be an element of A, let ¢,
(respectively ;) (1 Si<n) be holomorphic functions on Spa (respectively Sp b)
or continuous complex-valued functions on Sp a (respectively Sp b) if a (respect-
ively b) is normal. Suppose Tx=7Y ¢;(a)xy;(b) on A maps B into B and that

X = {l;J= {X @:i(B) | aeSpa(d), feSph(&)

fails to separate the plane. There the spectrum of S=T|B in L(B) is X.

Proor. Let Ly be the Banach subalgebra of all operators in L(A4) which map
Binto B. Then T isin Lg and Sp T= X is equal to the spectrum of Tin Lg [16,
1.6.13]. The latter is just the spectrum of S in L(B).

In general, one always has Sp T<Sp S.

ExaMpLE 9. Let J be a derivation of the C*-algebra B with 6* = — 4, that is,
o(b*)*= —o(b) for all b e B. Let I' be a family of representations © on the
Hilbert spaces H, such that the direct sum =, of the representations acting on
the direct sum H, of the Hilbert spaces is faithful. There is an a=a* in the von
Neumann algebra A generated by n,(B) such that 7,(d(x))=ny(x)a — any(x) for
all x € B [14]. Now the spectrum of the derivation ad a on A4 given by ad a(x)
= xa — ax is a subset of the real numbers (Theorem 1) and so Spad a is equal to
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Spé. In particular, if I' is a separating family of irreducible (respectively factor)
representations of B, we get

Spé {U: {oy—ay | «; € Spa(d)}

¢LsJ'~‘ {(c;—¢2)(®) I c;€ Z—Spaj}

clos U {(c; —¢,)(®) | {¢} open in &, ¢;€ Z—Spa}

clos U {o,—a, | o €Spa,},
nel

where a, is any self-adjoint operator in the von Neumann algebra generated by
n(B) on H, with n(é(b))=n(b)a,—a,n(b). The last result is mentioned by
C. Akemann and P. Ostrand [1].

3. Spectra of automorphism groups.

Let G be a locally compact abelian group and let 4 be a von Neumann
algebra with center Z on the Hilbert space H. A homomorphism ¢ of G into
the group Aut 4 of *-automorphisms of 4 such that t - w(s,(x)) is continuous
for each w in the set A, of o-weakly continuous functionals of A is called a
representation of G on A. If ¢ is a representation of G on 4 and if ¢ is in L'(G),
the relation

w(o(e)x) = j(ﬂ(l)w(m(x»dt (xed, weAd,)

determines an element 6(¢) in the Banach algebra L,(A4) of o-weakly
continuous linear endomorphisms of A. The spectrum Sp ¢ of ¢ is defined to be
the set of all y in the dual group G of G such that the Fourier transform ¢ of ¢
vanishes at y whenever a(¢p) vanishes [2]. The representation ¢ is said to be
unitarily implemented by the strongly continuous unitary representation u of G
on H if o,(x)=u,xu* for all t € G and x € A. If ¢ is unitarily implemgented by u,
there is a projection-valued measure e on the Baire sets B(G) of the dual group
G of G (i.e., a map e of the o-ring of G generated by the compact G,-sets of G
into the projections on H such that e()=0, e(X; N X,)=e(X )e(X,) for
X, X, in B(G), and e(U X;)=3 e(X) for a mutually disjoint sequence {X} in
B(G)) such that

(un,0) = f <t x> ~d(e(m, Q)

for all ,p in H (Stone’s Theorem, cf. [11, 36]). Here <t, x) denotes the action of
G on G. If e can be chosen to be in 4 (i.e. with range in A), then o is said to be
an inner representation of G on A.

Now let e be a projection-valued measure in A.
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DEeFiniTION 10. For every ¢ in the spectrum Z of Z, the spectrum Sp e(&) of
e(¢) is defined to be the set of all y € G such that e(y+ V)(&) %0 for every Vin
the family ¥ (G) of neighborhoods of the identity in B(G).

We now characterize the spectrum and kernel of an inner representation.
D. Olesen [12] has given a similar characterization for the spectrum of an
inner automorphism group on the algebra of all bounded operators on a
Hilbert space and A. Connes [2] has shown that a function is in the kernel of
the induced representation of L!(G) if its Fourier transform vanishes in a
neighborhod of the spectrum.

