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ON UNICITY OF THE RIESZ DECOMPOSITION
OF AN EXCESSIVE MEASURE

JESPER LAUB

Let G be a locally compact abelian group and N a convolution kernel
satisfying the domination principle. In a series of papers ([2]-[5]) M. It6 has
studied positive measures £ on G for which N satisfies the relative domination
principle with respect to ¢ These measures, which here will be called N-
excessive in analogy with the Hunt kernel case, are treated using the method of
reduced measures. The use of reduced measures rely on the fact, that the set of
N-excessive measures is stable under the formation of infimum.

The Riesz decomposition theorem for excessive measures which M. Itd
proved in [3], [5] is proved in full generality including unicity for non-singular
kernels. As an application it turns out that the invariant part in the Riesz
decomposition is characterized by invariance under .reduction on the
complement of compact sets. Moreover we give a simple proof for the fact,
that the regular part N, of N satisfies the relative balayage principle with
respect o the singular part N’ of N.

1. Excessive measures.

The concept of excessive measures will rely deeply on domination and
balayage principles and therefore we first state a few facts concerning these
principles.

We denote by Cg the positive continuous functions on G with compact
support. The integral of a function ¢ € C¢ with respect to a positive measure u
on G will be written {u, ¢).

DEeriniTION. The convolution kernel N, is said to satisfy the relative
(respectively transitive) domination principle with respect to N, if for all
fgeCi

N,*f < N,»g (respectively N,»f < N, *g) on supp f
implies N;*f < N,xg (respectively N,»f < N,*g)
where supp f denotes the support of f.
Received October 14, 1977.
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If N, satisfies the relative (respectively transitive) domination principle with
respect to N, we will write N; <N, (respectively N; CN,).

The convolution kernel N is said to satisfy the domination principle if
N<N.

REMARK. M. Itd has recently proved ([4]), that the two principles are
equivalent for non-zero kernels and moreover, that they are equivalent to the
following principle.

DErINITION. The convolution kernel N, is said to satisfy the relative balayage
principle with respect to N, if the following statement holds:

For every positive measure p with compact support and every open
relatively compact set w< G, there exists a positive measure p, with the

property
Suppﬂm g (I)y Nl*“w é NZ*“

N,*p, = N,*u in 0.
The measure py,, is called a balayaged measure of u on w relative to (N,, N,).
We will not need the full equivalence of these principles but only the

following more easily established proposition (cf. [3]).

ProOPOSITION 1.1. Let N, and N, be convolution kernels, for which N, +0 and
N,<N,<N,. Then N, satisfies the relative balayage principle with respect to
N,.

If N is a convolution kernel, then D*(N) will denote the set of positive
measures pu for which N xpu exist.

The following domination principles for measures are easily proved by first
considering measures with compact support and by regularization.

LeEMMA 1.2. Let N, and N, be non-zero convolution kernels satisfying N, <N,
(respectively N,CN,). If peD*(N,, veD*'(N,) (respectively
u,veD*(N)ND*(N,)) and w is an open set with supp < w, then

Ni*xu £ N,*»v in o implies Nyxp < N,*v
(respectively }
Ni*u £ N;y»v in o implies Ny»p S N,*»v)

In the rest of the paper N is a fixed non-zero convolution kernel satisfying
the domination principle.
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DEFINITION. A positive measure £ is called N-excessive if N<£.

The set of N-excessive measures will be denoted ¢(N) and it is easily seen (cf.
[2]), that (N) is a vaguely closed convex cone. (The vague topology on the set
of positive measures is defined by the requirement, that a net (u,),. 4 of positive
measures converges vaguely to u (g, — p) if Vo € C§ (i, 0> — {u,@).)
Moreover every N-potential is N-excessive.

The next lemma will enable us to define reduced measures of N-excessive
measures.

LeMMA 1.3. The convex cone &£(N) is infimum-stable, i.e. if A<e(N) then
inf A € &(N).

Proor. We will first prove that the infimum & A # of two N-excessive
measures is N-excessive.
Let f,g € C§ and suppose that

Nxf< (Eanxg on suppf.
For every x € G we have
(€ Am)sg(x) = inf{E+g () +n*g:(X) | 81,82 € Cks 81+8:=8) -
For every g,,g, € Cg, such that g, +g,=g we have
: N+f < {+g +n*g, on suppf.
Let @ be an open relatively compact set, with
® 2 supp f—suppg .

