DISINTEGRATION THEORY ON A CONSTANT FIELD OF NON-SEPARABLE HILBERT SPACES

ESBEN T. KEHLET

1. Introduction.

We give simple proofs of some disintegration theorems of Maréchal [8] and Vesterstrøm and Wils [11], and comment on the involved properties of measurability.

Let (Z, Σ, μ) be a finite measure space, i.e. Σ is a Borel structure (σ -algebra) of subsets of the set Z, and μ is a finite positive countably additive function on Σ . A complex function f on Z is called measurable if the counter image of each open set is in Σ .

Let H be a Hilbert space. We call a map $f: Z \to H$ scalarly measurable if $z \mapsto (f(z)|\eta)$ is measurable for each $\eta \in H$, and strongly measurable if f is scalarly measurable and there exists a separable subspace K of H such that $f(z) \in K$ for almost all z (cf. [6]). Let $\mathscr{L}^2(\mu, H)$ denote the vector space of strongly measurable maps $f: Z \to H$ with $||f|| \in \mathscr{L}^2(\mu)$; let $f(\mu)$ denote the set of strongly measurable functions equal to f almost everywhere, and let $L^2(\mu, H)$ denote the Hilbert space of classes $f(\mu)$, $f \in \mathscr{L}^2(\mu, H)$.

A map $a: Z \to \mathcal{L}(H)$ is called scalarly measurable if $z \mapsto (a(z)\xi \mid \eta)$ is measurable for each $\xi, \eta \in H$, and is called a measurable field, if $z \mapsto a(z)\xi$ is strongly measurable for each $\xi \in H$, that is if a is scalarly measurable and to every ξ there exists a separable subspace of H containing almost all values $a(z)\xi$. If H is separable the notions coincide and we use the term measurable. Every bounded measurable field a determines an operator on $\mathcal{L}^2(\mu, H)$ by (af)(z) = a(z)(f(z)) and an operator $a(\mu) \in \mathcal{L}(L^2(\mu, H))$ by $a(\mu)(f(\mu)) = (af)(\mu)$, $f \in \mathcal{L}^2(\mu, H)$. In this situation a is called a disintegration of $a(\mu)$. Let \mathcal{D} denote the von Neumann algebra on $L^2(\mu, H)$ of operators $\varphi(\mu)$, $\varphi \in \mathcal{L}^\infty(\mu)$. Let O denote the set of bounded maps $a: Z \to \mathcal{L}(H)$ such that a and a^* are measurable fields. It is easy to see that O is a sub C^* -algebra of $I^\infty(Z, \mathcal{L}(H))$. In [8] and in [11] it is shown that there exists a positive linear map $A \mapsto A$ of \mathcal{D}' into O with A $(\mu) = A$. Especially $a \mapsto a(\mu)$ maps O onto \mathcal{D}' .

Let $\mathcal{M} = \mathcal{M}(H)$ denote the set of bounded maps $a: Z \to \mathcal{L}(H)$ with the

Received October 18, 1977.

property that there exists a family $(H_i)_{i\in I}$ of pairwise orthogonal separable subspaces of H, with (Hilbert) sum H, such that for each $i\in I$ H_i is invariant under a(Z), and $z\mapsto a(z)|H_i$ is measurable. Then $\mathcal{M}\subset O$. Our main contribution is a simple proof that $a\mapsto a(\mu)$ maps \mathcal{M} onto \mathcal{D}' . We also show that \mathcal{M} is a weakly sequentially closed C*-algebra and we give other characterizations of the maps in \mathcal{M} .

We use [1], [3], [4] and [5] freely.

We are indebted to G. A. Elliott for several helpful remarks.

2. Preliminaries.

Let f be a strongly measurable map of Z into H; a point $\xi \in H$ is called an essential value of f, if for each $\varepsilon > 0$ the counter image of $\{\eta \in H \mid \|\xi - \eta\| < \varepsilon\}$ has positive measure. The set of essential values of f is a closed separable subset of H, equivalent functions have the same essential values, and f is equivalent to a strongly measurable function taking essential values only.

