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ALGEBRAIC TUBULAR NEIGHBORHOODS 1

DAVID A. COX

For varieties over the complex numbers C, the notion of a neighborhood (in
the usual complex topology) of a subvariety is quite useful. For example, if
everything is smooth and compact, this leads to the notion of a tubular
neighborhood of a subvariety. In this paper, we want to see if there is a
corresponding notion of “nbd” (our abbreviation for neighborhood) in
abstract algebraic geometry.

Let Y be a closed subscheme of a scheme X. One well known candidate for a
“nbd” of Yin X is the formal completion of X along Y, written X (the correct
notation is Xy, but we drop the Y unless some confusion might result). The
reader is referred to [7, I § 10] and [9, V] for definitions and some interesting
results.

But we would like a more geometric notion of “nbd” than X . Since the
Zariski topology is too coarse, we turn to the étale topology. The natural
definition to make is:

DEFINITION 1. An étale nbd of Y in X is an étale map f: W — X such that W
X xY— Y is an isomorphism.

We will regard Y as naturally sitting in any étale nbd W.

However, sometimes there are not many étale nbds of Yin X. For example, if
Y is a closed connected subvariety of X =P"(k), with dim Y21, then any
separated, connected étale nbd of Yin X is a Zariski open of Yin X (see [9, V §
3]). Thus, we might want something more local. There are lots of these étale
nbds locally on X. Since they do not patch to give a variety over X (as the
above example shows), we have to do the patching in a weaker sense. This
leads to the notion of the henselization' of X along Y, written X" (see [10, Ch.
7], [6] and section 1 below).

Thus, we have three ways to define a “nbd” of Y in X: étale nbds of Yin X,
X" and X . We will study these three notions of “nbd” in the following two
situations. First, given a morphism g,: Y — Z, where Y is closed in X, when
does g, extend to a “nbd” of Y in X? Second, given two closed embeddings
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212 DAVID A. COX

Y X, and Y X,, when are they isomorphic in some “nbd” of Y? We find,
quite surprisingly, that étale nbds of Y in X in X" behave in exactly the same
way under very mild restrictions (Theorems 3 and 4). Then we give an example,
due to Arthur Ogus, to show how X" and X “ can differ in these situations.
Over the complex numbers, we do not know the exact relation between the
usual complex nbds and our three notions.

Part II of this paper will introduce a geometric model of X" which, from the
point of view of étale homotopy theory, behaves exactly like a tubular nbd in
differential topology.

The author would like to thank Gayn Winters and Arthur Ogus for useful
suggestions. During the writing of this paper the author was supported by NSF
Grant MCS76-06382.

1. Hensel schemes.

We will briefly review the definitions of Hensel couple and Hensel scheme
(see [10] and [6]).

A couple is a pair (A4,I) consisting of a ring A and an ideal IS A4. A
morphism of couples ¢: (4,I) — (B,J) is a ring homomorphism ¢:4 — B
such that (I)cJ. An ideal J < 4 is an ideal of definition of the couple (A4, I) if

Vi=Va.

A couple (4,I) is Hensel if any étale map X — Spec(4) which is an
isomorphism over V(I) has a section. Note that I is contained in the Jacobson
radical of 4. See [5], [10] and [15] for some equivalent definitions and
properties of Hensel couples.

For any couple (4,]), one can find a ring A", called the henselization of A4
with respect to I such that (4" 14" is a Hensel couple (with a certain universal
property). See [5], [10] and [15] for the properties of henselization. For our
purposes, the important fact is that Spec (4")=lim-proj X, where X ranges
over the inverse system of affine étale maps X — Spec (4) which induce an
isomorphism over V(I).

For any Hensel couple (A4, I), the henselization of A[x,,. . ., x,] with respect
to IA[x,,...,x,] is denoted A{x,,...,x,}. This is the ring of restricted
algebraic power series with coefficients in 4.