If ¢, denotes the Dirac-measure at the neutral element of G, Proposition 1.1
shows the existence of balayaged measures u, and v, of &, on w relative to
(N, €) and (N, ) respectively. If x € supp f then

N+f(x) = J gl(x-y)dé(y)+j‘ g:(x—y)dn(y)

= fgl(x—y)dN*um(y)+ng(x—y)dN*vw(y)

= N*(p,*81+v,%82)
Now N satisfies the domination principle and hence
Nxf = Nxp,*gi+Nxv,*g,

S Exg g,
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and finally

N+f s (EAneg.

Let A< e(N) be arbitrary and let A* be the set of all infimums of finitely many
measures from A. In the first part we proved that A* c¢(N), but since &(N) is
vaguely closed and 4* is downward filtering we get

infA = infA* € ¢(N) .

DEeFInITION. If € is a N-excessive measure and w< G and open set, then
R = inf{n € &(N) | n2¢ in w}
is called the reduced measure of ¢ on w (with respect to N).
The following properties of RY are immediate from the definition and
Lemma 1.3:
Rfee(N), RP=s¢ Rf=¢(inow
R? is increasing in ¢ and o
and for n € ¢(N) the following implication holds
R Sninw = R £
ReMARK. The reduced measure is the same as the balayaged pseudo-

potential or balayaged convolution kernel considered by M. Itd (cf. e.g. [3, p.
305]). This treatment of these measures was suggested by C. Berg.

The next five lemmas will give us the tools, which are necessary in handling
the reduced measures.

LeMMA 1.4. Let (¢);c1 be an increasing net of N-excessive measures and w an
open set and suppose that &=lim; &, exists. Then & is N-excessive, (R%);es
is increasing and

ll;n RE = R?.

If (@Wy),e4 is an increasing net of open sets with w,Tw, then
Rg-TR? .

Proor. It is immediate that ¢ € ¢(N) and that (Rf),; is increasing. Hence
lim; Rg, exists and

limRg < RY.
1
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The measure lim; RY is N-excessive, and
li;nR‘g = li;nf,- =¢ inw
which implies Ry <lim; Rg.
In order to prove the second part of the lemma it is easily seen, that (R7*),. 4

is increasing and that

limR%: < RY.
mBs = e

If ¢ € C¢ and supp ¢ S @ we can choose a, € A such that supp ¢ £ w,,. Then
li;n CRZ, @) 2 (Rg=, 0> = &)

ie. limy R$-= ¢ in @ and hence lim, RE- = R?.

LeMMA 1.5. The reduced measure of & € ¢(N) on an open relatively compact set
w is a N-potential, i.e., R =N *yu, with supp uS @.

ProoF. Let (w,),. 4 be the family of all open relatively compact sets satisfying
@,Sw and order A by inclusion of the sets. For « € 4 we denote by ¢, a
balayaged measure of ¢, on w, relative to (N, &), i.e., &, satisfies

Nxg, = ¢
Nxg, =¢ in o,
and
suppe, € @, £ @ .
Lemma 1.2 and the fact, that N ¢, € ¢(N) now implies
Rg- < N+g, £ R?
so by Lemma 1.4, lim, N »¢&, =R?.

As (N xg)),. 4 is vaguely bounded (g),.4 is vaguely bounded and then a
vague cluster-point u exists, which satisfies supp uc @ and

N#+py = limN=*g, = Ry .
A

LemMA 1.6. A positive measure & is N-excessive if and only if £ is vague limit
of an increasing net of N-potentials (of measures with compact support).

Math. Scand. 43 — 10
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Proor. Let Q be the set of all open relatively compact subsets of G. By the
above lemma (RY),,g is an increasing net of N-potentials and by Lemma 1.4

R?TR¢ = ¢ as 0!G,

The converse statement is an immediate consequence of the facts, that ¢(N) is
vaguely closed and that a N-potential is N-excessive.

LemMma 1.7. If €, € &(N) and o is an open set then
R%., = RZ+R} .

Proor. From the definition of reduced measures follows
$+Ry =¢+n inow

and hence R?,, <R +R;.
Let (®,),c4 be an increasing net of open relatively compact sets satisfying
®,Sw and w,Tw. Then by Lemma 1.5 follows that pu,,v, exist such that

R = N#*yu,, RY = N=xv,
where y, and v, are balayaged measures of ¢, on w, relative to (N,£) and (N, 7)

respectively. The measure p, + v, is a balayaged measure of ¢, on w, relative to
(N,¢+n) and then Lemma 1.2 implies

RZ,, = lim N (g, +v,)
A
= lim Rg"+lim R
A ¢ A "
= RY+R?.

