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FIELDS GENERATED
BY LINEAR COMBINATIONS
OF ROOTS OF UNITY, II

R.J. EVANS and I M. ISAACS

1. Introduction and notation.

In [1], the authors showed that under minor restrictions, a Q-linear
combination of complex roots of unity generates a field over which the field
generated by those roots of unity involved has relatively small degree. In this
paper, this degree is determined precisely for certain linear combinations of
two and four roots of unity, using standard Galois theory. Specifically, let {;
and {, be roots of unity and let a,b € Q be nonzero. Define a =a{, +b{, and
=a+ & The object of this paper is to determine precisely the degrees

e =1Q((;,{): Q@ and h = |Q(,{): Q).

Our attempt to make such a determination for linear combinations of three
roots of unity was not successful.

We fix some further notation. Let k;=0((;), the order of {; in the group of
roots of unity. Let d= (k,, k,) and let k be the least common multiple of k, and
k,. Write { =e®™/¥ so the {; are powers of { and Q({,,{;)=Q({). If (k,5)=1, let
g, denote the unique automorphism in Gal (Q({)/Q) such that ¢,({)=(".

Since the fields Q(«) and Q(f) remain unchanged if « or § is replaced by a
nonzero rational multiple of itself, we assume that a and b are relatively prime
integers. It suffices to consider the case a,b>0, since —(; is a root of unity. By
symmetry, we may also assume a=b>0. The determination of e=|Q({): Q(a)]
is made in Theorems 1 and 9 in the cases a=b and a> b, respectively. The
determination of h is made as follows. For a root of unity #, write y(q)=n+n""
and let y,=v((,), so p=ay, +by,. We have

h = 1Q):QB) = 1RD:Q)gf»

where

g = 1Q((1):Qys, 72l
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and

S =1Q(1,72): QMBI .

The factor |Q({):Q(y({))| is evaluated in Lemma 2 (a). The factor g is
determined in Theorem 11. Finally, f is determined in Theorems 6 and 10
in the cases a=b and a>b, respectively. We remark that in the course of
proving Theorem 6, we obtain the following interesting result: cosfcosé €
Q(cos 0 +cos d) where 6,6 are rational multiples of =, unless cos 8+ cos é=0.

We shall use the following simple facts repeatedly. For roots of unity #, &,
and A= +1, we have

(1) YO+ Ay(n) = ETHA+AEn (1 + Adn)
and hence
(2 & =Aytm) ff E=Ain or &=Iip7t.

Since the Galois group Gal (Q({)/Q) is abelian, every field F such that Q({)
>F>Q is Galois over Q. Furthermore, each element in Gal (F/Q) is the
restriction to F of some element of Gal (Q({)/Q).

2. The degrees e and f when a=b.

Write a={,+{, and B=y,+7,. We first evaluate e=|Q({):Q(x). If {,
= +{,, then either Q(x)=Q or Q ()= Q({). We exclude these two simple cases
in the following theorem.

THEOREM 1. Let a={, +{, and assume that {, % +{,. Then e <2 with equality
iff {, and {, are interchanged by some element of Gal (Q({)/Q).

ProoOF. We have {[!+{;1=d € Q(a). Also, &,{,=a. Since a+0, it follows
that {,{, € Q(x) and thus the polynomial f(X)=(X-{,}(X—{,) has
coefficients in Q(«). Thus e<2 with equality iff f(X) is irreducible over Q(«).
Since {,#{,, equality occurs iff {, and {, are interchanged by some
automorphism of Q({)=Q({,,,)

To evaluate f=|Q(7,,7,): Q(B)|, we shall need the following lemmas.
LEMMA 2. Let n be a root of unity of order n. Then

a) QRM: Q) = {f Z:;

b) Q(ym) = QM NR.
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Proor. Part (a) follows since the polynomial (X —#n)(X —#"1) has coef-
ficients in Q(y(n)). Part (b) follows since Q(n)2Q(n)NR=2Q(y(n)) and n ¢ R
for n>2.

LeEMMA 3. We have

IR NQ(Y,):Ql = {Ndw if d>2

1 if d<2,
where d= (k,,k,).

Proor. It is well known that Q({,) N Q({;) = Q(e*""%). Intersecting this with
R and applying Lemma 2, we obtain the result.

For integers n> 1, we define A(n)=p if n is a power of some prime p and A (n)
=1 otherwise. The following lemma is easily proved [2, p. 507].

LEMMA 4. Let n be a root of unity of order n>1. Then A(n) is the product of
the distinct algebraic conjugates of 1 —n.