If $(f_n)_{n\in\mathbb{N}}$ is a convergent sequence of functions in $\mathcal{L}^2(\mu, H)$, tending to f in $\mathcal{L}^2(\mu, H)$, then the set of essential values of f is contained in the closure of the union of the sets of essential values of the functions f_n . In fact there exists a subsequence $(n_i)_{i\in\mathbb{N}}$ of \mathbb{N} and a set $Y \in \Sigma$ with complement of measure zero, such that $f_n(y) \to f(y)$ and $f_n(y)$ is an essential value of f_n for each n when $y \in Y$, and then any essential value of f is contained in

$$\overline{f(Y)} \subseteq \overline{\bigcup_{n \in \mathbb{N}} f_n(Y)}$$
.

Let K be a closed subspace of H; then $\mathscr{L}^2(\mu, K)$ is a subspace of $\mathscr{L}^2(\mu, H)$, and there is a natural isometry of $L^2(\mu, K)$ into $L^2(\mu, H)$. If a function $g \in \mathscr{L}^2(\mu, H)$ is orthogonal to $\varphi(\mu)\xi(\mu)$ for each $\varphi \in \mathscr{L}^\infty(\mu)$ and each $\xi \in K$ (identified with the corresponding constant function $z \mapsto \xi$ on Z), then any essential value of g is orthogonal to K and $g(\mu) \in L^2(\mu, K^\perp)$. In fact, if there exists $Y \in \Sigma$ with positive measure and $\xi \in K$, such that $(g(y)|\xi) \neq 0$ for all $y \in Y$, then

$$0 + \int_{Y} |(g(y) | \xi)| d\mu(y) = (g(\mu) | \varphi(\mu)\xi(\mu)),$$

when $\varphi(y) = \operatorname{sign}(g(y)|\xi)$, $y \in Y$, and $\varphi(z) = 0$, $z \notin Y$.

From this follows that $L^2(\mu, K)^{\perp} = L^2(\mu, K^{\perp})$, and that $L^2(\mu, K)$ is spanned by $\{\varphi(\mu)\xi(\mu) \mid \varphi \in \mathscr{L}^{\infty}(\mu), \xi \in K\}$. If $(K_i)_{i \in I}$ is a family of pairwise orthogonal subspaces of H with sum K, then $(L^2(\mu, K_i))_{i \in I}$ is a family of pairwise orthogonal subspaces of $L^2(\mu, H)$ with sum $L^2(\mu, K)$. If E is the (orthogonal) projection on K, then $E(\mu)$ is the projection on $L^2(\mu, K)$.

3. Disintegration.

LEMMA 1. Let \mathscr{A} be a separable C*-algebra contained in \mathscr{D}' . Let K be a separable subspace of H. There exists a separable subspace \tilde{K} of H, containing K, such that $L^2(\mu, \tilde{K})$ is invariant under \mathscr{A} .

PROOF. We may assume $1 \in \mathscr{A}$. Let $(A_i)_{i \in \mathbb{N}}$ be a dense subset of \mathscr{A} , and let $(\xi_j)_{j \in \mathbb{N}}$ be a dense subset of K. For each $(i, j) \in \mathbb{N} \times \mathbb{N}$, let $H_{i, j}$ be the subspace of H spanned by the set of essential values of any function in $\mathscr{L}^2(\mu, H)$ with class $A_i \xi_j(\mu)$. Let K_1 be the separable subspace of H spanned by $\bigcup_{(i, j) \in \mathbb{N}} K_1$. For any $A \in \mathscr{A}$ and $\xi \in K$, $A\xi(\mu)$ is limit in $L^2(\mu, H)$ of a sequence of vectors of form $A_i \xi_j(\mu)$; therefore K_1 contains the essential values of $A\xi(\mu)$. In the same way we let K_2 be the subspace of H spanned by the essential values of all $A\xi(\mu)$, $A \in \mathscr{A}$, $\xi \in K_1$, and so on. Then $\widehat{K} = \overline{\bigcup_{n \in \mathbb{N}} K_n}$ contains the essential values of all $A\xi(\mu)$, $A \in \mathscr{A}$, $\xi \in \widehat{K}$. All essential values of $A\varphi(\mu)\xi(\mu) = \varphi(\mu)A\xi(\mu)$, $\varphi \in \mathscr{L}^{\infty}(\mu)$, is contained in \widehat{K} , so $A\varphi(\mu)\xi(\mu) \in L^2(\mu, \widehat{K})$, and $AL^2(\mu, \widehat{K}) \subseteq L^2(\mu, \widehat{K})$.