Let ¥ be the family of compact neighbourhoods of the neutral element of G.
For a N-excessive measure ¢ the net (RY)y .4 is decreasing as V increases
towards G. Moreover if p € D* (€) then €+pu € ¢(N) and the following lemma
holds.

LemMa 1.8. Let & € ¢(N) and p € D* (§) then

limRY,, = (lim R?’) .
ViG V1G

Proor. First we will suppose that the support of u is compact.
Let Ve ¥ Since R{'=¢ in CV it follows that
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RY«p = &xp  in C(V+suppp) .
The measure RY *u is N-excessive and hence
R%(“;"‘S“PPF) < R%V* U
and as V increases towards G, we obtain

lim RY = lim R +suppa)
vic. T vie o

< lim (R%V * 1)
V16

= (lim R%V) LY
V1G
Conversely let W e ¥ be given and choose V € ¥ such that

W—suppu c V.

According to Lemma 1.5 we have, that RC,:V is the vague limit of an increasing
net (N v,),.4 of N-potentials satisfying suppv,=CV, Va € 4. Then RY pu is
the vague limit of increasing net of N-potentials (N *v,*u), 4 with

supp (v,*y) c CV+suppu < CW.
This implies by Lemma 1.2 that
Nxvxp < RY  forall ae 4

and hence
(Ilm RCV> *U S RCV*y RY .
V16
Finally when W increases
lim RC")* < lim RY
(VTG ¢ k= wig ot

Now let u € D* (£) be arbitrary. For a compact subset K of G, ulg denotes the
restriction of the positive measure y to K. Let V € ¥, then

Ré*ulx = R&tu

and using the first part of the proof and then letting K increase towards G, we
obtain

(hm R“’) +p < limRY,, .
V16 VG
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Let ¢ € C¢ and 6>0 be given and choose K compact such that

Ex(p—ug)ro> < 6.
By Lemma 1.7 we get
<R%¢w ‘P) = <R§q¢|]p ¢>+<R?:(p-u]1()’ (P>
< <R{sp|K’(p>+6
and therefore

(hm Rcw o> < <(E¥2 RE}’) *ulk, 9> +0
< (UmRY)*p, 0> +5 .
V1G

Finally letting & | O the remaining inequality is obtained.

2. The Riesz’ Decomposition Theorem.
The net (RY)y <y is decreasing as V increases towards G, so let

N =1imRY, N,= N-N'.
ViG

The convolution kernels Ny, N’ are called the regular respectively the singular
part of N. Note that N’ € ¢(N) and by Lemma 1.8 we have for u € D*(N)

N oy l N's M.
The convolution kernel N is called non-singular if Ny=+0.
Let © denote the set of all open relatively compact subsets of G.

LeMMA 2.1. Let & € €(N) and let p be a positive measure with compact support.
There exist balayaged measures p,, of p on w € Q relative to (N, &) with the
additional property, that

0ROy = fy, Yy, N 0.

Proor. It can be proved (cf. e.g. [2]) that
N+cgg < N+cgy, for all ¢>0
and similarly it can be seen, that
N+ceg C N forall ¢>0.

Moreover it is easily seen that N +cg,<¢. For ¢>0 and w € Q let 4 be a
balayaged measure of u on w relative to (N +cey, &) such that (N +cgg)* £,
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equals the reduced measure of £*u on w with respect to N +ce, (cf. Lemma
1.5).
For w, 2w, we have

(N +ceg)xpg, = (N+ceo)*pg, ,
which by Lemma 1.2 implies
Nxp,, = Nxpj, .
But since
(N +ce)*ptg,, = (N+ceo)xps, = Exp in w,
we obtain
Po, S Mo, 1D 0.

As N *y, < &y holds for all ¢> 0, the set {4, I ¢>0} is contained in a vaguely
compact set K, of positive measures on @, and hence

Ve > 0’ (ﬂfn)weﬂ € H Kw
wel

which by the Tychonoff theorem is compact. Any vague cluster point (¢,),<n
of (1,),cn as ¢ |0 is easily seen to have the desired property.

We will now define a class of N-excessive measures, which play an important
role in the Riesz’ decomposition theorem. Further explanation of the
terminology will follow later in the paper.