LEMMA S. Let & and n be roots of unity with y(£)=*y(n) and suppose a € Z
divides y(£)—y(n) in the ring of algebraic integers. Then
a®@*® divides A(u)*®A(v)*™
(in Z) where u=0(¢n) and v=0(&n"1Y).
Proor. By (2) we have u,v>1 and so A(u) and A(v) are defined. Let

N:Q(&,n) — Q be the norm map and let |Q(&,7): Ql=m. It follows from (1)
that

a™ divides N(&~'(1—&n)(1—&nY).
Since N(¢~')= +1, Lemma 4 yields that a™ divides A (u)™**“A(v)™*® and the

result follows.

We now evaluate f=|Q(y,,7,):Q(B)l. If y, = +7,, then either Q(f)=Q or
Q(A)=Q(y1,7,). We exclude these two simple cases in the next theorem.

THEOREM 6. Let B=y, + 7y, and assume that y; + +7,. Then [=2 with equality
iff y, and y, are interchanged by some element of Gal (Q({)/Q).

ProoF. Let F=Q(f,7,7,) and f,=|Q(y,,7,): F|. Since the polynomial p(X)=
(X —9,)(X —7v,) has coefficients in F, it follows that f, <2 with equality iff p(X)
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is irreducible over F. Since y, +7,, we see that p(X) is irreducible (and f, =2) iff
y, and y, are interchanged by some element of Gal (Q({)/Q). It therefore
suffices to show that f=f,, ie., that y,7, € Q(p).

CASE 1. kl =k2 =k.

First suppose that 34k. Then
B> = (7> + (2)* +3By172

(&) +3y)+ (@(3) +37,)+3B7172

a3(B)+3B(1+y,72) -

Since a5(f) € Q(P), it follows that y,y, € Q(B) as desired.

Now suppose that 3 | k. Write m=k/3 and choose ¢ € {1+m,1—m} such that
3,{/ c. Then (k,c)=1 and o,(B) € Q(B). We have {5 !=w where w is some
primitive cube root of 1. Without loss of generality, {5 ! = w, otherwise replace
{; by (5. Then o (B)=woa+ @& and Q(B, w) contains o.(f) — @f = (v — D).
Thus o € Q(B, w). We have |Q(B, w):Q(B)|=2 and thus

RID): QM) = 2IQ(): Q) -
Since |Q({): Q(y4,72)| =2, this yields
Jo £/ =1Q011,72): QMBI £ IRID: Q)| = e.

Since y,# +7,, we have {;% +{, by (2); thus, by Theorem 1, e<2 with
equality iff {; and {, are interchanged by some 7 € Gal (Q({)/Q). It follows
that if fy#/, then fo=1, f=e=2, and {, and {, are interchanged by some z.
Then 7 interchanges y; and y, which implies that f, =2, a contradiction. Thus f
=f, and this completes the proof in Case 1.

Cask 2. 2d| k, or 2d|k,, where d=(k,, k).

We may assume that 2d|k,. Write n=k/2 and note that k,|n. Choose
c € {1,2} such that 2} (n+c). Then (k,n+c)=1 and o, .(B) € Q(B). Since {}
=1 and {3 = —1, we have

On+cB) = L1+~ (+E59)
= (D72 -

If c=1, this yields y, —7, € Q(B) and thus y,,7, € Q(p) as desired.
Suppose that ¢=2. Since y? =y({?)+ 2, we have

(71)2“ (72)2 = 0,4+2(8) € Q(P) .
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Therefore,

=72 = 0173/ € Q(B)
and thus y,y, € Q(f). This completes the proof in Case 2.

We may now suppose that
3) ky < k,, 2dfk, and 2d}fk,.

Assume that y,7, ¢ Q(B) and choose ¢ € Gal (Q({)/Q) such that ¢(f)=p and
o(y,y2)*717,- Then o fixes neither y, nor y,. In particular, y; ¢ Q and so

@) ok) =4 fori=12.

Since o fixes B, we have

®) 11—0() = —(r2—0(y,))*0.

We conclude by Case 1, with y,—a(y,;) in place of B, that for i=1,2,
(6) IQ(ri—o(r)):Ql € {@(k)/2, (k)/4} .

If y;% —oa(y,), then ¢(k)/4 is taken in (6) iff y, and —a(y,) are interchanged by
an element of Gal (Q({)/Q).

CasE 3. k, | k,.

By (3), k,=*+2k, and hence ¢(k,)<@(k;). Thus, using (5) and (6), we have
™ e(ky)/2 = 1Q(r1—o(ry):Ql
= |Q(r2-0(r2):Ql = @(k)/4 .
Since k, | k,, it follows from (3) and (7) that k, =3k, and 3 ,{' k,. Since the value
@(k,)/4 is taken in (6) when i=2, we conclude that
® Y2 ¥ —0(1y)

and that there exists t € Gal (Q({)/Q) which interchanges y, and —a(y,).
Therefore, by (2) we have t({;)= —a({;)*! and 1(6({;))= —{F!. It follows that
()= —o(3)*! and 1(a((3)= —()*! and thus 7 interchanges y(¢3) and
—a(y(£3)). Since {3 is conjugate to {,, we conclude that t interchanges y, and
—o(y,). By (7) and the remark immediately following (6), we conclude that y,
=—0(y,).