A Hensel scheme is a ringed space (X, @y) which is locally isomorphic to an
affine Hensel scheme Sph (4, I), which is defined as follows. Let (4,I) be a
Hensel couple. For f € A4, let O(D(f)NV(I)) be the henselization of 4, with
respect to 14,. One sees easily that this gives a presheaf O on V(I) < Spec (A).
One can prove that @ is actually a sheaf (see [6]), and the ringed space (V (1), 0)
is Sph (4,1).
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The most important Hensel schemes arise as henselizations along a
subscheme. To define this, let Y be a closed subscheme of a scheme X. For an
affine open U of X, let Ox+(U N'Y) be the henselization of Oy (U) with respect to
J(V), where # is the ideal sheaf of Y. Oy is a presheaf on Y and it is actually a
sheaf (see [10, 7.1, 2.1]). Then X" = (Y, Ox+) is a Hensel scheme, and is called
the henselization of X along Y. A more correct notation is X%, but we will drop
the subscript Y unless there is a possibility of confusion. Note that there is a
map of ringed spaces j: X" — X.

A sheaf & on a Hensel scheme (X,0y) is called quasi-coherent if every point
of X has an affine nbd U = Sph (4, I) so that |, =M, where M is an A module
and M~ is the presheaf on V(I) defined by

MDA NVI) =M ®, (4)" for fed

(M is actually a sheaf — see [10, 7.1.3.1]).

An ideal sheaf # of Oy is called an ideal of definition of a Hensel scheme
(X,0y) is # is quasi coherent and for every affine open U =Sph (4,]), #(U) is
an ideal of definition of (A4,1). Note that (X,0y/#) is then just an ordinary
scheme. One can prove that every Hensel scheme has an ideal of definition (see
[11]).

For example, let Y be a closed subscheme of a scheme X defined by the ideal
sheaf .#, and let & be a quasi coherent sheaf on X. Using the above map j:
X" > X, we get the sheaf

Fh = J*F = le®@x|y@X" .
One can show that for U< X an affine open,
FHUNY) = FU)®oy ) 0x (V)"

(see [10, 7.5.3]). Thus, #" is a quasi coherent sheaf on X". Note that £ is an
ideal of definition of X", and that O/ f*=0y.

A map of Hensel schemes is just a map of local ringes spaces f: (X, Ox)
— (Y, 0y). One proves (see [10, 7.1.2.4]) that f can be locally described as the
map @: Sph (B,J) — Sph (4,I) induced by a map of Hensel couples ¢: (4,1)
— (B,J). We say that f is adic if f*(#) is an ideal of definition for (X, Ox)
whenever .# is an ideal of definition of (Y, ¥y). An adic map induces a map of
schemes

(X, Ox/f *(£)0x) = (Y,0y/F) .
A map f: (X,0x) — (Y,0y) is locally of finite presentation if f can be locally
described as

@: Sph (B,J) — Sph (4,1)
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(coming from ¢: (4,1) — (B,J)), where B2 A{X,,...,X,}/(g,- - -,8m) and [/j
=)/1B. Note that such an f is adic.
For an example of all this, take a commutative diagram of schemes:

Y'—_—L—»Y

8) 1,1

X —X

where the vertical maps are closed immersions. Then we obviously get a map of
Hensel schemes f*: X™* — X" f"is adic precisely when f ~!(Y)=Y’ (as sets).
If, in addition, fis locally of finite presentation in a nbd of Y, then f* is locally
of finite presentation.

Another important map of Hensel schemes comes from the fact that any
closed immersion of schemes Y ¢ X factors Y ¢ X* — X. In fact, it factors
Y o X~ — X" - X, where X~ denotes the formal completion of X along Y.

Finally, the category of Hensel schemes has fiber products, which are
explicitly constructed in [11].

2. The etale topology of a Hensel scheme.
We first define the notion of étale map:

DEFINITION 2. A map of Hensel schemes f: (X, 0x) — (Y, 0y) is étale if fis
locally of finite presentation and locally f can be written as ¢: Sph (B, J)
— Sph (A4,I) where B (in the J adic topology) is formally étale over A4 (in the I
adic topology). See [8, 0.19.10.2].

To get an equivalent definition, we will use the fact that any map of Hensel
schemes f: (X, 0x) — (Y, Oy) gives us a sheaf Q% y of Oy modules in the usual
way. From [10, 3.6.2, 3.6.3, 3.6.3.5] we get:

ProrosiTION 1. Let f: (X, 0x) — (Y, Oy) be a map of Hensel schemes which is
locally of finite presentation. Then f is étale iff Q,y=0 and f is flat.