DEFINITION. A positive measure n € ¢(N) is called N-invariant if for all
positive measures v € D* (N) we have

Nxv=n A n—N=xveeN) =v=0.

We are now able to prove the Riesz’ decomposition theorem, which is well-
known for Hunt-kernels, and it was proved for non-singular kernels satisfying
the domination principle by M. It [3] for o-compact groups.

The proof given below is mainly due to Itd.

THEOREM 2.2. Let N be a non-singular convolution kernel satisfying the
domination principle. Then the following are equivalent for a positive measure &:

(i) & € &(N).

(ii) There exists a positive measure v and a N-invariant measure n such that

{ = Nxv+n.
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Proor. (ii) = (i) is immediate.
(i) = (ii). Suppose ¢ € €(N) and choose the balayaged measures (u,), .o of
g on w € Q relative to (N, £) introduced in the previous lemma. It is easily seen

that
v = limy,
Q

exists as w increases. If v|, denotes the restriction of v to w, then
vlm é Hers Aum_-vlm —0.
Now define the N-excessive measure 7 by
n=~&,-Nxv =limN=*(u,—v|,)
Q
and we have to prove that #n is N-invariant in order to obtain the desired

decomposition.
Because N was supposed non-singular we can choose Ve 7" such that

RY %N, and then
(N-R¥)*(u,—v,)— 0 as olG,
which implies
li‘ran'}vV*(yw—-vlw) =17.
According to Lemma 1.6 a net (4,),.4 of positive measures with compact
support exists such that
N+, TRY .
So for every a € A we have

r’*la = limN*Aa*(tuw—vlw) .<‘: limN*(ﬂw_vlw) =n
Q Q2

and hence

limsupn*i, £ 1.
A

Moreover we get
n= lim RCNV* (ﬂw - vlw)
Q
= limlimN A, %y, —lim lim N *x4,*v|,
Q 4 Q 4

< liminf&x A, —lim lim N x4, *v|,
4 A Q

= liminfy«4,
A
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where the interchanging of limits is justified by monotonicity. Now suppose
that

n=NxA+{ for Ae D*(N) and { € ¢(N) .
As for n we have lim,sup{*4,<{ and therefore

NxA+{ = limn=x,
A
= limN*AxA,+lim{=*4,
A A

< RY*14¢
which implies
(N=RY)*1 £ 0
and hence A=0, which states that # is N-invariant.
PropOSITION 2.3. Let N be a non-singular convolution kernel satisfying the
domination principle. For a positive measure n the following are equivalent:

(i) n is N-invariant.
(i) There exists a net (A),.4 of positive measures in D*(N) such that
(N % 2,),c 4 is increasing and

: imN*A, =#n, limi, =0.
4 4

(iii) n € &(N) and for every compact set K< G
RK =p.
Proor. (i) == (ii). Let Q be the set of open relatively compact subsets of G as
before and order Q by
W S W D, EW VW =Wy,

Choose the balayaged measures (4,),.q Of & on w € Q relative to (N,n)
introduced in Lemmma 2.2.

For w,,w, € Q and &, S w, we have
Nxi, £ n = N=xi, in w; 2 supp4,,

and hence by Lemma 1.2, N4, SN#A,. The net (N+1,),q is therefore
increasing and satisfies

KmN*d, = 1.
0
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From the additional property of (4,),.o in Lemma 2.2 follows that (4,),0
converges vaguely towards a positive measure v when o increases to G. Then
we have

which implies that v € D* (N) and moreover

0 < n—N*v = limN+(l,—v|,) € e(N).
Q

But as n was assumed N-invariant

limi, =v = 0.
Q

(i) = (iil). Let K be a compact subset of G and suppose that (ii) is fulfilled
and then 7 is clearly N-excessive. Choose V € ¥ such that the interior of V
contains K. For each o € A A and A% denotes the restriction of 4, to ¥ and CV
respectively. We now have

Ay = AX+AY, 1imiY =0, suppAl =V
A

which implies

limN=*iY =0.

A
But as N*AlY <Nx4,<n and supplc"gﬁ;g
th AV < RK < g

ie., RE,K =n.

(i) = (i). Let n=N=*v+{ be a Riesz decomposition of the N-excessive
measure 1. For V € ¥" we have by Lemma 1.7

n = REpy = R%/,V-FREV Ntv+c
and as V increases we obtain by Lemma 1.8
Nxv+{ =n = Nx»v+{.

Then N =N’ implies that v=0 and hence n={ is N-invariant.

