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THE SOLUTION OF A MINIMAX PROBLEM
CONNECTED TO
THE IRREDUCIBILITY OF POLYNOMIALS

BERNT @OKSENDAL

1. Introduction and statement of results.
In [2] H. Tverberg poses the following problem: Find the value of

(1.1) R = inf[max H(x)+max (G(——l),G(l))]

¢eT, | xela, B

where T, is the set of continuous functions ¢ on [—1,1] such that

IIA

1
p(—=1)=0(1)=0, 0Z¢ =1 and f et)dt = 1.

-1
[a, f] is the convex hull of supp ¢ and
1 1
H(x) = j (1—e(@)log|x—tldt, G(x) = j o(t)log|x—t|dt .
-1 -1

The determination of R is related to the following irreducibility theorem: If a
polynomial f of degree n has integral coefficients and there are n integers a; so
that

0<|f(a) < Pm for 1=isn,

then fis irreducible over the rationals. The largest such number P(n) is proved
in [2] to have the form

P(n) = (Ao+o(1))"m! (m = [";1]>

where the constant 4, equals exp (1 +3R).
We shall prove that there exists a unique function ¢, which is optimal for the
problem (1.1). The function ¢, is given by
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l %Arctan|/3—4t2; [t <
Polt) =
l —‘@<It|
2 =

S

IIA

"o ; 1
The corresponding minimal value is R= —2+4log2—31log3. (This solution
was anticipated in [2]). Hence the value of 4, is %‘31' =1.754 ....

We will proceed as follows. After reformulating the problem slightly, we first
prove that there exists at least one optimal function in L*[—1,1] for the
problem (Lemma 1). We then prove that for such an optimal function ¢ the
function
1

H,(x) = H(x) = j 1 (1—(t)log|x —t|dt
must be constant on the convex hull [a, f] of supp ¢ (Theorem 1). This reduces
the problem to solving an integral equation H ,(x)=constant on [a, f]. Using
known inversion formulas for the Hilbert transform it is finally proved that the
only bounded solution ¢ of this integral equation is the function ¢, above
(Theorem 2).

The author is greatly indebted to H. Tverberg for many valuable
conversations. Theorem 2 is due to him.

2. Existence of optimal functions.

Put
1
T= {(PGL‘”[-LI] ; 0=, j fp(t)dt=l}-
-1
Define
1
G,(x) = j o(t)log|x—t|dt
-1
and

R, = max G,_,(x)+max (G,(—1),G,(1), for peT,
xela, f]

where [«, f] is the convex hull of supp ¢.
We will replace the family T, by the larger family T and consider

R, =inf{R,; oeT}.
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It turns out that the optimal function for this problem is the function ¢, above,
which is a member of T,. Therefore R=R|, so that

@.1) R=inf(R,; geT)}.

However, (2.1) can also be deduced directly as follows:

If ¢ € T we can find a sequence {¢,} = T. converging to ¢ weakstar in
L*[—1,1] such that suppe,=[a,f], the convex hull of supp@. Then
G, (x) = G,(x) for all x € [—1,1]. Since {G,,} is equicontinuous on [ —1,1]
(because 0= ¢, =1), we get by the Ascoli theorem that G, — G, uniformly on
[—1,1]. Therefore

R, = max G,_,(x)+max (G,(—1),G,(1)

(]
xela, B]

lim [ max G, _,, (x)+max (G, (—1), Gw»(l)):l 2 limR,, ,

n—oo | xela, p} n— oo

which proves (2.1).
Next, observe that if we put y=1—¢ we have y e T if p € T and

1
Gy(x) = J log|x —t|dt — G ,(x)

= (1—x)log (1+x)+ (1 +x)log (1+x)—2—G,(x) .