An application of this is the following:
PROPOSITION 2. Suppose we have a cartesian diagram of schemes (1) where fis

locally of finite presentation and the vertical maps are closed immersions. Then
f: X' — X is étale in a nbd of Y’ iff f*: X" — X" is étale.
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Proor. For x in Y’, [10, 7.1.1.2] shows that
0X"’,x = ((OX’,x)h and @X",f(x) = (COX,f(x))h .

Since these are local rings, Ox+ , and Oy, are faithfully flat over Oy , and
Oy, rx) respectively. Then the commutative diagram:

I
0X,f(x) o (OX',x
Ox», ) Ji > Oxr «

shows that f, is flat iff f* is.
The argument of [10, 7.4.2.7] shows that Q}(,;./Xh; (Q}(/x)", so that by section
1, we have

1 1
QX"'/X",x ot QX’/X,x ®0X'.x @X'h,x for X € Y’ .

Then faithful flatness shows that Qmxr =0 < Qi x =0.
Using Proposition 1 and the characterization of étale maps givén in [8, IV
17.6.1 and 17.4.1], we are done.

The final topic we consider is the étale topology of a Hensel scheme (X, O).
If # is an ideal of definition of (X, Oy), then we will use the following abuse of
notation: X will stand for the Hensel scheme (X, ©Ox) and X, will stand for the
usual scheme (X,0x/#). If f: (Y,0y) — (X,0x) is an adic map of Hensel
schemes, we write Y x y X, for the scheme (Y, Oy/f*(#)0y) If f is étale, the
induced map Yx x X, — X, is an étale map of schemes. But much more is
true:

THEOREM 1. The functor which sends an étale map f: (Y,0y) — (X, 0Ox) to the
étale map Y x y X, — X, induces an equivalence between the category of étale
maps over X and the category of étale maps over X,.

Proor. In [10, 3.6.1], a definition of étale map between local ringed spaces is
given, which for schemes is the usual definition and for hensel schemes
coincides with our definition. So we need only verify that the hypotheses of
Satz 3.6.4 in [10] are verified for the map (X,0x/#) — (X,0x). Certainly
(0x/.#), is finite over Oy , for x in X, and for the “universal homeomorphism”
requirement, the proof of 3.6.4 shows that we use it only for étale maps (Y, Oy)
— (X, 0x) of Hensel schemes. But étale maps are adic, and for any adic map

(Y,0y) - (X, 0x),
= K00 Yxx X, = (Y,0y/f*(S£)0y)
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so that Yx y X, — Y is a homeomorphism since f*(F£)0y is an ideal of
definition.

This theorem is the key to understanding what a Hensel scheme looks like.
The one other essential ingredient is the structure sheaf 0% of a Hensel scheme
(X, Ox). This sheaf is defined as follows: for an étale map of Hensel schemes
(Y,0y) = (X,0x), we set 03(Y)=0y(Y). By Theorem 1, 0% is a sheaf on
(Xo)et, and in one case we can determine precisely which sheaf this is:

THEOREM 2. Let i: Y — X be a closed immersion of schemes. Then in Y, we
have an isomorphism:

O = i*0%

where i* means “brutal restriction”.

Proor. The map of ringed spaces (Y, Oy+) — (X, Oy) induces a natural map
i*0% — 0% To show that this is an isomorphism, we need only show that the
map0% . — O%  is an isomorphism for every geometric point ¢: Spec (Q)
- Y.

Let £ lie over the point x in Y. We will compute 0% , by working in the étale
topology of X". Here,

0% = lim-ind 0,(Z) ,

where we range over étale maps of Hensel schemes (Z,0,)— (Z,0x+) (and
Z contains a point z lying over x where k(x)Sk(z)= Q). Forsucha Z,Z x x» Y is
a étale nbd of x in Y. By [8,1V.18.1.1], there is an affine étale nbd U of x in X so
that U x x Y is an open subset (containing the given point) of Z x y»Y. By
shrinking Z, we can assume Z x ;»Y=U x x Y, so that by Theorem 1, Z=U"
(the henselization of U along UxyY). By [10, 7.1.2.1], Oz(Z) is the
henselization of @y (U) with respect to the ideal defining U x x Y (we write this
as Oy (U)" so that

0% = lim-ind Oy (UY"

where we now range over étale nbds U of x in X. Henselization commutes with
filtering direct limits, so we have

0%, = (lim-ind Oy (V) = (0%,9".