The last characterization shows that invariant measures are “invariant”
under reduction on complements of compact sets.

It is of course sufficient to consider reduced measures on complement of
compact neighbourhoods of the neutral elements.

The set of N-invariant measures has some nice properties which are stated in
the next corollary.
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COROLLARY 2.4. The set of N-invariant measures is a convex cone, which is
closed under an increasing limit process, and for positive measures n € ¢(N) and
ueD(n), 0 we have

n is N-invariant <> n*u is N-invariant .

Proor. The first two statements are immediate from Proposition 2.3,
Lemma 1.4 and Lemma 1.7.
Now suppose # is N-invariant, then Lemma 1.8 implies

nEp = (§$R5V>*u = E}ER% S nxp

and hence
v
Ry, =n*xu forall Vev .
Conversely if #*pu is N-invariant, then
nxu = lim RE,‘:” = (lim R2V> *U .
V1G ViG
But as R <n and p=+0 we have

RV =n forall Vevy .

PropOSITION 2.5. Let N be non-singular, then the regular part N, satisfies the
relative balayage principle with respect to the singular part N'.

Proor. Let u be a positive measure with compact support and @ an open
relatively compact set.

Define po=p and then by recursion for each positive integer n the measure
U, to be a balayaged measure of u,_, on w relative to (N, N’) (cf. Proposition
1.1). Therefore supp pu, s @ for all n=1 and

N*”n é Nl*/"n—l
Nxpy, = N'*y,_, in ow.

Now by adding the first K inequalities we obtain

(i) (50

with equality in w. If we split the left-hand side into the convolutions with the
regular and singular parts of N, we then get

K
N'*I‘n+No*< I‘n) S N'xp
=1
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with equality in w. The inequality implies that > 7%, u, converges to a measure
in D*(N,) and in particular u, — 0. Hence

Nxp,— 0

and

No*(z /,4,,) = Nxu inow,
n=1
ie., 3%, U, is a balayaged measure of u on w relative to (N, N').

ReMARK. It is easy to prove that No<N’. Suppose that f,g € C{ and that
Noxf < N'xg on suppf.
Then
Nxf < N'x(f+g) on suppf
and using N’ € ¢(N) this implies
Nxf £ N'x(f+g) onG.
Hence
No*f < N'xg on G.
COROLLARY 2.6. The regular part N, of N satisfies the transitive domination
principle with respect to N.
ProoF. Let f,g € C¢ and suppose that
No*xf =< No*g in suppf.

If for a positive measure u we define the reflected measure ji by

o) = J(P(—X)dﬂ(x)

for all ¢ € C, then it is easily seen that N satisfies the domination principle,
whenever N does and likewise N, satisfies the relative balayage principle with
respect to N’ by Proposition 2.5.

Define

W = {yEGI f()’)>0} S supp f
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and let x € G be given. If ¢, denotes the Dirac-measure concentrated at x, we
can find a balayaged measure ¢, of ¢, on o relative to (N, N) and a balayaged
measure &, of ¢, on o relative to (N,, N'). Then we have

Nxf(x) = <N*8x9f> = <N*81>f> = <No*51+ﬁo*82’f>
(648, Noxf) £ (&) +e, No*g) = <N0*31+N/*51,8>

S Nxg(x)
which was to be proved.

DEFINITION. A convolution kernel N is said to satisfy the principle of unicity
of mass if for all u,v € D*(N) we have

Nxuy=Nxv == u=v.

Finally we will prove the desired form of the Riesz’ decomposition theorem
with unique decomposition.

THEOREM 2.7. Let N be a non-singular convolution kernel satisfying the
domination principle and ¢ a N-excessive measure. Then there exist a measure
v € D" (N) and a N-invariant measure n such that

&= Nxu+n.

The potential N v and the N-invariant measure n are uniquely determined.
Moreover v is uniquely determined if (and only if) N satisfies the principle of
unicity of mass.

Proor. The last statement is trivial. Thus we suppose that u,v € D* (N) and

n,{ are N-invariant measures such that

(MN*v+n = Nxu+{.
For Ve ¥ we obtain by Lemma 1.7 and*Proposition 2.3

RY,,+n = RV, +(.
Then we can use Lemma 1.8 letting V'1G and obtain

Nsv+n = N*xp+{
which compared to (*) gives
No*v = Nyo*pu

But as NoCN Lemma 1.2 implies

Nxv = Nxu
and hence n={.
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