ENHANCING THE CONVERGENCE REGION OF A SEQUENCE OF BILINEAR TRANSFORMATIONS

JOHN GILL

Consider a sequence of bilinear transformations, $\{t_n(z)\}\$, where

$$t_n(z) = (a_n z + b_n)/(c_n z + d_n), \quad a_n d_n - b_n c_n \neq 0, \quad n = 1, 2, ...,$$

and

$$\lim_{n \to \infty} t_n(z) = t(z) = (az + b)/(cz + d), \quad ad - bc \neq 0,$$

with $a_n \to a$, $b_n \to b$, $c_n \to c$, and $d_n \to d$ as $n \to \infty$. Define

(1)
$$T_1(z) = t_1(z), T_n(z) = T_{n-1}(t_n(z)), n=2,3,...$$

Each non-parabolic $t_n(z)$ with finite fixed points can be written

$$\frac{t_n(z) - \alpha_n}{t_n(z) - \beta_n} = K_n \cdot \frac{z - \alpha_n}{z - \beta_n}, \quad \text{where } K_n = \frac{a_n - c_n \alpha_n}{a_n - c_n \beta_n}.$$

If $|K_n| \le 1$, then α_n is the attractive fixed point and β_n the repulsive fixed point of $t_n(z)$. Let $K = \lim_{n \to \infty} K_n$, $\alpha = \lim_{n \to \infty} \alpha_n$, and $\beta = \lim_{n \to \infty} \beta_n$, where α and β are finite and distinct.

The following theorem is a modification of a theorem due to Mandell and Magnus, [1], and may be found in [2].

THEOREM 1. If $|K_n| < 1$, n = 1, 2, ..., and |K| < 1, then $\lim_{n \to \infty} T_n(\alpha)$ exists and $\underline{\lim} |\mu_n - \beta_n| > 0$ implies $\lim_{n \to \infty} T_n(\mu_n)$ exists and $\lim_{n \to \infty} T_n(\mu_n) = \lim_{n \to \infty} T_n(\alpha)$.

Examples given in [2] illustrate the efficacy of modifying sequences of bilinear transformations, $\{T_n(z)\}$, in accordance with theorem 1, in order to accelerate convergence. The following simple example demonstrates another aspect of this modification.

Received April 12, 1977.

EXAMPLE 1. Let F(x) = 1/1 - x. Then $F(x) = 1 + x + x^2 + ...$ in |x| < 1. The T-fraction expansion of this power series is

(2)
$$1 + \frac{x}{1 - 2x} + \frac{x}{1 - x} + \frac{x}{1 - x} + \dots,$$

converging to F(x) in |x| < 1, and converging to $\frac{1}{2}$ in |x| > 1. The *n*th approximant of (2) can be written $1 + T_n(0)$, where $t_1(z) = x/(1-2x+z)$ and $t_n(z) = x/(1-x+z)$ for $n=2,3,\ldots$ Observe that $\alpha = \alpha(x) = x$ and $\beta = -1$ for |x| < 1, whereas $\alpha = -1$ and $\beta = \beta(x) = x$ for |x| > 1.

Modify (2) by considering $1 + T_n(x)$ instead of $1 + T_n(0)$. Now,

$$\lim_{n\to\infty} (1+T_n(x)) = F(x) \quad \text{in } |x|<1,$$

agreeing with theorem 1. However, it is also true that

$$\lim_{n\to\infty} (1+T_n(x)) = F(x) \quad \text{in } |x| > 1.$$

Consequently we have extended the set of points upon which (1) converges "properly" by employing the sequence $\{T_n(\beta)\}$.

One purpose of this paper is to show that this idea may be fruitful in the context of more general limit-periodic continued fractions of the form

$$\frac{b_1(x)}{d_1(x)} + \frac{b_2(x)}{d_2(x)} + \dots,$$

where $b_n(x) \to b(x)$, $d_n(x) \to d(x)$ in some region $\Delta \subset C$.

We begin with the following basic theorem concerning the sequence (1).

THEOREM 2. Suppose |K| < 1, or |K| = 1, $K \neq 1$ and $\prod_{n=1}^{\infty} |K_n| = 0$. If there exists an $h_0 > 0$ such that

- (i) $\sum_{n=1}^{\infty} |\alpha_n \alpha_{n-1}| < \infty,$
- (ii) $\sum_{n=1}^{\infty} [|\beta_n \beta_{n-1}| \cdot \prod_{h_0+1}^{n-1} |K_{j-1}|^{-1}] < \infty$,
- (iii) $\lim_{n\to\infty} [|\mu_n \beta_n| \cdot \prod_{n_0+1}^n |K_{j-1}|^{-1}] = 0,$

are all satisfied, then $\lim_{n\to\infty} T_n(\mu_n)$ exists.