Hence
G,(—1) = 2log2-2-G,(-1)

G,(1) = 2log2—-2-G,(1).
Therefore, if we put
(22
Ny = max Gy (x)—min (Gy(~1), Gy(1)) ; [&] = conv (supp (1-¥))
[, 81
(2.3) N = inf{N,; y €T}
we have
N, =R,+2-2log2 and N = R+2-2log2.
Therefore we proceed to work with the problem (2.3). A result similar to the

following lemma is mentioned in Tverberg [2, p. 14]. Since it is so crucial for
our approach to the problem we state it again and include a proof:

LEMMA 1. There exists a function Y, € T which is optimal for the problem
(2.3). that is, N,,=N.
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ProoF. Let {,} >, = T be a sequence such that N, — N. Since the unit ball
in L*[—1,1] is compact in the weak-star topology, there exists a subnet
{¥:}:e1 converging weak-star to a function ¥, € L[ — 1, 1]. Since the weak-star
topology on the unit ball of L*[ — 1, 1] is metrizable, we can replace the subnet
by a subsequence which we again denote by {¥,}5% ;.

We have

1 1
J SO, dt — f f(OWo(t)dt as n— oo
- i

for all fe L'[ —1,1]. This implies that

0=y,=1, J'l Yo(t)dt = 1,
1

so that Y, € T. Moreover, turning to a subsequence if necessary we can assume
that o, — ag, B, — Bo, Where [a,, B,] is the convex hull of supp (1 —,). Then
supp (1 —yo) =[ag, Bo]. Since G, (x) — G, (x) for all x e [ —1,1], we get using
the Ascoli theorem again that G,, — G,, uniformly on [—1,1]. Hence

N = N\l’o = max Gdlo(x)'— min (GWo( -1, lelo(l))
conv (supp (1= yq))
=<"- max Gll’o(x) ~min (G|Ilo( - 1)» GWO(I))
[ag, Bo)
= lim N,, = N .

We conclude that Ny, =N and the proof is complete.

3. Proof that if | is optimal then G, must be constant on [, f].

We will prove this using a variational technique. The idea is simple: If G, is
not constant on [a, ], we modify i slightly — by adding and subtracting
suitably — to obtain a function ¥, € T such that N, <N,. The idea is to add
a little to ¥ at points where G, is big (thereby reducing G, near these points)
and subtract from y accordingly at a point where G, is small.

The next three lemmas enables us to carry out these modifications on ¥ such
that the modified function y, still belongs to T.

LEMMA 2. Let y € T. If Y =1 a.e. in a neighbourhood of ¢ € (—1,1), then G is
twice continuously differentiable at ¢ and Gy(c)>0.

Proor. Tverberg [2, page 19].

Lemma 3. Let € T. If y =0 a.e. in a neighbourhood of c € (—1,1), then G is
twice continuously differentiable at ¢ and Gy(c)<0.
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Proor. As in Tverberg [2, page 19], we get

= {]+] gk .

Immediate consequences of lemmas 2 and 3 are:
LEMMA 4. (i) Let x, be a local minimum point for G, in [a, 1< (—1,1). Then

J Y (t)dt > 0 for every open interval J 3 x, .
J

(i) Let x; be a local maximum point for G, in [a, f]<(—1,1). Then

[ (1—=y(t)dt > 0 for every open interval J 3 x, .
J

Hence if G, is not constant on [a, f] it is possible to add something to
near maximum points and subtract near minimum points such that the
modified function still belongs to T. However, it is not clear that this can be
done such that N, is reduced. For this we need some technical lemmas:

LEMMA 5. Let 0Za<b<1. Then

log (1—a) < a - log (1+a)
log(1—-b) " b log(l1+b)"

Proor. Using Cauchy’s mean value theorem for a quotient we get

a
log (1+xa)—log(1+0-a) l+ya a l+yb

log(1+xb)—log(1+0b) b b 1+ya
1+yb

with y strictly between 0 and x. Putting x= +1 we get the lemma.

LEMMA 6. Assume —1<x;<xo<Xx,<1. Define
Ji(x) = Alog|x—x|+ (1—4)log|x —x,| —log|x — x|

Jor x e [—1,1], A € [0,1]. Choose A, € (0,1) such that x,=~7A¢x; + (1—A)x;
Then we have:

1+x,

D fix) <0 foral xe[—-1,x,) < ,101 <.