Since 0%, is a Hensel local ring, it is Hensel with respect to any ideal, so 0% ,
=0%..
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Thus, for any questions about the étale topology of a closed immersion i: Y
— X, we can forget about the henselization X" and instead work with the sheaf
i*(0% on the site Y.

3. Other preliminaries.
There are lots of ways to detect étale maps:

PROPOSITION 3. Let Y be a closed subscheme of a scheme X and let f: W— X
be locally of finite presentation. Assume that f induces an isomorphism W x xY
2 Y. Then the following conditions are equivalent:

1. 1 W— X is étale in a nbd of Y in X.

2. f* W* — X" is an isomorphism.

3. (If X is locally noetherian): f: W~ — X  is an isomorphism.

4. (If X is separated of finite type over Spec (C)):
S WP — X" induces a biholomorphism between complex nbds of Y?" sitting
in W2 and X @ respectively.

Proor. 1 = 2. By Proposition 2, f* is étale. Since " induces an isomorphism
of Y, f* is an isomorphism by Theorem 1.

2 = 1 follows immediately from Proposition 2.

1 < 3 is proved in [3, Lemma 4.2].

4 = 1 is obvious, and to prove 1 = 4, note that we can replace W by a nbd
of Y which is of finite type over Spec (C). Then W?" and X®" are separable
metric, and the conclusion follows from [12, Lemma 5.7].

We will also need:

LemMA 1. Let f: U — V be étale.

1. If the family of irreducible components of V is locally finite, the same is true
for U.

2. If Vis normal and irreducible with generic point &, then f ~*(£) is the set of
generic points of the irreducible components U, of U, and U is the disjoint union
of the U, (and U is normal).

Proor. Since f is étale, it is flat and its fibers are locally finite. So the first
statement follows from [7, I 3.9.3 and 3.9.6 (ii)].

U is normal because f is étale, and is the sum of its irreducible components
by 1 and [7,12.1.9]. f ! (£) certainly contains all the maximal points of U (see
[7,1§3.97). Given any 5 in f ~1(£), y is the specialization of a maximal point 1’
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which also lies in f ~!(¢). Thus, the specialization takes place in f =1 (&), which
is discrete because f is étale. So n=7'.

Now, suppose that we have a commutative diagram:

where Wis connected, X is normal and irreducible, fis étale and p is separated.
Then W is normal and, by the second part of Lemma 1, irreducible.

;(—WS, the closure of s(W) in X', becomes a reduced closed subscheme of X,
and is irreducible since W is. Since s: W— s(W) is dominating and W is
normal, s factors as W% W' — E(TV_), where W’ is the normalization of s(W)
(see [8, IT 6.3.9]). We get a commutative diagram:

Wl W’

~N

X

LEMMA 2. With the above hypothesis, n is étale and f' is étale on the open set
n(W) of W'.

Proor. The map f': W' — X factors W' — s(W) —» X' 2> X, so that ' is
an affine map, followed by a closed immersion, followed by a separated map.
Thus f' is separated.

We have a commutative diagram:
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and the map s, exists by the universal property of Wx x W'. Note that s, is a
closed immersion since f' and hence g’ are separated.

The generic point of W maps to the generic point of W’ since m is
dominating. But g is étale since f is, so by part 2 of Lemma 1, W is an
irreducible component of Wx x W’, which is open in W x y W’. Thus, = is étale,
and then f’ is étale on n(W) by [8, IV 17.7.5].

4. Extending maps to a “nbd” of a closed subscheme.

Fix a base scheme S. Suppose that we have Y a closed subscheme of an S-
scheme X, and let g,: Y— Z be an S-morphism. There are several ways to
formulate what it means for g, to “extend” to a nbd of Yin X:

DeFiniTION 3. With the above notation, we say:

1. g, extends to an étale nbd of Y in X if there is a commutative diagram
(over S):

where f: W— X is an étale nbd of Y in X with gly=g,.
2. g, extends to X" if there is a S-map g": X* — Z with g"y=g,.
3. g, extends to X if there is a S-map g : X" — Z with g'ly=g,.

We will consider the case of varieties over Spec (C) at the end of this section.

From Proposition 3, we see that every extension of g, to an étale nbd of Yin
X gives us an extension to X* and from 1 it is clear that an extension to X"
gives, via completion, an extension to X ". The next question is to ask under
which conditions do these implications reverse?

