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ENHANCING THE CONVERGENCE REGION
OF A SEQUENCE
OF BILINEAR TRANSFORMATIONS

JOHN GILL

Consider a sequence of bilinear transformations, {t,(z)}, where
t,(2) = (a,z+b,)/(c,z+d,), ad,—b,c, 0, n=12,...,
and

lim ¢,(z2)=t(z) = (az+b)/(cz+d), ad—bc + 0,
with a, —» a, b, — b, ¢, — ¢, and d, — d as n — oo.
Define

(1) T,(2) = t,(2), T,2) = T,_,(t,(2)), n=273,...
Each non-parabolic t,(z) with finite fixed points can be written

th(2)—ty z—o,

a,—C,0
- K. n n%n
ln(z)"ﬁn "z

where K, = .
an_cnﬂn

z—B,

If |K,| <1, then a, is the attractive fixed point and S8, the repulsive fixed point of
t,(2). Let K=lim,_  K,, a=lim,_,®, and f=lim,_ B, where a and § are

finite and distinct.

The following theorem is a modification of a theorem due to Mandell and

Magnus, [1], and may be found in [2].

TueoreM 1. If |K,|<1, n=1,2,..., and |K| <1, then lim,_, , T,(a) exists and
lim |u, — B,|>0 implies lim,_, T,(u,) exists and lim,_, T,(u,)=lim,_, T,(®).

Examples given in [2] illustrate the efficacy of modifying sequences of
bilinear transformations, {T,(z)}, in accordance with theorem 1, in order to
accelerate convergence. The following simple example demonstrates another

aspect of this modification.
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ExampLE 1. Let F(x)=1/1—x. Then F(x)=1+x+x?>+... in |x|<1. The
T-fraction expansion of this power series is

X X X

@ 1+1—2x+1——x+1—x+”

L]

converging to F(x) in [x|<1, and converging to 4 in |x|>1. The nth
approximant of (2) can be written 1+ T,(0), where t,(z)=x/(1—2x+2z) and
t,(2)=x/(1—-x+2) for n=2,3,.... Observe that a=a(x)=x and f= —1 for |x]|
<1, whereas a= —1 and f=pf(x)=x for |x|>1.
Modify (2) by considering 1+ T,(x) instead of 1+ T,(0). Now,
lim (1+T,(x)) = F(x) in |x|<1,

n—+oo
agreeing with theorem 1. However, it is also true that

lim (1+7T,(x)) = F(x) in |x|>1.
Consequently we have extended the set of points upon which (1) converges
“properly” by employing the sequence {T,(f)}.
One purpose of this paper is to show that this idea may be fruitful in the
context of more general limit-periodic continued fractions of the form

bl(x)+b2(x)
di(x) dy(x) T

where b,(x) — b(x), d,(x) - d(x) in some region 4<=C.
We begin with the following basic theorem concerning the sequence (1).

THEOREM 2. Suppose |K|<1, or |K|=1, K=%1 and [, |K,|=0. If there
exists an hy>0 such that
() Zatiley—a,— 4l <00,
i) 25 [ Bacrl TL 1Kl 1< 00,
(i) Tim, oy [l — Bl T 1 1K—a 7110,
are all satisfied, then lim,_,  T,(u,) exists.

ReMARK. (ii) and (iii) will hold for all values of h> h,.

ProOOF OF THEOREM 2. The decomposition of T,(z) given in [3] is employed.
Set

K,(2) = K, 'z, Y,(2) = (z—a)/(z=8,), n=12,....
Then
t,(2) = Y7 oK, 0Y,(2), n=1,2,....
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Let WJ(Z)_——KIO YJO Y;+11(Z), SJ(Z)=KJ° Yj(Z), j=1,2,. ‘e and Wﬁ(z)=whowh+1
o...ow,_;(2), n>h. Write

Wh-1 (Z) = (pnz+qn)/(rnz+l) ’

where pn=Kn—-1(Bn—an—1)/(ﬁn—l “'(l,,), qn= Kn~1 (‘xn—-l —'an)/(ﬂn—l - an)’ and r,
=(Bo—PBn-1)/(Bs—1—s), n=1,2,. ... For sufficiently large n all denominators
are =+0, since a=f.
Finally, write
Atz + B!
W:(Z) = m, for n>h.

As in [3], we observe that lim,_, B%=I(B,h) exists and lim,_ (B, h)=0.
Further lim,_, . D" =1I(D, h) exists and lim,_, . I(D,h)=1. Also, lim,_, B!, =0
and lim,_, ., D!, =1, for fixed m. Set .

it = an / <,,H p) B = B! / [(q pi)sn(un)}
&= c / (H p) and  Bf = D! / [(n m)s,.(un)}

For n>jz1. Then

A+ B

©) Wh(Sa(1s) = m, n>hzl.

Th% analysis of the convergence behavior of (3) begins with an examination
of B!