LEMMA 2. There exists a family $(H_i)_{i\in I}$ of pairwise orthogonal separable subspaces of H, with sum H, such that $L^2(\mu, H_i)$ is invariant under $\mathscr A$ for each $i\in I$.

PROOF. Let $(H_i)_{i \in I}$ be a maximal family of pairwise orthogonal separable subspaces of H with each $L^2(\mu, H_i)$ invariant under \mathscr{A} . Then $L = \bigcap_{i \in I} H_i^{\perp}$ is a subspace of H with $L^2(\mu, L)$ invariant under \mathscr{A} . Let K be any separable subspace of L, and let \widetilde{K} be the smallest subspace of L containing K with $L^2(\mu, K)$ invariant under \mathscr{A} . \widetilde{K} is a separable subspace of L, so by maximality $\widetilde{K} = \{0\}$; therefore $L = \{0\}$.

THEOREM. Let (Z, Σ, μ) be a finite measure space, and H a Hilbert space. Let $\mathcal D$ denote the algebra of multiplication operators on $L^2(\mu, H)$, and let $\mathcal A$ be a separable sub C*-algebra of $\mathcal D'$. There exist a family $(H_i)_{i\in I}$ of pairwise orthogonal separable subspaces of H, with sum H, and a field π on Z of representations $\pi(z)$ of $\mathcal A$ on H, with the properties

- (a) $\forall i \in I \ \forall A \in \mathscr{A} \ \forall z \in Z : \pi(z)(A)H_i \subseteq H_i$, and
- (b) for each $A \in \mathcal{A}$, $z \mapsto \pi(z)(A)$ is a measurable field A on Z with A $(\mu) = A$.

PROOF. Choose $(H_i)_{i \in I}$ as in Lemma 2. Define

$$\mathscr{A}_i = \{A \mid L^2(\mu, H_i) \mid A \in \mathscr{A}\}.$$

For each $i \in I$ there exists a field π_i of representations $\pi_i(z)$ of \mathscr{A}_i on H_i such

that $z \mapsto \pi_i(z)(A \mid L^2(\mu, H_i))$ is a measurable field A_i on Z with $A_i(\mu) = A \mid L^2(\mu, H_i)$ for each $A \in \mathcal{A}$ (see [4, 8.3.1. Lemme]); then

$$\|\pi_i(z)(A \mid L^2(\mu, H_i))\| \leq \|A\|$$
.

Define $\pi(z)(A)$ as the operator on H satisfying

$$\pi(z)(A)|H_i = \pi_i(z)(A|L^2(\mu, H_i))$$
 for each $i \in I$.

Using the notation \mathcal{M} introduced in Section 1, we have the immediate consequence:

COROLLARY. Each $A \in \mathcal{D}'$ has a disintegration in \mathcal{M} .

4. The notion of measurability.

Let B be a von Neumann algebra on the Hilbert space H. It is well known that the following conditions on B are equivalent

- a) B has separable predual B_* ,
- b) B is of countable type and countably generated,
- c) the center of B is of countable type and B is countably generated,
- d) B has a faithful normal representation on a separable Hilbert space,

cf. [3, Chapitre I, § 7, ex. 3 and § 3, ex. 4].

PROPOSITION 1. Let B be a von Neumann algebra on the Hilbert space H. The following conditions on B are equivalent.