+ Xo



174 BERNT OKSENDAL

) f,(x) > 0 forall x € (x,1] = 4 < &oi_i‘ .
— X0
(1)
_ - l=1= (1—x,)(1+x,) (1—x,)(1 +x,)
fl=D) = filh) &= 4= 7 = log(1+x2)(1—x0)/° (14x)(1—x,)
1+x1 l—xl
V) dopt <7< Zoyp b

Proor. (I): Let —1=<x<x,. Then

A 1-4 1 (x; —X) (x5 — %) — (Xo — X)(xX3 — X)

— = ,

Six) = X—X; X—X; X—Xg (xo—x)(x; —x)(x, —X)
where x;=4x,+ (1 —A)x,. Put

g(x) = (x; —x)(x; —x)— (xo = x)(x3—x) .
Then we see that

1(x) < 0 = g(x) <0

X=X} Xy;—X
o x> g BT

xo"‘x
- l> (%2 —xo)(x; — ) — 0x1~x )
(02— x1)(xo—x) Xo—X

The last inequality holds for all x e [—1,x,] if and only if A>4,(1+x,)/
(14 xg).

(I): If we apply (I) to f;_; with x;,xg,x,, 4, replaced by —x,, —x,, ~ X,
1—4,, we obtain (II).

(II): This is straightforward.

(IV): If we substitute xq,=A4¢x; + (1 —4y)x, we see that

(1—x,)(1 +xo) -1 200 (x3 —xy)
(14+x2)(1 = xo) (1+x,)(1—xp)
Similarly
A=x)d+x) . 2(x—xy)
(1 +x2)(1—xy) (I+x)(1=x,) "
Hence by lemma 5
1< 101—-x1

l—xO )



THE SOLUTION OF A MINIMAX PROBLEM ... 175

To obtain the other inequality, we rewrite 7 as

(T4 x)(1 —x0) 2h0(x3—x4)
By o1+ ) L
Og(1+x2)(1—x,) o (1+ 2(x, —x,) ) 14X,
(l*xz)(l“'xl) (l—xz)(1+x1)

again by lemma S.
We are now ready for the main result in this section:

THEOREM 1. Let § be a function in T such that N,=N. Then
G,(x) is constant on [a, B],
where as before [a, ] is the convex hull of supp (1 —).
Proor. In [2] it is proved that the function ¢, mentioned in the introduction
gives
Ny_y = 2log2—3%log3 < 0.

Hence if  is optimal we have N, <0 and therefore [o, ] <= (—1,1).
Assume G, (x) is not constant on [a, f]. Then

m = minG,(x) < maxG,(x) = M
[, 81 [, 81

The easier case, when G, (2)=m, or G,(B)=m, will be dealt with afterwards.
For the moment we choose an x, € (a, f) so that G,(xo)=m. Put
M, = max {G,(x) ; x € [aXx,]}

M, = max{G,(x) ; x € [xo, 51}

Then M,>m, M, >m. Let furthermore
max{x € [¢,x0] ; G,(x)=M,}
min {x € [xo, ] ; G,(x)=M,} .

Xy

]

X2

Then —1<aSx,<xo<x,<f<1.

Let 6>0 and let Jo,J,,J, be disjoint relatively open intervals in [a, ] of
length 25 centered at x,, x,, Xx,, respectively. Then by lemma 4 we can find
positive numbers u, v, w<1 such that

f 1=y () dr ‘[ 1-y(@)d wf y@)dt =¢>0.
Jo



176 BERNT @KSENDAL

Now put
Tu(l—y (1) ; teld,
A(0) = —wy (1) ;o teld,
I A=Dp(A-y(@); tel,
0 otherwise

where 1 is the quantity of lemma 6. Then clearly, as 0<i1<]1,
0= vy@)+4@) £1 forall te[—-1,1].
Since

1
I A(t)dt = de—e+(1—2)e = 0,

-1

we have Y+ 4 € T. Moreover 4=0 outside [a, 8].
Now consider

Gy(x) = (f +J‘ +J )A(t)loglx—tldt
JoJa, Ji,

i j‘ u(l—y@)loglx—tldt+ (1—-1) v(1 =y (1) log|x—t|dt
Jy

Jz

- ,[ wy(t)log|x —t|dt
Jo

= g(dlog|x —t,|+ (1 —T)log|x —t,| —log|x —to]) ,

where t; € J; depend on x.
Let Uy, U,, U, be disjoint open intervals centered at x,, x,, x, respectively.
Then as 6 — 0,