THEOREM 11. Let ¢ be an inner representation of the locally compact abelian
group G on the von Neumann algebra A and let e be a projection-valued measure
on B(G) in A such that the unitary representation of G given by u,
=[(t,x>" de(y) implements a; then the spectrum of o is given by

Spo = clos{y,—x2 | x:€Spe(?), ¢ € 5}
and the kernel of o is given by

kero = {¢ € L'(G) ] ¢(Spo)={0}} .

ProoF. Let ¢ be a function in the kernel of g, let £ € =, and let g, x, be in
Spe(é). From the relations

pr(t)at(e(m +V)xe(x, +V))dt = a(p)(e(x, + Vixe(x,+V)) = 0

and
low(er + VIxe(xz + V) =<6, x20<t 1> "e(xs + V)xe(xa + V)|
< 20xlub {F K xi+ x> =<t adl | xie V, i=1,2}
= lixlixy (@),
we get

(J(P(S)(S,Xx —X2>~ dS)(e(xﬁ' V)xe(x, + V)“ = lxllloxyly -

Since there is a partial isometry w in 4 with |le(x, + V)we(x, + V)| =1 [4, IIL1,
Lemma 1] and since |@xy|, approaches 0 as V gets small, we conclude
(s —12)=0.

Conversely, let ¢(x; —x,)=0 for all y,,%, in Spe({) (¢ € E). Let n and g be in
H, let {X;} be a monotonely increasing sequence of compact sets in B(G) with
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lime(X)n = n and lime(X)o = ¢

(cf. [11]), and let 0<e<1. Let G, be a compact set in G with complement F
such that [ |¢|dt <e. For each X, there is a compact covering {X,; | 1<ign}
of X, in B(G) such that

<t x> "e(X ) —ue(X )l < e

for every t € G, and x in X;;. Let p;; be the central support of (X ;) and let Z;;
be the support of p;j in £. We now show that there is a continuous map 4;; of
Z;; to X;; such that 4;;(¢) is in Spe(¢) for all £ in Z;;. Let IT;; be the set

I; = {0 esijxXijl x € Spe(d)} .

In order to show the existence of such a map 4,; it is sufficient to show that
I1;; is a closed subset of Z;; x X;; and that the map of II;; onto its first coordi-
nate is a surjection onto Z;; [5] (cf. [16]). For the first, let {(£,, x,)} be a net in
I1;; that converges to (¢, ) in the compact set Z;;x X;;. If (¢, ) is not in II;;
there would be a V in V(G) with e(x+ V)(&)=0. Since the two-valued
map { — Je(x+V)(©)| is continuous [6], there would be a U e V(G) with
le(x,+ U)(&,)| =0 for some n. This is not possible. So I, ; must be a closed set.
For the second, let ¢ € Z;;. If there is no x € X;; with y € Spe(¢), then, for
every x in X;;, there would be a V, in V(G) with e(y+ V)(€)=0. Since X; is
compact, there would be a finite subset of {y+V, I x € X;;} which would
cover X;; and so e(X;;)(¢) would be zero. This also is not possible. So there is
a y in X;; such that (¢, x) is in IT;;. Thus, the map 4;; exists.
For each ¢t in G, the unitary operator {t,4;;> in Z, given by

<t l.’j>A(§) = {{, j~ij(§)>

for ¢ in Z; satisfies the relation

pij

I<t, /1ij>*e(X.'j)“‘“re(Xij)”
lub {[|(<t, 4;> *e(X ) —u,e(X ) ()] | e Zy)
lub {[I<t, 4,0 "e(X;) —ueX )l | € e By}

€.

I

IA

IA

Setting {Y; ] 1<j<n} equal to a partition of X, in B(G) with Y;;= X;;, we have
that

Z <t,;~:j>*e(yij)_“;e(xi)“ < lub [t 4 *e(Yy) —ue(Yyl < e,

i

Math. Scand. 42 — 10



146 HERBERT HALPERN

and consequently, that

f¢(t)o,(e(Xi)xe(Xi))dt— z @ (0Kt A<t Ay *e(Yy)xe(Y,)) dt
ik

= 3elxl(t+lelly) -

By approximating ¢ in the norm of L'(G) by continuous functions of compact
support, we obtain