- a) Every non-zero central projection in B has a non-zero central subprojection E with BE countably generated.
- b) For each central projection E in B of countable type with respect to the center of B, BE is countably generated.
- c) B is isomorphic to a direct product of algebras with faithful normal representations on separable Hilbert spaces.
- d) B is isomorphic to a sub von Neumann algebra of a direct product of algebras $\mathcal{L}(H_i)$, with each Hilbert space H_i separable.
- e) B has a separating family of normal representations on separable Hilbert spaces.
- f) For each normal state φ of B, the Hilbert space of the representation π_{φ} associated to φ by the G.N.S. construction is separable.
 - g) For each $\xi \in H$, $B\xi$ is separable.
 - h) For each projection $E' \in B'$ of countable type in B', E'H is separable.
- i) There exists a family $(H_i)_{i \in I}$ of pairwise orthogonal separable subspaces of H, with sum H, each invariant under B.

PROOF. We first prove that a), b), c), d) and e) are equivalent.

The implications $a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow e$ are straightforward.

Assume e); then the supports of the normal representations in the separating family form a family $(E_i)_{i \in I}$ of central projections in B, with $\sup_{i \in I} E_i = 1$, such that each BE_i is countably generated. This implies a).

Next we prove b) \Rightarrow g) \Rightarrow h) \Rightarrow i) \Rightarrow e) and g) \Rightarrow f) \Rightarrow e).

Assume b); when $\xi \in H$, the smallest projection E in the center of B with $E\xi = \xi$ is of countable type in the center; thus BE has a strongly dense countable subset, and $B\xi$ is separable, that is g) holds.

Any projection E' in B' of countable type is sum of a sequence of projections on pairwise orthogonal spaces of form $\overline{B\xi_n}$, $\xi_n \in H$, so g) implies h).

By [3, Chapitre III, § 1, Lemme 7], there exists a family of pairwise orthogonal projections of countable type in B', with sum 1; therefore h) implies i). It is trivial that i) implies e).

To prove that g) implies f) we may assume that each normal state of B is a vector state ω_{ξ} , because g) is equivalent to the space free condition a); then the space of the corresponding representation is isometric with the separable space $\overline{B\xi}$. It is trivial that f) implies e).

DEFINITION. We call a von Neumann algebra locally countably generated (l.c.g.), if it satisfies the equivalent conditions in Proposition 1.

Any sub von Neumann algebra of a product of l.c.g. algebras is l.c.g., by Condition d) of Proposition 1.

PROPOSITION 2. Let $(B_n)_{n \in \mathbb{N}}$ be a sequence of l.c.g. algebras on a Hilbert space H. The von Neumann algebra spanned by $\bigcup_{n \in \mathbb{N}} B_n$ is l.c.g.

PROOF. This can be shown on the basis of Proposition 1 i), by a combinatorial argument combined with Zorn's lemma. We are indebted to the referee for the following simple proof, also suggested by G. A. Elliott.

Note that B_nK is separable for each $n \in \mathbb{N}$ and each separable subspace K of H. For each $\xi \in H$, $\overline{B\xi}$ is the closed linear span of

$$\bigcup_{n=1}^{\infty}\bigcup_{i_1=1}^{n}\bigcup_{i_2=1}^{n}\ldots\bigcup_{i_n=1}^{n}B_{i_1}B_{i_2}\ldots B_{i_n}\xi,$$

so $B\xi$ is separable, and Proposition 1 g) applies.

PROPOSITION 3. Let (Z, Σ) be a measurable space, i.e. Σ is a Borel structure on the set Z. Let H be a Hilbert space, and let a be a bounded mapping of Z into

 $\mathcal{L}(H)$. Let \mathfrak{A} denote the von Neumann algebra generated by a(Z). Let B be a von Neumann algebra on H containing \mathfrak{A} .

The following conditions are equivalent.