REMARK. (ii) and (iii) will hold for all values of $h > h_0$.

PROOF OF THEOREM 2. The decomposition of $T_n(z)$ given in [3] is employed. Set

$$K_n(z) = K_n \cdot z, \quad Y_n(z) = (z - \alpha_n)/(z - \beta_n), \quad n = 1, 2, \dots$$

Then

$$t_n(z) = Y_n^{-1} \circ K_n \circ Y_n(z), \quad n = 1, 2, \dots$$

76 JOHN GILL

Let $w_j(z) = K_j \circ Y_j \circ Y_{j+1}^{-1}(z)$, $S_j(z) = K_j \circ Y_j(z)$, j = 1, 2, ..., and $W_n^h(z) = w_h \circ w_{h+1} \circ ... \circ w_{n-1}(z)$, n > h. Write

$$w_{n-1}(z) = (p_n z + q_n)/(r_n z + 1)$$
,

where $p_n = K_{n-1}(\beta_n - \alpha_{n-1})/(\beta_{n-1} - \alpha_n)$, $q_n = K_{n-1}(\alpha_{n-1} - \alpha_n)/(\beta_{n-1} - \alpha_n)$, and $r_n = (\beta_n - \beta_{n-1})/(\beta_{n-1} - \alpha_n)$, $n = 1, 2, \ldots$ For sufficiently large n all denominators are $\neq 0$, since $\alpha \neq \beta$.

Finally, write

$$W_n^h(z) = \frac{A_n^h z + B_n^h}{C_n^h z + D_n^h}, \quad \text{for } n > h.$$

As in [3], we observe that $\lim_{n\to\infty} B_n^h = l(B,h)$ exists and $\lim_{h\to\infty} l(B,h) = 0$. Further $\lim_{h\to\infty} D_n^h = l(D,h)$ exists and $\lim_{h\to\infty} l(D,h) = 1$. Also, $\lim_{h\to\infty} B_{h+m}^h = 0$ and $\lim_{h\to\infty} D_{h+m}^h = 1$, for fixed m. Set

$$\dot{A}_n^h = A_n^h / \left(\prod_{h=1}^n p_i \right), \quad \dot{B}_n^h = B_n^h / \left[\left(\prod_{h=1}^n p_i \right) S_n(\mu_n) \right],
\dot{C}_n^h = C_n^h / \left(\prod_{h=1}^n p_i \right), \quad \text{and} \quad \dot{D}_n^h = D_n^h / \left[\left(\prod_{h=1}^n p_i \right) S_n(\mu_n) \right].$$

For $n>j \ge 1$. Then

(3)
$$W_n^h(S_n(\mu_n)) = \frac{\mathring{A}_n^h + \mathring{B}_n^h}{\mathring{C}_n^h + \mathring{D}_n^h}, \quad n > h \ge 1.$$

The analysis of the convergence behavior of (3) begins with an examination of \ddot{B}_{n}^{h} .

$$(4) \qquad \vec{B}_n^h = \frac{B_n^h}{\left[\left(\prod_{j=1}^{n-1} K_j\right) \frac{\mu_n - \alpha_n}{\mu_n - \beta_n}\right] \cdot \left[K_n \prod_{j=1}^n \left(1 + \frac{\beta_j - \beta_{j-1} + \alpha_j - \alpha_{j-1}}{\beta_{j-1} - \alpha_j}\right)\right]}.$$

For h sufficiently large, condition (iii) of theorem 2 guarantees the divergence to infinity of the first factor of the denominator of (4), whereas the second factor of the denominator converges to a finite non-zero value under hypotheses (i) and (ii). Hence $\lim_{n\to\infty} B_n^{n} = 0$, for h sufficiently large.

In an entirely analogous fashion $\lim_{n\to\infty} \mathring{D}_n^h = 0$, for h sufficiently large.

The recurrence relation $A_n^h = P_n A_{n-1}^h + r_n B_{n-1}^h$, $n > h \ge 1$, provides the key for an inductive proof of

(5)

$$\mathring{A}_{n}^{h} = 1 + \sum_{j=1}^{m-1} \left[r_{h+j+1} \binom{h+j+1}{\prod_{h+1}} p_{i} \right)^{-1} B_{h+j}^{h} + r_{n} \left(\prod_{h+1}^{n} p_{i} \right)^{-1} B_{n-1}^{h}, \quad n = h+m .$$