With strong geometric assumptions on the embedding of Y in X, it is well
known that the three notions coincide. For example, suppose that X and Z are
locally of finite type over a locally noetherian base S. Assume also that X is
regular, Z irreducible and Y is G-2 in X (see [9, V]). Then the proof of
Theorem 4.3 of [3] (see also [4]) is easily adapted to show that any extension
g:X - Zof g, is induced by an extension of g, to an étale nbd of Y in X.
(the regularity of X enters in using Ex. V 4.12 of [9].)

What is more surprising is that notions 1 and 2 of Definition 3 coincide
under very weak assumptions:
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THEOREM 3. Suppose that X is separated, normal and irreducible, and let Y be a
closed connected subscheme of X.

Then any extension of g, to g": X" — Z, where Z is locally of finite
presentation and separated over S, comes from an extension of g, to an étale nbd
of Yin X.

ProoF. Set X'=X x gZ. Then projection on the first factor gives us a map
p: X’ — X which is separated and locally of finite presentation, and g" gives a
section s": X* — X’ of p over X" If we can find a section s of p over an étale
nbd W of Y in X extending s* then g=pr,os: W— Z is clearly the desired
extension of g, to an étale nbd of Y in X. So we will work with s": X" —» X'.
The section we get over Y (induced by g,) we will call s,.

First, assume that X’ and X are affine, say X =Spec (4). Then s*: X" —» X’
gives us a map

I(X',0x) > I[(Y,0x) = A",

which induces a map #: Spec (4") — X’ since X' is affine. But Spec (4") is an
inverse limit of affine étale nbds of Y in X, and p is locally of finite presentation,
so standard arguments from [8, IV § 8.8] show that 5 is induced by a map
s: W— X', where W is an étale nbd of Y in X. Clearly s induces s*. The
general case is done in several steps. First, we show how to locally (in the
Zariski topology around Y in X) find W. Let y be a point of Y and let U’ be an
affine nbd of s,(y) in X’ (remember that we have s;: Y — X’). Then let U be an
affine nbd of y in X so that YN U gs;!(U’). Pulling everything back to U, we
get

Slynu: U — p~1(U) .

But by our choice of U and U’, U’ Np~!(U) is a nbd of s,(Y N U) in p~*(V), so
s*lyny clearly factors through U’'Np~!(U), so that we have

ShlynU: (]'l -UnNn p_l(U) .

But UNp~1(U)=U'xxU is affine since U’ and U are affine and X is
separated. Then we are in the affine case treated in the above paragraph. Thus,
s"lyny is induced by a map s: W— X’ where W is an affine étale nbd of YN U
in U. )

We next examine how compatible are these different local extensions of s”.
So suppose we have s;: W; — X', sections of p, where W, is an étale nbd of
YNU;in U, and sf=s"yny, (all this for i=1,2). Then W, x y W, is an étale
nbd of YNU, NU,, and we have maps

siopi: Wyxx W, —» X', i=1,2,
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which are sections of p, and (s;°p)' =s"lyny, ny,- We claim s,0p, =s,0p, in a
nbd of YNU, NU, in Wy x x W,.

To see this, first note that we can replace X with U, N U, and W,, s,, etc. by
their restrictions to U; N U,. Thus, we can assume that U; =U,=X. Then let
W be the closed subscheme of W, x x W, where p,os, =p,°s,. Since s;|y =5y, W
contains Y. Then we have a commutative diagram:

wh -W - X'
b) 4
(W, x x W) - WXy W, — 2 e X x X

where the right square is cartesian by definition and the left square is cartesian
by [10, 7.5.4]. Note that by [10, 7.1.1.3] and Proposition 3,

(Wl Xxwz)h = VV';XXhI/V’zl = Xh.

Since s" =s%=s" (2) gives us a cartesian diagram:

wh ~X'

| i

X XXX

which shows that W" — (W, x x W,)" is an isomorphism. Then Proposition 3
shows that W is étale in a nbd of Y, so that W contains a nbd of Yin W, x y W,
as claimed.

So far we have made no use of the fact that X is normal. Thus one can
always get the “incomplete” descent data described above.