- a) There exists a family $(H_i)_{i \in I}$ of pairwise orthogonal separable subspaces of H, with sum H, such that for each $i \in I$ the space H_i is invariant under a(Z) and $z \mapsto a(z) | H_i$ is measurable.
- b) For each $\xi \in H$, $a(Z)\xi'$ and $a(Z)^*\xi$ are separable, and a is scalarly measurable.
 - c) A is 1.c.g., and a is scalarly measurable.
 - d) $\mathfrak A$ is l.c.g., and for each normal state φ on B, $\varphi \circ a$ is measurable.
- e) $\mathfrak A$ is l.c.g., and for each normal representation π of $\mathfrak A$ on a separable Hilbert space, $\pi \circ a$ is measurable.
- f) There exists a separating family $(\pi_i)_{i \in I}$ of normal representations of $\mathfrak A$ on separable Hilbert spaces, with $\pi_i \circ a$ measurable for each $i \in I$.

PROOF. It is easy to prove d) \Rightarrow c) \Rightarrow a) \Rightarrow b), and d) \Rightarrow e) \Rightarrow f). We prove b) \Rightarrow f) \Rightarrow d) below.

Assume b). Let \mathbb{P} denote $a(Z) \cup a(Z)^*$. Given $\xi \in H$, define $K_0 = \xi$ and recursively $K_n = VK_{n-1}$, $n \in \mathbb{N}$; the closed span ξ of $\bigcup_{n \in \mathbb{N}} K_n$ is separable and invariant under \mathfrak{A} . The representations $A \mapsto A \mid \xi$ of \mathfrak{A} for $\xi \in H$ separates \mathfrak{A} . Thus b) implies f).

Assume f). By Condition e) of Proposition 1, $\mathfrak A$ is l.c.g. The set of normal functionals φ on $\mathfrak A$, for which $\varphi \circ a$ is measurable, is a closed subspace of $\mathfrak A_*$ separating the points of $\mathfrak A$, because it contains all functionals of form $\psi \circ \pi_i$, $\psi \in \pi_i(\mathfrak A)_*$; by the bipolar theorem it contains all normal states of $\mathfrak A$. This proves d).

The set of bounded maps of Z into $\mathcal{L}(H)$ satisfying the equivalent conditions of Proposition 3 we denote $\mathcal{M} = \mathcal{M}(H)$, cf. Section 1.

Proposition 4. In its natural representation on $l^2(Z, H)$, \mathcal{M} is a weakly sequentially closed C^* -algebra.

PROOF. This follows from the fact that by Proposition 2 for any sequence $(a_n)_{n\in\mathbb{N}}$ of maps in \mathscr{M} the union $\bigcup_{n\in\mathbb{N}} a_n(Z)$ is contained in some l.c.g. algebra.

EXAMPLE 1. A scalarly measurable field a, such that $a(Z)\xi$ is separable for each $\xi \in H$, but $a(Z)^*\xi$ is not:

Let Z be [0,1], Σ the topological Borel structure on Z, and $H=l^2(Z)$. Let ξ_t denote the characteristic function of t, $t \in Z$. Define a field $a: Z \to \mathcal{L}(H)$ by

$$a(t)\xi = 2^{-\frac{1}{2}}(\xi \mid \xi_0 + \xi_t)\xi_0, \quad \xi \in H, \ t \in Z;$$

then $a(t)^*\xi = 2^{-\frac{1}{2}}(\xi \mid \xi_0)(\xi_0 + \xi_t)$, so $t \mapsto a(t)^*$ is not a measurable field.

EXAMPLE 2. A field a of one-dimensional projections, such that $a(Z)\xi$ is strongly measurable for each $\xi \in H$, but $a(Z)\xi$ is not separable when $\xi \neq 0$: Let

$$Z = \{(s,t) \in [0,1]^2 \mid |s-t| \ge 3^{-1}\}.$$

Further let Σ be the topological Borel structure, μ the restriction to Z of two-dimensional Lebesgue measure, and $H = l^2([0,1])$. Define ξ_t , $t \in [0,1]$, as above, and define

$$a(s,t)\xi = \frac{1}{2}(\xi | \xi_s + \xi_t)(\xi_s + \xi_t), \quad (s,t) \in \mathbb{Z}$$
.