By (5),

© 2y, = —(y2—0(7)
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and since y(6({;))=0(y,)*7,, Lemma 5 yields
(10) 20We) divides A(u)*“A(v)*™

where u=0((,6((,))>1 and v=0({;'6({,))> 1. Since a({;)={} for some w
and O({,)=k,, we have

u = ky/(kp,w+1) and v = k,/(k;,w—1).

It follows that one of u or v is divisible by 3 and the corresponding value of A is
1 or 3. It now follows from (10) that one of ¢ (u) or ¢(v)is 1 and so one of u or v
is 2. Therefore, 6({,)= — (%! and thus ¢(y,) = —y,. This contradicts (8) and the
proof in Case 3 is complete.

CasE 4. ky f k.

By (5) we have

7i—0o(y) € Q(yy) N Q(y,)
and thus by Lemma 3

@2 if d>2
1 if d€2.

Suppose d 2. By (6) and (11), p(k)<4fori=1,2 and by (4), p(k,)=4=0(k,).
This implies that k,,k, € {5,8,10,12}, which contradicts (3).

Thus d>2. For some i € {1,2}, assume that y,— ¢ (y,) has degree ¢(k;)/2 over
Q. Then (11) yields ¢(k;) = ¢(d). Since d|k;, we have k;=d or k,=2d which
contradicts (3) and the fact that k, f k,.

Therefore, by (6), 7,—0o(y;) has degree @(k;)/4 over Q for each i € {1,2}.
Thus ¢(k;) divides 2¢(d) by (11). Since ¢(d) divides ¢(k), we have
o(k;) € {¢(d),2¢(d)} and thus k;/d € {1,2,3,4,6} for each i. This contradicts (3)
and the fact that k, *kz, and the proof of the theorem is complete.

(1) IQ(yi—a(»)):Ql divides {

Write {, ={" and {, ={*. In the following corollaries to Theorems 1 and 6, we
show how e and f may be computed in terms of k, r and 's. The proofs are
straightforward and are omitted.

COROLLARY 7. Assume that {; % +{,. Then e<2 with equality iff
(k,rs) =1 and r* = s*(modk).

COROLLARY 8. Assume that y, + +y,. Then f<2 with equality iff
(k,rs) =1 and r* = +s*(modk).
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3. The degrees ¢ and f when a>b.

We have a=a(, + b(,, p=ay, + by, where (a,b)=1, a>b>0. In Theorems 9
and 10 below, e and f are determined. We omit the proof of Theorem 9, as it is
very similar to that of Theorem 10. We note that Theorem 9 is much more
complicated to prove than Theorem 1, the corresponding theorem in the case a
=b,

THEOREM 9. We have e <2 with equality iff
kl = 3k2, 3*’(2, 4Ik2,
b=1a=2 and {, = ot!{,

where w=e>™3, If e=2, then « is fixed by the automorphism ¢ € Gal (Q({)/Q)
defined by o({;)= —{, and 6(w)=w"1.

THEOREM 10. We have f<2 with equality iff
(12) ky = 3k, 3*,‘2, 4k, ky > 4,
b - 1, a = 2’ and Cl = wilcitl

where w=e*"/3, If f=2, then B is fixed by the automorphism ¢ € Gal (Q({)/Q)
defined by 6({;)= —{, and s(w)=w"!.

Proor. If (12) holds, it is easily checked that ¢(f)=f§ but that o(y,)= -1y,
%7, and thus

f=1Q0(1,72): Q) 2 2.

Now suppose that € Gal (Q({)/Q) and that t fixes § but does not fix both y,
and y,. It remains to show that (12) holds and that t(y;)=a(y) for i=1,2.
Since 7(f)=f, we have

13) (=a/b)(r, — (1)) = (12—7(r2)) *+ 0.

Note that k, >4 and k,+6, or else y, € Q and 7(y;)—y, =0, a contradiction.
By (13), a divides y, —7(y,) in the ring of algebraic integers and thus Lemma 5
yields

(14) a®*®*®) divides A(u)*”A(v)*™

where u=0(z({;){;) and v=0(t({,){; ).

Write ©({;)={(3 for some w with (k,,w)=1. Thus u=k,/(k;,w+1) and v
=ky/(ky,w—1).

First suppose that u=v. Then
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15) (kp,w+1) = (ky,w—1).