Next we refine this data slightly. Suppose we have s: W — X' where Wis an
étale nbd of YN U in U, for U< X open. We will regard Y N U as sitting in W.
Let y be in YN U, and let W, be the connected component of W containing y.
Since X is irreducible, part 1 of Lemma 1 and [7, 0.2.1.5] show that W, is open
in W. Set

Uy = U=(YNU=YNUNW,),

so that U, is a nbd of y in X. Then W, — X is an étale nbd of U, N Y in U,.
Thus, in our local extensions s: W — X’ of s*, we can always assume that Wis
connected.
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The above discussion gives us sections s,: W, — X' of p such that W, is a
connected étale nbd of YNU, in U, where U, is open in X, such that s"
=S |ynU and YU, U,. From here on, we will freely refer to Lemma 2 (and
the discussion preceding it) in 2. Let Z, be the normalization of s.(W,). By
Lemma 2, we get a commutative diagram:

.“ -
3) P j

where =, is étale and f, is étale on n,(W,). Since YN U, sits in W,, we get a
map (p, YNU, — Z, which over U, becomes a closed immersion YNU,
— f-1(U,) (we showed in Lemma 2 that f, is separated). This allows us to
form §}, and clearly sh=s"lyny..

Let us show that for any « and B, s,(W, )-s,,(Wﬂ) Since Y is connected and
{YNU,} is an open cover, for any « and f there is a chain of Y N U.’s, starting
at YN U, and ending at YN Uy, where two consecutive ones meet. Thus, we
can assume that YN U,N U,z #+ . Replacing 1 and 2 by « and f in the fourth
paragraph of the proof, we get a commutative diagram:

’ \ /

where Wis an étale nbd of YN U,N U, (so W ) and a and b are étale. Then
a(W) is open in W,, hence dense since W, is irreducible. Then simple continuity
shows that s (a(W))=s,(W,. The same is true for b and B, so the
commutativity of (4) shows that s,(W,)=s,(W)).

Thus Z,=Z, for any a and B, so we call this Z. Note that diagram (4) the
factors through Z (see (3)). This shows that the map ¢,: YN U, — Z defined
above patch to give a map ¢: Y— Z, which is a section of f: Z — Y. Set U
=U, n,(W,), and note that ¢(Y)< U and U is in fact an étale nbd of Yin X. We

have the section §ly: U — X’ of p, and 5]y clearly induces s*. This proves the
theorem.
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We next turn our attention to notions 2 and 3 of Definition 3. These two
concepts are obviously different. For example, let Y={x}, where x is a closed
point of X. The any ¢ € O , givesamap g : X~ — A}, and g is induced by a
map g": X" — A} iff ¢ lies in 0% ,. Note, however what is still true in this
case: one can find g" which approximates g~ arbitrarily closely (since (0%, D
>~ (DX x) In fact, by the Artin approximation theorem, this is true for any S-map
g X =Spf (0 x,x) — Z, where Z is of finite type over S (see [16, III Example]).

Thus, for Y arbitrary, we can still ask if any g : X~ — Z extending go: Y
— Z can be approximated by an extension g": X" — Z of g,. In section 6 we
will see some special circumstances where this is possible. But in general the
answer is no, as is shown by the following example due to Arthur Ogus (see
[13] and [14, § 4]):

ExampLE 1. Let Y= P?(C) be an elliptic curve, and let X be P2(C) blown up
at nine points of Y. Then Y sits inside X, and its normal bundle N has degree
zero. If N is a non-torsion point of Pic® (Y), then one easily shows that there is
a unique map g : X~ — Y extending the identity map on Y. Ogus shows that if
X is obtained by blowing up points in sufficiently general position, then the
identity map on Y does not extend to any ¢étale nbd of Yin X. From Theorem
3, we see that there is no map g": X" — Y which induces the identity on Y.

We will return to this example several times.

Finally, let X and Z be separated schemes of finite type over C. Then, in
addition to Definition 3, we say that g,: Y — Z extends to a nbd of Y?" if there
is a complex nbd U of Y?" in X?", and a map of analytic spaces g*": U — Z*"
such that g*"|y,=g3". We want to see how this notion compares to those
introduced in Definition 3. We do not have a completely satisfactory answer
(see below). But we can say some things.