5. Constant fields of von Neumann algebras.

Let a finite measure space (Z, Σ, μ) and a Hilbert space H be given.

Let \mathcal{D}_1 denote the maximal abelian von Neumann algebra of multiplication operators on $L^2(\mu)$. Let B be a von Neumann algebra on H, let $\mathcal{M}(B)$ denote $\{a \in \mathcal{M} \mid a(Z) \subseteq B\}$, and let $B(\mu)$ denote the von Neumann algebra on $L^2(\mu, H)$ spanned by all the operators $a(\mu)$, $a \in \mathcal{M}(B)$.

It is well known that $L^2(\mu, H)$ is naturally isomorphic to the Hilbert space tensor product $L^2(\mu) \otimes H$; under this isomorphism \mathscr{D} corresponds to the von Neumann algebra tensor product $\mathscr{D}_1 \otimes \mathsf{C}_H$, \mathscr{D}' corresponds to $\mathscr{D}_1 \otimes \mathscr{L}(H)$, $\{b(\mu) \mid b \in B\}$ corresponds to $\mathsf{C}_{L^2(\mu)} \otimes B$, and $B(\mu)$ corresponds to a von Neumann algebra containing $\mathscr{D}_1 \otimes B$; since $B(\mu)$ and $B'(\mu)$ commutes, and $(\mathscr{D}_1 \otimes B')' = \mathscr{D}_1 \otimes B$ (by [10], cf. [11, Corollary 4.2]), $B(\mu)$ corresponds to $\mathscr{D}_1 \otimes B$, and $B(\mu)' = B'(\mu)$.

If $\mathfrak A$ is a von Neumann algebra on H, the von Neumann algebra spanned by the tensor products $C_{L^2(\mu)} \otimes \mathfrak A'$ and $C_{L^2(\mu)} \otimes B'$ is the tensor product of $C_{L^2(\mu)}$ with the von Neumann algebra spanned by $\mathfrak A'$ and B', so $(\mathscr D_1 \otimes \mathfrak A') \cup (\mathscr D_1 \otimes B')$ spans $\mathscr D_1 \otimes (\mathfrak A' \cup B')''$, and

$$(\mathcal{D}_1 \otimes \mathfrak{A}) \cap (\mathcal{D}_1 \otimes B) = \mathcal{D}_1 \otimes (\mathfrak{A} \cap B) ,$$

and $\mathfrak{A}(\mu) \cap B(\mu) = (\mathfrak{A} \cap B)(\mu)$.

LEMMA 3. Let $\mathfrak A$ and B be von Neumann algebras on Hilbert spaces H and K respectively, Φ a normal homomorphism of $\mathfrak A$ into B, and $\Phi(\mu)$ the normal homomorphism of $\mathfrak A(\mu)$ into $B(\mu)$ corresponding to the homomorphism $1 \otimes \Phi$ of $\mathscr D_1 \otimes \mathfrak A$ into $\mathscr D_1 \otimes B$. Let a be a map in $\mathscr M(\mathfrak A)$. Then $\Phi \circ a \in \mathscr M(B)$, and $(\Phi \circ a)$ $(\mu) = \Phi(\mu)(a(\mu))$.

PROOF. The statement about measurability follows from Proposition 3. If Φ has the form $a \mapsto a \mid E'H$, $a \in \mathfrak{A}$, where E' is a projection in \mathfrak{A}' , then $\Phi(\mu)$ is the map $A \mapsto A \mid E'(\mu)L^2(\mu, H)$, $A \in \mathfrak{A}(\mu)$, and the lemma follows easily. The lemma now follows from the known structure of normal homomorphisms, cf. [3, Chapitre I, § 4, Théorème 3].

LEMMA 4. Let $(H_i)_{i\in I}$ be a family of Hilbert spaces, with Hilbert sum H, and for each $i \in I$ let $a_i \in \mathcal{M}(H_i)$. Assume $\sup_{i \in I, z \in Z} ||a_i(z)|| < \infty$. Then $z \mapsto a(z) = \bigoplus_{i \in I} a_i(z)$ defines a map $a \in \mathcal{M}(H)$, with $a(\mu) = \bigoplus_{i \in I} a_i(\mu)$.