(J(o(t)O,lu)(t,lik}*dt) &) = 0(Au(®—45()) = 0
for £ in E;;NE,. This means that

Ufp(t)m(e(x.-)XE(X:)) dr|| = 3elx|(1+ el -

Because o,(e(X;))=e(X)) for all t and i, we have that

'(Jw(t)G,(X) dtn, Q)

j(p(t)(a.(x)n, 0)dt

= lim

I o) (a,(e(X )xe (X)), o) dt

= 3elx (X +lleldlnl llel

by the Dominated Convergence Theorem. Since ¢,7,¢ are arbitrary, we get
a(p)(x)=0. Thus, we get that (¢)=0 if and only if @(y)=0 for all y in
{x1—12 I 1: € Spe(&), ¢ € E}. Thus, we have proved that

Spo = clos{y;—x. | 1 €Spe(?), ¢ € &}
and
kero = {p € L'(G) | #(Spa)={0}} .

One may give a global formulation of Theorem 11 analogous to the global
formulation of Theorem 1 given in Theorem 6. For this let e be a projection-
valued measure in A on B(G). A continuous function A with maximal graph
from an open dense subset D(4) of Z into G is said to be in the central spectrum
Z—Spe of e if A(&) € Spe(¢) for all & € D(A). If A(D(4)) is bounded, then D(4)
must be equal to Z due to [5]. For example, if e is the spectral resolution of a
bounded self-adjoint operator a in 4 (in which case G is the additive group of
real numbers), then the Z—Spa is identified with Z—Spe under the map
¢ — ¢ . This provides a link between the material in sections 2 and 3. Then
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preserving the notation of Theorem 11, we can reformulate these results as
follows: the spectrum of ¢ is given by

Spo = clos {i(§)—4,(&) | &€ D(4)ND(i,), i e Z—Spe}
and
kero = {9 € L'(G) | ¢-(4;—4,)=0, i;€ Z—Spe} .

Here ¢-(4;—4,) is the unique extension of & — @(4,(&)—4,(8)) to a
continuous function on Z.

We now characterize the kernel of an arbitrary representation ¢ of the
locally compact abelian group G on A. For this we need the notion of a
crossed product. Let L?(H; G) be the completion of the preHilbert space of all
continuous functions of G into H with compact support and inner product

{n,e> = j(n(t),g(t))dt )

There is a faithful normal representation n, of 4 onto L*(G; H) given by
(M) = o7 (x)(2)

and there is a strongly continuous unitary representation u=u, of G on
L*(H; G) given by

(u(@n)s) = n(s—1).

The von Neumann algebra on L?(H ; G) generated by n,(A) and the image of G
under u is called the crossed product of A by the action of ¢ on G and is denoted

by R(A;0). For x € A, t in G, the relation
u(tyn, (xJu(t)* = m,(0,(x))
holds.

THEOREM 12. Let ¢ be a representation of the locally compact abelian group G
on the von Neumann algebra A. Then the spectrum of o is equal to the spectrum
of the representation G of G on the crossed product R(A;o) given by &,(x)
=u,(t)xu,(t)*, and the kernel of the representation of ¢ of L'(G) is given by

kero = {p € L'(G) | ¢(Spo)={0}}.

ProoF. Let ¢ be in L'(G). We show a(¢)=0 if and only if 6(¢)=0. On the
one hand, we have
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1l

G(@)m,(x) _[fp(t)é.(ﬂa(x))dt

= n.,(fco(t)a,(xm) = 7,(a(p)x)

for every x in A due to the o-weak continuity of n,. Since =, is faithful, we get
that o(¢)=0 whenever 6(¢)=0. On the other hand, suppose a(¢)=0. Linear
combinations of elements of the form

Y = Ug(t)m, (% Jug (t)7,(x2) . . . mo(x)u(t,4 1)

with t; € G, x;in A, n=1,2,... are o-weakly dense in R(4; o). Setting z equal
to

z = 04,(x)0,(x;5) ... 0,(x,),
where s;=t,+ ...+t (15i<n+1), we may write y as
y = na’(z)ua(sn+l) .

Thus, we get that

G(@)y Jcp(t)&((y) dt

I

n(a((p)z)ua(sn+l) = 0 .

We conclude that 6(¢)=0 due to the g-weak continuity of §(¢). Thus, we have
shown that a(p)=0 if and only if ¢(¢)=0.
Now we have that

Spo = {xe G| ¢(1)=0; s(p)=0}
= {xe G| ¢(0=0; 6(¢)=0} = Sp3 .
From Theorem 11 and the preceding paragraph we get

kero = {p € L'(G) | $(Spo)={0}} .
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