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FIBRES OF HUREWICZ AND
APPROXIMATE FIBRATIONS

L. S. HUSCH!

A mapping p: E — B is a Hurewicz fibration if given mappings H:
X x[0,1] — B and h: X — E such that ph(x)=H(x,0) for all x € X, then there
exists G: X x[0,1] — E such that pG=H and G(x,0)=h(x) for all x ¢ X. If
x € B, then p~!(x) is called a fibre of p. Suppose that p: E — B is a Hurewicz
fibration between closed connected manifolds of dimensions m and n,
respectively. If E, B and p are smooth, then p is locally trivial and the fibres are
smooth manifolds of dimension m—n. If p is not smooth, then p need not be
locally trivial nor need the fibre be a manifold [9]. In [12], F. Raymond
showed that the fibre must be a generalized manifold. One of the main results
of this paper is the following.

THEOREM 1. Let p: E — B be a Hurewicz fibration from a closed connected m-
dimensional CAT manifold onto an n-dimensional TOP manifold with fibre F. If
m—nz5 and if Wh (n,(F)®Z") =0 for all rSn—1, then the fibre of p has the
homotopy type of a closed CAT manifold of dimension m—n.

Wh (n, (F)®Z") denotes the Whitehead group [11] of the direct sum of the
fundamental group of F and the free Abelian group of rank r. Recall that if F is
simply connected or has fundamental group isomorphic to a free Abelian
group, then Wh (n,(F)®Z")=0 for all r [11]. CAT denotes one of the three
categories: DIFF =differentiable, PL = piecewise linear or TOP =topelogical.

A mapping p: E — B is an approximate fibration if given an open cover # of
B and mappings H: X x[0,1] — Band h: X — E such that ph(x)=H(x,0) for
all x € X, then there exists G: X x[0,1] — E such that pG and H are %-close
(i.e., given (x,t) € X x[0,1], then there exists U € # such that pG(x,t) and
H(x,t) are elements of U) and G(x,0)=h(x) for all x € X. Coram and Duvall
[3] introduced the concept of approximate fibrations and showed that they
have many similar properties as Hurewicz fibrations if one uses shape-theoretic
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concepts in place of their homotopy-theoretic counterparts. For example, if
p: E — B is an approximate fibration between compact ANR’s and if B is
connected, then each fibre is an FANR and any two fibres have the same shape.
Coram and Duvall construct an approximate fibration from the torus to the 1-
sphere such that all the fibres except one are 1-spheres and the exceptional
fibre is a Warsaw circle.

THEOREM 2. Let p: E — B be an approximate fibration from a closed
connected m-dimensional CAT manifold onto an n-dimensional TOP manifold
with fibre F. If m—nz5, Wh (%, (F)®Z") =0 for r <n, and if F has the shape of a
finite complex, then F has the shape of a closed CAT manifold of dimension
m—n.

%, (F) denotes the shape fundamental group [1] of F.

The author does not know whether the hypotheses on the fibre are
necessary. However, it should be noted that S.Ferry [6] has constructed an
approximate fibration from a compact ANR onto the 1-sphere such that the
fibre does not have the shape of a finite complex.

First, we recall some results from the thesis of L. C. Siebenmann [13].
Although these results are stated in the DIFF category, they are also valid in
any of the three categories CAT = DIFF, PL or TOP by the work of Kirby and
Siebenmann [10]. Let M be an open connected r-dimensional CAT manifold
with a finite number of ends ¢,,¢,,...,¢. The end g; is stable if there exists a
sequence of connected neighborhoods {U,} of the end ¢; such that U,2U,,,
for all i, N;cl(U)=, and if a;: 7w, (U;,q, %4, — 7,(U,x) denotes the
homomorphism induced by inclusion and a path between x;., and x;, then
o;|imagea,, ,: imagea;,, — imageq; is an isomorphism of finitely presented
groups. The inverse limit of this sequence of groups is called the fundamental
group of the end ¢; and is denoted by n, (¢g;). A submanifold V< M is called a 1-
neighborhood of the end ¢; if V is a closed connected neighborhood of ¢; with
compact connected boundary V¥ such that the inclusions V< V and of the end
¢; into V induce isomorphisms of fundamental groups. Siebenmann shows that
if r =5 and if the end ¢, is stable, then ¢; has arbitrarily small 1-neighborhoods.

THEOREM 3 (Siebenmann). Let M be an open connected CAT manifold of
dimension =6 with a finite number of ends €,,¢,,. . .,&. M is homeomorphic to
the interior of a compact CAT manifold if and only if

3.1 each end is stable;

3.2 each end has arbitrarily small 1-neighborhoods which are dominated by a
finite complex;

3.3 for each i=1,2,...,t, a certain invariant o; € Ky(n,(¢;)) must be zero.
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The invariant o; vanishes if and only if ¢ has arbitrarily small 1-
neighborhoods which have the homotopy type of a finite complex.
Let T" denote the product of r 1-spheres.

THEOREM 4. Let F be a compact connected ANR such that for some r=0,
F x T" has the homotopy type of a closed connected CAT n-manifold, n2r+5. If
Wh (n, (F)®Z')=0 for i<r, then F has the homotopy type of a closed connected
(n—r)-dimensional CAT manifold.

Proor. The proof will be by induction on r. The theorem is trivially true for r
=0. Let f: V— F x T" be a homotopy equivalence of a closed connected CAT
n-dimensional manifold onto F x T". Since Wh (=, (F)®Z")=0, the torsion [2]
of fis zero. Let Q denote the Hilbert cube. By [14], fxid: VxQ — FxT'xQ
is homotopic to a homeomorphism h.