First, if g, extends to g": X* — Z, then g, does extend to a nbd of Y*" in
X For recall from the proof of Theorem 3 that we do get some incomplete
patching data. Applying Proposition 3 to this, we can find U; open in X?",
covering Y*", and maps gi": U; — Z*" extending g§"|yany,, Such that gi" =g%"
in a nbd of Y**NU;NU;. We want to find U open in X*" with Y*"c U and a
map g*": U — Z*" such that gy ny,=g!"lyny, We can assume that {U;} isa
finite covering, and then by induction reduce to the case X*"=U, N U,, and g}"
=g%" on anbd W of Y2"N U, NU,. X*" is a normal topological space, so we
can find disjoint open sets V; with

Xan—Ul g Vz, Xan—‘Uz g V

Then V,gU; and YV, UV,UW (we will call this open set U). Then define
g": U — Z* by
g, = &"lv,  &w = &"lw -
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Second, if we are given g*": U — Z°" extending g,, and Y is complete, it
follows easily from GAGA that g*" induces a map g : X~ — Z. However, if Y
is not complete, this need not happen:

ExAMPLE 2. Let Y be a variety with a non-trivial line bundle Lsuch that L*" is
trivial. (For example, let Y be the universal extension of an abelian variety 4,
and let Lbe the pull back of a non-zero element of Pic® (4).) Let X = V(L), and
let Y= X be the inclusion of the zero section.

Then the inclusion go: Y=Y x {0} Yx A'=Z has an analytic extension
g*": X" — Z* which is an isomorphism since L*" is trivial. But (g®")": (X*")"
— Z™ is not induced by any map g: X — Z. For such a g would have to
induce an isomorphism X =~ Z", which would imply that L is trivial.

But even if Y is complete, our knowledge is still incomplete. In Example 1, it
is unknown whether or not the identity map on Y extends to a nbd of Y?" in
X2, This is the major undecided question in this area, and as Ogus shows in
[14, § 4] its answer has many interesting implications.

5. The indeterminacy of étale nbds.

Assume that we still have X and Z over S, where Z is locally of finite
presentation, and that we have an S-morphism g,: Y— Z, Y is closed in X.

While X" and X" are functorial notions of a “nbd” of Y in X, there are lots of
étale nbds of Y in X. So one can first ask what it means for extensions to two
different étale nbds to be the same. Also, one can ask if there is an extension to
a “best” or “biggest” étale nbd.

The answer to the first question is contained in:

PRrOPOSITION 4. Let g;: W, — Z,i=1,2, be extensions of g, to étale nbds of Y
in X. The following statements are equivalent:

1. There is a commutative diagram of étale nbds of Y in X:

Lt

Wl Wz

~

inducing the identity over Y, such that g,cf, =g, f,.
2. gh=gh: X" Z
3. (If X and S are locally noetherian) g, =g,: X~ — Z.
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4. (If X and S are separated of finite type over Spec (C)) gi" = g4" in some nbd
of Y* in X®",

Proor. The statements 1 = 2,1 = 3 and 1 = 4 all follow immediately from
Proposition 3. The proof of Theorem 3 shows that 2 = 1 (see the arguments
centering around diagram (2)). To show 3 = 1, we proceed as in 2 = 1, using
[7,110.9.9] (respectively [7, I 10.9.7]) instead of [10, 7.5.4] (respectively [10,
7.1.1.3]). And to prove 4 = 1, note that if gi"=g3" in some nbd of Y?", then

@) = @ () -z

Then, by faithful flatness, g; =g,, so that we are done by 3 = 1.

This leads naturally to the following:

DEeFINITION 4. Two extensions g;: W; — Z,i=1,2, of g, to an étale nbd of Y
in X are said to be equivalent, written g, ~g,, if any of the conditions of
Proposition 4 are fulfilled.

We next turn to the question of finding a “best” member of each equivalence
class:

PROPOSITION 5. Assume that X is normal and irreducible, with Y a closed
connected subscheme, and that Z is locally of finite presentation and separated
over S.

Then, in any equivalence class € of extensions of g, to étale nbds of Y in X,
there is an extension g: W— Z, unique up to isomorphism, with the following
property:

Forany g': W' — Z in the equivalence class €, where W' is connected, there is
a morphism n: W' — W of étale nbds of Y in X such that g'=gon. Furthermore,
if W' is separated over X, 1 is unique.