PROOF. It is clear that $a \in \mathcal{M}(H)$. It is enough to check the equality on each $L^2(\mu, H_i)$, cf. Section 2, and there it is trivial.

PROPOSITION 5. (cf. [11 Theorem 4.1, 2)]). Let B be a von Neumann algebra on H. Any $A \in B(\mu)$ has a disintegration in $\mathcal{M}(B)$.

PROOF. If B has a faithful normal representation on a separable Hilbert space, the proposition follows from Lemma 3 and [3, Chapitre II, \S 3, Théorème 1]. If B is l.c.g. it follows from the above, Proposition 1, and Lemma 4. We now consider the general case.

Let $A \in B(\mu)$ be given. Let $a \in \mathcal{M}$ be a disintegration of A, and let \mathfrak{A} be the von Neumann algebra spanned by a(Z). Then $\mathfrak{A} \cap B$ is l.c.g., and $A \in \mathfrak{A}(\mu) \cap B(\mu) = (\mathfrak{A} \cap B)(\mu)$, so A has a disintegration in $\mathcal{M}(\mathfrak{A} \cap B) \subseteq \mathcal{M}(B)$.

REMARK. It is easy to generalize the contents of this paper to the framework of Radon measure spaces (see [2], cf. also [9]). By use of Proposition 3 and the structure of Radon measure spaces we see that the relevant definition of \mathcal{M} is that \mathcal{M} is the set of bounded scalarly measurable maps $a: Z \to \mathcal{L}(H)$ such that the von Neumann algebra spanned by a(K) is l.c.g. for each compact subset K of Z.

6. Non-constant fields of Hilbert spaces.

Let a finite measure space (Z, Σ, μ) and a field $H = (H(z))_{z \in Z}$ of Hilbert spaces be given.

By a measurable structure on H we shall here understand a family \mathscr{F} of vector fields $\eta \in \prod_{z \in Z} H(z)$ with the property:

There exists a family $(\xi_i)_{i \in I}$ of fields in \mathscr{F} , such that $(\xi_i(z))_{i \in I}$ spans H(z) for each $z \in Z$, such that for each $i \in I$ $(\xi_i | \xi_j) = 0$ everywhere for all but countably many $j \in I$, and such that \mathscr{F} consists of the fields ξ equal a.e. to a field η with

 $(\eta \mid \xi_i)$ measurable for each $i \in I$ and $(\eta \mid \xi_i) = 0$ everywhere for all but countably many $i \in I$.

We call $(\xi_i)_{i \in I}$ a fundamental family of measurable vector fields.

Our conditions are analogous to the conditions used in [8], compare [7] for a much more general, and less elementary, theory.

Constant fields are measurable.

Now assume given a measurable structure \mathscr{F} with fundamental family $(\xi_i)_{i \in I}$. It is easy to see that \mathscr{F} is a vector space, invariant under multiplication with measurable functions.

It is easy to show, by Zorn's lemma, that there exists a family $(I(l))_{l \in L}$ of pairwise disjoint countable subsets of I, with union I, such that $(\xi_i | \xi_j) = 0$ whenever $i \in I(l)$, $j \in I(m)$, $l \neq m$. For shortness, we call such a family a splitting of I.

Since we can orthonormalize $(\xi_i)_{i\in I(l)}$ for each $l\in L$, we see that \mathscr{F} has a fundamental family which at each point z of Z is an orthogonal system containing a basis of H(z). It follows that $(\xi \mid \eta)$ is measurable for all $\xi, \eta \in \mathscr{F}$.

If $\eta \in \mathcal{F}$ and $(\eta \mid \xi_i) \neq 0$, say that η and i are associated. Call i inessential for η if $(\eta \mid \xi_i) = 0$ a.e., and essential otherwise. Then the set of essential indices of η is countable, equivalent vector fields in \mathcal{F} have the same essential indices, and η is equivalent to a field in \mathcal{F} associated with essential indices only.