Since (w+1,w—1)<2, it follows that u=v e {k,,k,/2}. It is therefore
impossible that u=v=2 or u=v =3 since k,>4 and k,+6. f u=v=4, then k,
=8, w is odd and exactly one of w+1 and w—1 is divisible by 4. This
contradicts (15). We conclude that

(16) if u=uv thenu=5.

Next, suppose that u>2 and v>2. Since each of A(u) and A(v) is either 1 or
prime and since a> 1, it follows from (14) that ¢(u)@(v) < @(u)+ ¢(v). Since
o), (v)> 1, it follows that ¢(u)=2=¢(v) and by (14), A(u)=A(v)*+1. Thus u
and v are powers of the same prime and so u=v € {3,4}. This contradigts (16).
We conclude that one of u or v is 2 and that u=wv.

Let x be the one of u or v different from 2. Then by (14), a®™ divides
2°®) A(x). Since A(x) is 1 or prime and since ¢(x)> 1, it follows that a=2 and
b=1. Also, since one of u,v is even, we have 2|k, and 2* w. Thus 2| (kp,w+1)
and therefore 4 | k,. Since moreover one of u=0(t({,)¢,) or v=0(t({;){; 1) is 2,
we have 1({,)= —(f! and thus t(y,)= —7,. It now remains to complete the
proof of (12) for then it will follow from the equalities 7(y,)= —7,=0c(y,) and
1(B)=B=0a(p) that t(y;)=0(y,).

Since 1(y,)= —7,, (13) yields

a7 72 = (T(1) )

and thus Q(y,)=Q(y,) N Q(y,). Since y, ¢ Q, it follows from Lemmas 2 and 3
that

(k) = @(d)

where d = (k,, k,)>2. Since d |k, and 4|k,, we conclude that d=k, and thus
ky| k.

Since t(y,)#7;, Theorem 6 yields |Q(z(y,) —71): Q| € {¢(k1)/2, ¢ (k,)/4} and
hence by (17) we have either ¢ (k,)=¢(k,) or 2¢(k,)= @ (k,). Assume that ¢ (k,)
=¢@(k,). Since k, |k, and 4|k,, it follows that k, =k,. Then y,—1(y,) and y,
—1(y,) are algebraic conjugates and this is impossible by (13). Thus ¢(k,)
=2¢(k,) and hence either k, =2k, or k, =3k, where the latter possibility can
occur only if 3} k,. If k;=2k,, then a,,,, negates y, and fixes y,. This is
impossible by (13) and we conclude that k, =3k, and 3,{’ k,.

It remains to prove that {; =w*!{F'. We can certainly write {, =«’(} for
some y,z € Z where y=+1 and (k,,z)=1. Also, we have 1({;)= —{} and 7(w)
=" where 4, € {1, —1}. Suppose A= p. It follows that t({,;)= —{}{ and (y,)
= —y,. Thus (17) yields Q(y,)= Q(y,), which contradicts the fact that k, =3k,.
Thus A= —yu and t(y,)= —(@’{; *+ @0~ *(3) and

Math. Scand. 43 — 3
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Y —t() = (@+o) G+ = —v(8).

Then from (17), we obtain y, =y({2) and {, ={F* by (2). Thus {, = 0’{5 = w*{F!
and the proof is complete.

4. The degree g.

THEOREM 11. Let g=[|Q(y(0)):Q(y1, y2)l- Then g <2 with equality iff (k,,k,)
£2, ky>2 and k,>2.

Proor. The theorem is trivial when either k; <2 or k, <2 and so we assume
ky>2, k,>2. We compute the order of H=Gal (Q({)/Q(y;,7,)) and observe
that g=|H|/2 by Lemma 2 (a).

We have g, € H iff 0,(y)=y, for i=1,2, ie. iff

(18) t= +1 (modk,) and = +1 (modk,).

For each of the four choices of sign in (18) there is at most one ¢t (mod k)
satisfying (18), since if both ¢, and t, satisfy (18), then k,|(t,—t,) and k, |
(t, —t,) and so k| (t, —t,). It follows that |H|<4 and hence g<2.

Since 0,,0_, € H, it follows that g=2 iff there exists ¢ such that

(19) t=—1 (modk,) and ¢t =1 (modk,).
(Note that any such t automatically satisfies (k,t)=1.) Thus g=2 iff (k,,k,)|2.

REFERENCES

1. R. J. Evans and 1. M. Isaacs, Fields generated by linear combinations of roots of unity, Trans.
Amer. Math. Soc. 229 (1977), 249-258.
2. H. Hasse, Zahlentheorie, 2. erweiterte Auflage, Akademie-Verlag, Berlin, 1963.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CALIFORNIA 92093

AND
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN 53706