ProoF. Any extension g': W' — Z of g, gives us a section s': W' — X x yZ
=X of p=p,: X' > X over W'. It follows from the proof of Theorem 3 that
s'(W’) is independent of which g': W’ — Z in € that we use (as long as W' is
connected). Let W, be the normalization of s'(W’). Then, for any g': W' — Zin
% with W’ connected, we get an X-morphism n': W' — W, (see (3)). Let W be
the union of the open sets 7'(W’) in W,,. As we saw in the proof of Theorem 3,
W is an étale nbd of Y in X, and gives us an extension g: W— Z of g,, which
has the desired properties.

Math. Scand. 42 — 15
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6. Applications to the study of embeddings.

Here we give an informal discussion of what happens when we apply the
concepts and results of sections 4 and 5 to study closed embeddings of a given
scheme Y in various schemes X.

Fix a base scheme S, and let X, and X, be two schemes which are locally of
finite presentation and separated over S. Suppose that we are given two closed
immersions Y ¢ X, and Y ¢ X,. Asin Definition 3, there are three notions of
what “equivalent” embeddings should mean:

1. There is a commutative diagram over S:
w
Ji f2
&)
Xl X2

making W an étale nbd of both Yin X, and Y in X, (with respect to a fixed
embedding Y — W). We say that Wis a common ¢tale nbd of the embeddings.
2. There is an S-isomorphism ¢": X%~ X% with @"y=1y.
3. There is an S-isomorphism ¢ : X; X, with ¢ |y=1,.

A common étale nbd induces an isomorphism ¢": X%~ X% by setting ¢"=/%
s(f™~! (see Proposition 3). An given isomorphism ¢", completion gives us ¢".
Do these implications ever reverse themselves?

To compare notions 1 and 2, we have the following theorem which is an
immediate corollary of Theorems 3 and Proposition 3:

THEOREM 4. If X, and X, are separated, normal and irreducible, and if Y is
connected, then any S-isomorphism @": X%~ X% is induced by a common étale
nbd (5) of the two embeddings.

Based on what we found in 4, the correct way to compare notion 3 with 1
and 2 is as follows: given two embeddings which are formally equivalent
(which means an S-isomorphism ¢”: X; — X3), is there an isomorphism
@": X% ~ X% (or even a common étale nbd inducing ¢") which approximates
@ ?

Under strong geometric conditions, the answer to this question is yes. For
example if S is locally noetherian and X, and X, are regular and irreducible,
and each embedding Y < X, is G-2, then any formal equivalence is actually
induced by a common étale nbd (see [3] and [4]). Or if S=Spec (k), k an
algebraically closed field, Y is proper over k and each embedding Y< X, has
negative normal bundle, then using [2, Theorem 6.32 and [1, Corollary 2.6], it
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is easy to show that ¢~ can be approximated by a common étale nbd of the
embeddings.
But in general, the answer is no:

ExampLE 1 (Continued). Let V=V (N), and let Y — V be the zero section.
Then one easily shows that there is a unique isomorphism ¢ : X~ — V~
inducing the identity on Y (see [13]). But there is no map ¢": X" — V"
inducing the identity on Y: for then the composition X" - V" - V— Y
would extend the identity map on Y. We have already seen that no such map
exists.

If $=Spec (C) and X, and X, are of finite type, then, along with the above
three notions, one can ask whether two embeddings Y ¢ X, (i=1,2) have
biholomorphic nbds in the complex topology, an isomorphism ¢*": U, 3 U,,
where Y*"c U, < X" is open.

If there is an isomorphism ¢": X4 — X%, then the argument of 4 shows that
¢" induces a biholomorphism ¢*': U, 5 U,. And given ¢®", it induces an
isomorphism ¢ : X] — X, if Y is complete. If Y is not complete, this might
not be so: in Example 2, we had ¢®": X*"~ 73" an biholomorphism of the
embeddings YS X and Y= Z, but as we saw, there was no isomorphism P
X' 5Z.

Even when Y is complete, the situation is not clear. In Example 1, it is not
known whether the two embeddings Y= X and YV have biholomorphic
nbds.

Finally, as in 5, one can determine when two common, étale nbds give the
“same” equivalence of two embeddings Y< X, and Y< X,. What is more
interesting is that, under the hypothesis of Theorem 4, if the two embeddings
have a common étale nbd, then one can find a “biggest” one (which is
essentially the nornmalization of its graph in X, x gX,).
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