Let p: FxRxT""' — F x T" be a covering map (R =real numbers) and let
q: V— V be the pull-back of p by /. By covering space theory, there exists a
homeomorphism h: VxQ — FxRxT"~'x Q such that (pxid)h=h(q xid).
Note that ¥is a CAT manifold which is a proper deformation retract of ¥x Q.
Hence, Vhas two ends ¢, and ¢,, ¥ is stable at each end and =, (g;) is 1som0rphlc
to m, (F x - ). Let ¥V, <V be a l-neighborhood of one of the ends of V.
Without loss of generality, we may assume that there exists a € R such that
Fx[a, +00)x T ' xQginth(V; xQ). Let C be the compact subset of
F xR x T*~! x Q whose frontier is (F x {a} x T"~! x Q) U h(8V; x Q). Note that
C is a deformation retract of (¥, x Q) and since C is a compact ANR, ¥, has
the homotopy type of a finite complex [15]. By Theorem 3. ¥ is
homeomorphic to the interior of a compact CAT manifold W. If W, is a
component of dW, then it is straightforward to check that the inclusion of W,
into W is a homotopy equivalence. Hence F x T"~! is homotopy equivalent to
the closed connected CAT manifold W,. The induction hypothesis implies that
F has the homotopy type of a closed, connected CAT manifold of dimension
n—r.

ProoF oF THEOREM 1. Suppose F is not connected. Since F is a compact
ANR, F has a finite number of components. Hence, from the long exact
homotopy sequence of a fibration, p,(n,(E)) has finite index in B. Let t: B
— B be the covering space corresponding to p,(n,(E)). Let p: E — B be the
pull-back of p by =. It is easily checked that E and B are compact manifolds, j
is a Hurewicz fibration the fibre of p is homeomorphic to a component of F
and each component of F is some fibre of . Thus it suffices to consider the
case when F is connected.

Let U, be an open n-cell in B and let Ug U, be an open subset which is
homeomorphic to T""!xR. Let W=p~!(U); note that W is an open
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connected CAT manifold with two ends. By [5’], there exists a fibre homotopy
equivalence p~'(Uy) — F x U,; consider the restriction a: W — F x U of this
fibre homotopy equivalence to W. It is easily checked that W is stable at each
end and that the fundamental group of each end is isomorphic to m, (F x T"~ 1),
Let W, be a 1-neighborhood of an end of W. Identify U with 7"~ ! xR such
that there exists a € R with p~!(T"~! x [a, 00)) € W,. Analogous to the proof of
the corresponding fact in the proof of Theorem 4, one can show that the
compactum C < W, whose frontier (in W,)is p~*(T" ! x {a}) is a deformation
retract of W,. Thus C is a compact ANR and W, has the homotopy type of a
finite complex [15]. By Theorem 3, W is homeomorphic to the interior of a
compact CAT manifold S; let ¥ be a component of 0S. Again, it is easily
checked that the inclusion V<SS is a homotopy equivalence. Therefore V is
homotopy equivalent to F x T"~! and the theorem follows from Theorem 4.

Proor ofF THEOREM 2. As in the proof of Theorem 1, it suffices to consider
the case when the fibre is connected. Let K be a finite complex which has the
same shape as F. We now attempt to follow the proof of Theorem 1. Choose U,
U, and W as before; in general, there does not exists a fibre homotopy
equivalence a: W — F x U. However, by [8], there exists a proper homotopy
equivalence f: W — K x U. Hence, again it is easily checked that Wis an open
CAT manifold with two ends, W is stable at each end and the fundamental
group of each end is isomorphic to m, (K x T" " )=#,(Fx T""!). Let W, be a
1-neighborhood of an end of W and choose ae R with p~'(T"" ! x[a,
+00)) < W;. Let C be the compactum in W, whose frontier is p~*(T" ! x {a});
now C need not be locally connected and, hence, we cannot proceed as before
to show that W satisfies the hypotheses of Theorem 3.

However, we claim that C is an FANR [1]. For, suppose that a was chosen
such that

W, Np YT 'x(@a—1,0) = & .
Let B;=p~!'(T" ! x (a—1,a+1/i)) for each positive integer i. It follows from
the long exact homotopy sequence of an approximate fibration [3] and the
Whitehead theorem that the inclusion B, , € B; is a homotopy equivalence for
each i. Hence CUB,,, = CU B, is a homotopy equivalence for each i. Since C
=, (CU B,)), this implies that C has the pointed shape of a simplicial complex.
Hence by [4], C is an FANR.

By [1; p. 254], C is pointed shape dominated by a finite complex. Since the
inclusion of CU B; into W, is a homotopy equivalence (by exactly the same
argument showing that B;,, < B; is a homotopy equivalence), the inclusion of
C into W, is a pointed shape equivalence. Hence W, is pointed shape
dominated by a finite complex. Since W, is an ANR, this implies that W, is
dominated by a finite complex [1; p. 102].
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The author is unable to show that W, has the homotopy type of a finite
complex. However, by the product formula for Wall’s obstruction [7], W, x S!
(S*=1-sphere) has the homotopy type of a finite complex. By Theorem 3,
W x 8! is homeomorphic to the interior of a CAT compatt manifold S; let V
be a component of 0S. Again, V=S is a homotopy equivalence and, hence,
V is homotopy equivalent to K x U x S'. Thus V is homotopy equivalent to
K xT"; by Theorem 4, K is homotopy equivalent to a closed connected
(m—n)-dimensional CAT manifold. Since K has the same shape as F,
Theorem 2 follows.
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