(s e ()]

For h sufficiently large, condition (iii) of theorem 2 guarantees the divergence
to infinity of the first factor of the denominator of (4), whereas the second
factor of the denominator converges to a finite non-zero value under
hypotheses (i) and (ii). Hence lim,,_.mﬁ" 0, for h sufficiently large.
In an entirely analogous fashion llm,,_,ooﬁ =0, for h sufficiently large.
The recurrence relation A:=P,A%_, +r,B:_,, n>h21, provides the key for
an inductive proof of

&)

m=1 Wi+l O\ -1 n -1
=1+ ¥ [rh+j+1( I1 Pi) B:+j]+rn<n Pi> By, n=h+m.
j=1

h+1 h+1
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Observe that

rh+j+1 _ Bh+j+l—"Bh+j_ 1

h+j T htj h+j Bi— B, +o—a; .
H Pi n Kj—l (ﬁh+j-ah+j+1)' l‘I <1+ i i-1 i-1
h+1 h+1 h+1 Bioi—u

For large h the hypotheses imply that the series

- ﬂh+j+1“ﬂh+j

¥ [Pt e

R | [
h+1

converges to a value S(h) approaching 0 as h — oo, and, furthermore, that

1
. < M, .
gl Bi+Biyto—o;_ !
|ﬂh+j“"°‘h+j+1|' n 1+ ; :
h+1 Bi-i—o;

Also |B}, <M, so that
|Ah—1] < MM,S(h).
Hence, the expansion (5) converges and

lim A" = 1+4¢(h), where lime(h) = 0.

n— oo h=o00
In an entirely analogous fashion lim,, (fﬁ =v(h), where lim,_, v(h)=0.
Therefore, for large h,

A"+ B" 1+eh
W:(Sn(ﬂn)) = C:IDZ had :-(f;l() ) ~ 00, as n— 0.

Consequently,

1+¢(h)
v(h)

T, () = Tyoyo Y, ' [W(S, ()] — T;.-1°YI‘< ) as n— 00.

This completes the proof of theorem 2.

Let us now assume that a,, b,, c,, and d, are continuous functions of a
complex variable x, and a,(x) — a(x), etc. uniformly in some domain, D, of the
complex plane. Let the fixed points of t,(x, z) be u,(x) and v,(x), and those of
t(x, z) be u(x) and v(x).

Define
_a(x)—c(x)u(x)

_ an(x)'—'cn(x)un(x)
K, = 20—t

= a@—awnm K
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Let Q={x : |[K(x)|<1} and I'={x : |[K(x)|>1}, and let 4 be a compact subset
of ' D. Then u(x) is attractive in  and v(x) is attractive in I
Theorem 2 applies, giving the following result for certain sequences {u,(x)}
where p,(x) — u(x) in I
lim T,[x; u,(x)] = F(x), continuous in 4 .

Furthermore,
F(x) &+ lim T,[x; 0] = lim T,[x; v(x)] -

n—o0o

In view of example 1, one suspects that, in the case of certain continued
fractions, the use of the repulsive fixed point as a modifying factor might
analytically extend a function from Q into I

More general limit-periodic continued fractions do indeed satisfy the
hypotheses of theorem 2, as the next example illustrates.

ExaMmPpLE 2. Let
fix) = X2+ Q7 "+n '+ Dx+2""1+n"Y), n=12,...,
and f(x)=1lim,_, f,(x)=x*+x. The continued fraction

[ix) fo(%) Ja(x)
i) =f20) =" =fux) ="

is derived from transformations having fixed points
U(x) = —(x+27", v,(x) = —(x+1+n7Y), n=12,....
Q= {x: Rex>—4}, I' = {x: Rex<}}, and
K, (x) = u,(x)/v,(x) > K(x) = x/(x+1).
In the region
' =TN{x: |x+3¥ >4}

we find that |K ~!(x)| > 2. Hence 2 < |K, ! (x)| < 1 for n sufficiently large. Now, (i)
of theorem 2 is trivially satisfied and

1 3 n 3 n 3 n n—1 _
Ja(x) =ty (] = lta(0)—u (@ = 5 < (Z) <3> < (;) T I (0
shows that (ii) and (iii) are satisfied when u,(x)=u(x).
Convergence of {T,[x; u(x)]}5%; occurs also on B()—{1}. If we set |K,(x)|
=1+4y,(x), it can be shown that ¥ y,(x)= —o0, so that []|K,(x)|=0, and
theorem 2 applies.
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Theorem 1 and subsequent remarks can be applied to the power series
(6) P(x) = co+cyx+ex2+..., |x] <R < 00.

We first convert (6) to its equivalent continued fraction

cyx cx/cy CpX/Cn_1
7 P(x) = —_— . ..,
M () = cot 1 —cyxfc;+1— —CXxfcy_ +1 —
which is in “fixed point form” (that is, u;v,/(u; +v,) _u0,/(uy+v,) ...

Set u,(x)=c,x/c,_1, v,(x)=1. Then K,(x)=u,(x). Let us assume
lim, o ¢,/Ca—1 =1, If|l=R ™!, in which case (7) is limit-periodic. Consequently
(6) can be modified by computing {T,[x; u(x)]} instead of {T,[x; 0]}. These
two sequences converge to a common limit in |x| <R.

The idea of using the modifying factor u(x) in I', where it is repulsive, in
order to extend the region of “proper” convergence of a continued fraction may
be discerned in the foundations of a paper by Waadeland [4]. Waadeland
considers a power series P(x)=1+c¢;x+c,x*+ ..., holomorphic in |x|<R,
R>2, This series is converted into a T-fraction

X

L tdgx o
T Tl pdix +14dyx + T

the nth approximant of which may be written T,[x; 0], employing the present
notation. The hypotheses of the following theorem imply d, — —1, so that the
fixed points of t(x; z) are u(x)=x and v(x)= — 1. Waadeland’s result can be
paraphrased:

THEOREM 4. (Waadeland). Suppose |P(x)—1]<K <3R—1 in |x|<R, R>2.
Then {T,[x; x]1}3- converges to P(x) uniformly on any compact subset of |x|
<4R.

Hovstad, [5], later showed that “proper” convergence actually occurs in |x|
<R.

It is easily seen that convergence of {T,[x; x]}, to a continuous function on
compact subsets of {x : 1 <|x|<%R} is implied by theorem 3.

The author’s K — D fractions, [6] can be modified in the same manner.
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