When $\eta \in \mathcal{F}$ let $\eta(\mu)$ denote the equivalence class of η , and let $H(\mu)$ denote the set $\{\eta(\mu) \mid \eta \in \mathcal{F}, \|\eta\| \in \mathcal{L}^2(\mu)\}$. $H(\mu)$ is a Hilbert space.

Let J be a subset of I, with $(\xi_j | \xi_k) = 0$ when $j \in J$, $k \in I \setminus J$. Let $H_J(\mu)$ denote the set of $\eta(\mu)$ in $H(\mu)$ with all essential indices in J; then $H_J(\mu)$ is the closed subspace of $H(\mu)$ spanned by

$$, \ \left\{ \varphi(\mu)\xi_j(\mu) \ \middle| \ \varphi \in \mathcal{L}^{\infty}(\mu), \ j \in J \right\} \ ,$$

and $H_J(\mu)^{\perp} = H_{I \setminus J}(\mu)$. If $(I(I))_{I \in L}$ is a splitting of I, $H(\mu)$ is the sum of the spaces $H_{I(I)}(\mu)$, $I \in L$.

Call a field a of operators $a(z) \in \mathcal{L}(H(z))$ measurable if $a\eta \in \mathcal{F}$ when $\eta \in \mathcal{F}$. If a is also bounded, let $a(\mu)$ denote the corresponding operator on $H(\mu)$. Let \mathcal{D} denote the algebra of operators $\varphi(\mu)$ of multiplication with functions $\varphi \in \mathcal{L}^{\infty}(\mu)$ on $H(\mu)$.

The proof of Theorem 1 can now be carried over in this framework.

Let \mathscr{A} be a separable sub C*-algebra of \mathscr{D}' . There exists a splitting $(I(l))_{l\in L}$ of I, and a field π on Z of representations $\pi(z)$ of \mathscr{A} on H(z), such that $H_{I(l)}$ is \mathscr{A} -invariant for each l, and $z\mapsto \pi(z)(A)$ is a measurable field A with A $(\mu)=A$.

REFERENCES

- 1. N. Bourbaki, Intégration, Chap. 1-4, 2. ed. (Act. Ind. Sci. 1175 no. 13), Hermann, Paris, 1965.
- 2. N. Bourbaki, Intégration, Chap. 9 (Act. Ind. Sci. 1343 no. 35), Hermann, Paris, 1969.
- 3. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Algèbres de von Neumann), 2. ed. (Cahier Scientifiques 25), Gauthier-Villars, Paris, 1969.
- J. Dixmier, Les C*-algèbres et leurs représentations (Cahier Scientifiques 29), Gauthier-Villars, Paris, 1964.
- 5. P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- E. Hille and R. S. Phillips, Functional analysis and semigroups (Amer. Math. Soc. Coll. Publ. 31), Providence, R.I., 1957.
- 7. O. Maréchal, Champs mesurables d'espaces hilbertiens, Bull. Sci. Math. 93 (1969), 113-143.
- O. Maréchal, Opérateurs decomposables dans les champs mesurables d'espaces Hilbertiens, C. R. Acad. Sci. Paris Sér A 266 (1968), 710-713.
- 9. R. Ryan, Representative sets and direct sums, Proc. Amer. Math. Soc. 15 (1964), 386-390.
- M. Takesaki, A short proof of the commutation theorem (M⊗N)' = M'⊗N', in Lectures on operator algebras pp. 780-786 (Lecture Notes in Math. 247), Springer-Verlag, Berlin Heidelberg New York, 1972.
- J. Vesterstrøm and W. Wils, Direct integrals of Hilbert spaces, II, Math. Scand. 26 (1970), 89– 102.

MATEMATISK INSTITUT
KØBENHAVNS UNIVERSITET
UNIVERSITETSPARKEN 5
DK-2100 KØBENHAVN Ø
DENMARK