Observe that

$$\frac{r_{h+j+1}}{\prod\limits_{h+1}^{h+j}p_i} = \frac{\beta_{h+j+1} - \beta_{h+j}}{\prod\limits_{h+1}^{h+j}K_{j-1}} \cdot \frac{1}{(\beta_{h+j} - \alpha_{h+j+1}) \cdot \prod\limits_{h+1}^{h+j} \left(1 + \frac{\beta_i - \beta_{i-1} + \alpha_i - \alpha_{i-1}}{\beta_{i-1} - \alpha_i}\right)} \, .$$

For large h the hypotheses imply that the series

$$\sum_{j=1}^{\infty} \left| \frac{\beta_{h+j+1} - \beta_{h+j}}{\prod\limits_{h+1}^{h+j} K_{i-1}} \right|$$

converges to a value S(h) approaching 0 as $h \to \infty$, and, furthermore, that

$$\frac{1}{|\beta_{h+j} - \alpha_{h+j+1}| \cdot \prod_{h+1}^{h+j} \left| 1 + \frac{\beta_i + \beta_{i-1} + \alpha_i - \alpha_{i-1}}{\beta_{i-1} - \alpha_i} \right|} < M_1.$$

Also $|B_{h+i}^h| < M$, so that

$$|\mathring{A}_n^h - 1| \leq MM_1S(h)$$
.

Hence, the expansion (5) converges and

$$\lim_{n\to\infty} \mathring{A}_n^h = 1 + \varepsilon(h), \quad \text{where } \lim_{h\to\infty} \varepsilon(h) = 0.$$

In an entirely analogous fashion $\lim_{n\to\infty} \mathring{C}_n^h = v(h)$, where $\lim_{h\to\infty} v(h) = 0$. Therefore, for large h,

$$W_n^h(S_n(\mu_n)) = \frac{\mathring{A}_n^h + \mathring{B}_n^h}{\mathring{C}_n^h + \mathring{D}_n^h} \to \frac{1 + \varepsilon(h)}{\nu(h)} \approx \infty, \quad \text{as } n \to \infty.$$

Consequently,

$$T_n(\mu_n) = T_{h-1} \circ Y_h^{-1} [W_n^h(S_n(\mu_n))] \to T_{h-1} \circ Y_h^{-1} \left(\frac{1+\varepsilon(h)}{v(h)}\right), \quad \text{as } n \to \infty.$$

This completes the proof of theorem 2.

Let us now assume that a_n , b_n , c_n , and d_n are continuous functions of a complex variable x, and $a_n(x) \to a(x)$, etc. uniformly in some domain, D, of the complex plane. Let the fixed points of $t_n(x, z)$ be $u_n(x)$ and $v_n(x)$, and those of t(x, z) be u(x) and v(x).

Define

$$K_n(x) = \frac{a_n(x) - c_n(x)u_n(x)}{a_n(x) - c_n(x)v_n(x)} \to K(x) = \frac{a(x) - c(x)u(x)}{a(x) - c(x)v(x)}.$$

78 JOHN GILL

Let $\Omega = \{x : |K(x)| < 1\}$ and $\Gamma = \{x : |K(x)| > 1\}$, and let Δ be a compact subset of $\Gamma \subset D$. Then u(x) is attractive in Ω and v(x) is attractive in Γ .

Theorem 2 applies, giving the following result for certain sequences $\{\mu_n(x)\}$ where $\mu_n(x) \to u(x)$ in Γ .

$$\lim_{n\to\infty} T_n[x; \mu_n(x)] = F(x), \quad \text{continuous in } \Delta.$$

Furthermore,

$$F(x) + \lim_{n \to \infty} T_n[x; 0] = \lim_{n \to \infty} T_n[x; v(x)].$$

In view of example 1, one suspects that, in the case of certain continued fractions, the use of the *repulsive* fixed point as a modifying factor might analytically extend a function from Ω into Γ .

More general limit-periodic continued fractions do indeed satisfy the hypotheses of theorem 2, as the next example illustrates.

Example 2. Let

$$f_n(x) = x^2 + (2^{-n} + n^{-1} + 1)x + 2^{-n}(1 + n^{-1}), \quad n = 1, 2, \dots,$$

and $f(x) = \lim_{n \to \infty} f_n(x) = x^2 + x$. The continued fraction

$$\frac{f_1(x)}{f'_1(x)} - \frac{f_2(x)}{f'_2(x)} - \cdots - \frac{f_n(x)}{f'_n(x)} - \cdots$$

is derived from transformations having fixed points

$$u_n(x) = -(x+2^{-n}), \quad v_n(x) = -(x+1+n^{-1}), \quad n=1,2,\ldots$$

$$\Omega = \{x : \operatorname{Re} x > -\frac{1}{2}\}, \ \Gamma = \{x : \operatorname{Re} x < \frac{1}{2}\}, \ \text{and}$$

$$K_n(x) = u_n(x)/v_n(x) \to K(x) = x/(x+1)$$
.