2
%Gd(x) — fi(x) uniformly on [-1,1\U U;,
i=0

where f; is the function from lemma 6. Therefore, if we put
A = min (G4(=1),G4(1)), U; = (r,s); 05i=2,
we have for sufficiently small é that
() max{G4(x); xe€[ar]U[sypl} < 4.
Choose positive numbers ag,,0, such that x, +0, <x,—0, and
Xy <x < x40, = fi(x) < fi(—-1)

X,—0, < X < X3 = fi(x) < fi(1).
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Then if 6 is small enough, we obtain

(i1) max{GA(x) ; x €[xy,x;4+0,] U [x;—0,X,] \LZJ U,} < A.
i=0

(Note that a,,0, are independent of ).
Finally if x € U, we have

(i) Gy(x) < e(Alog (s, —r))+log2—log (ry—s,)) < A4,
if s,—r, is chosen small enough .

Similarly for x € U,.
Summing up, we conclude from (i), (ii) and (iii) that

(a) Gy(x)<A for all x € [o,x;+0,]U[x;,—0,, ],
for sufficiently small o.

Furthermore, choosing é small enough, we can obtain

(b) m+max{|G(x) ; x € [x;+0;,X;,—0,]}
<M —max {|G,(x)| ; xe[-1,1]},

where m=max {G,(x) ; x € [x; +0,,X;—0,]}.
Now consider G, 4(x)=G,(x)+ G,(x). From (a) and (b) we have

max Gy, 4(x) = max (Gy(x)+G4(x)}
[a, 81 [, x, +0,1U[x;— 05, 8]

< max Gy(x)+41 .
[a, B1

Therefore,

Nyiy= I[nalf)]‘ (Gy +4(x))—min (Gy+a(=1),Gy14(1)
< max G (x)+ A —min (G, (—1), G, (1)) —min (G4(—1),G4(1)) = N, .
[a, B]

This contradiction proves the theorem for the case that G, («)+m, G,(B)+m.
In the case when, say, G, (B)=m, we put x,=f§ and proceed as above except
we use the value 1=1. So in this case we define

u(l—y@); teld,
A(1) =l—ww(t) ; tedo

0 otherwise .

The proof of the necessary inequalities proceed similarly, except they are easier
to establish in this case. This completes the proof of theorem 1.

Math. Scand. 42 — 12
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4. The solution of the integral equation.

The last step in the solution of our minimax problem consists of solving the
integral equation that an optimal { must satisfy, according to theorem 1.

THEOREM 2 (Tverberg). Let ¢ € T satisfy

4.1) Il (1—e@)log|x—tldt = K  for x € [a,f]
-1

where [a, B] is the convex hull of supp ¢ and K is a constant.

Then [a, f1=[—4)/3,4)/3} and
2
d /3 -4
Arctan . Ill_ﬁ.%l/g

n
@) = @olt) = ’
° 0 ; H/3sust
Proor. Differentiating (4.1) we get
0]
4.2) ;_—tdt =log(1+x)—log(1—x), xel[ap],

where we take the Cauchy principal value of the integral, that is,

X—E B
lim(f +j >
£—0 a x+¢e

The general solution of the equation (4.2) is given by

43) ) c-B—nekx) = j VE—DB=0,0g 14 1 snc,

where C=j'f @(t)dt (see [1, p. 178]). Thus in our case C=1. As ¢ <1, the limit
of the right hand side of (4.3) is 0 as x goes to a or f. Thus, as is easy to see,

4.4) I|/ B-t, l—ﬂdt fl/““lgtidm —n

Replacing t by a+ f—t in the second integral of (4.4), we conclude

1+ +a+B—1)
_[l/t— B hi—aprn =

Thus a+ =0, since the integrand has the same sign as a+ f. Therefore we

have from (4.4)
1+t t 1+/3t
o [, (Vi Vi osi e
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Since the integrand increases with f, we conclude that f, and hence ¢, is
unique. The function ¢, defined in the introduction satisfies

0

A

1
¢ = 1, f pt)dt = 1.

-1

And it was shown in [2, pp. 15-16], that ¢, satisfies the equation (4.1), with K
=—1+3log3—log4. So we must have ¢=¢, and the proof is complete.

Thus the function ¢, is the solution to our problem. It follows that the
minimum value N=N, _,, is 2log2—3log3. This gives

R = —2+4log2-3log3,

and

Jo = exp (1+4R) = 43¢

as mentioned in the introduction.
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