In the region

$$\Gamma' = \Gamma \cap \{x : |x + \frac{16}{7}| > \frac{12}{7}\}$$

we find that $|K^{-1}(x)| > \frac{3}{4}$. Hence $\frac{3}{4} < |K_n^{-1}(x)| < 1$ for *n* sufficiently large. Now, (i) of theorem 2 is trivially satisfied and

$$|u_n(x)-u_{n-1}(x)| = |u_n(x)-u(x)| = \frac{1}{2^n} < \left(\frac{3}{4}\right)^n \left(\frac{3}{4}\right)^n < \left(\frac{3}{4}\right)^n \cdot \prod_{h=1}^{n-1} |K_{j-1}^{-1}(x)|$$

shows that (ii) and (iii) are satisfied when $\mu_n(x) \equiv u(x)$.

Convergence of $\{T_n[x; u(x)]\}_{n=1}^{\infty}$ occurs also on $B(\Omega) - \{1\}$. If we set $|K_n(x)| = 1 + y_n(x)$, it can be shown that $\sum y_n(x) = -\infty$, so that $\prod |K_n(x)| = 0$, and theorem 2 applies.

Theorem 1 and subsequent remarks can be applied to the power series

(6)
$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots, \quad |x| < R < \infty.$$

We first convert (6) to its equivalent continued fraction

(7)
$$P(x) = c_0 + \frac{c_1 x}{1} - \frac{c_2 x/c_1}{c_2 x/c_1 + 1} - \dots - \frac{c_n x/c_{n-1}}{c_n x/c_{n-1} + 1} - \dots,$$

which is in "fixed point form" (that is, $u_1v_1/(u_1+v_1) u_2v_2/(u_2+v_2)$...).

Set $u_n(x) = c_n x/c_{n-1}$, $v_n(x) \equiv 1$. Then $K_n(x) = u_n(x)$. Let us assume $\lim_{n \to \infty} c_n/c_{n-1} = \eta$, $|\eta| = R^{-1}$, in which case (7) is limit-periodic. Consequently (6) can be modified by computing $\{T_n[x; u(x)]\}$ instead of $\{T_n[x; 0]\}$. These two sequences converge to a common limit in |x| < R.

The idea of using the modifying factor u(x) in Γ , where it is *repulsive*, in order to extend the region of "proper" convergence of a continued fraction may be discerned in the foundations of a paper by Waadeland [4]. Waadeland considers a power series $P(x) = 1 + c_1 x + c_2 x^2 + \ldots$, holomorphic in |x| < R, R > 2, This series is converted into a *T-fraction*

$$1+d_0x+\frac{x}{1+d_1x}+\frac{x}{1+d_2x}+\dots$$

the *n*th approximant of which may be written $T_n[x; 0]$, employing the present notation. The hypotheses of the following theorem imply $d_n \to -1$, so that the fixed points of t(x; z) are u(x) = x and v(x) = -1. Waadeland's result can be paraphrased:

THEOREM 4. (Waadeland). Suppose $|P(x)-1| < \tilde{K} < \frac{1}{2}R - 1$ in |x| < R, R > 2. Then $\{T_n[x; x]\}_{n=1}^{\infty}$ converges to P(x) uniformly on any compact subset of $|x| < \frac{1}{2}R$.

Hovstad, [5], later showed that "proper" convergence actually occurs in |x| < R.

It is easily seen that convergence of $\{T_n[x; x]\}_n$ to a continuous function on compact subsets of $\{x: 1 < |x| < \frac{1}{2}R\}$ is implied by theorem 3.

The author's K-D fractions, [6] can be modified in the same manner.

BIBLIOGRAPHY

- M Mandell and A. Magnus, On convergence of sequences of linear fractional transformations, Math. Z. 115 (1970), 11-17.
- J. Gill, Modifying factors for sequences of linear fractional transformations, to appear in Norske Vid. Selsk. Skr. (Trondheim).

80

- 3. J. Gill, Infinite compositions of Möbius transformations, Trans. Amer. Math. Soc. 176 (1973), 479-487.
- 4. H. Waadeland, A convergence property of certain T-fraction expansions, Norske Vid. Selsk. Skr. (Trondheim), Nr. 9, 1966.
- 5. R. Hovstad, Solution of a convergence problem in the theory of T-fractions, Proc. Amer. Math. Soc. 48 (1975), 337-343.
- 6. J. Gill, A generalization of certain corresponding continued fractions, to appear in Bull. Calcutta Math. Soc.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN COLORADO
PUEBLO, COLORADO 81001
U.S.A.