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DISINTEGRATION THEORY ON
A CONSTANT FIELD OF
NON-SEPARABLE HILBERT SPACES

ESBEN T. KEHLET

1. Introduction.

We give simple proofs of some disintegration theorems of Maréchal [8] and
Vesterstrom and Wils [11], and comment on the involved properties of
measurability.

Let (Z,Z, y) be a finite measure space, i.e. 2 is a Borel structure (o-algebra)
of subsets of the set Z, and y is a finite positive countably additive function on
2. A complex function fon Z is called measurable if the counter image of each
open set is in Z.

Let H be a Hilbert space. We call a map f: Z — H scalarly measurable if
z > (f(2)|n) is measurable for each # € H, and strongly measurable if f is
scalarly measurable and there exists a separablé subspace K of H such that
f(z) € K for almost all z (cf. [6]). Let #*(u.H) denote the vector space of
strongly measurable maps f: Z — H with || ]| € £?(u): let f (1) denote the set
of strongly measurable functions equal to f'almost everywhere, and let L?(u, H)
denote the Hilbert space of classes f(u), f € £*(u, H).

A map a: Z — Z(H) is called scalarly measurable if z — (a(z)¢é|n) is
measurable for each &5 € H, and is called a measurable field, if = — a(z)¢ is
strongly measurable for each & € H, that is if « is scalarly measurable and to
every & there exists a separable subspace of H containing almost all values
a(z)é. If H is separable the notions coincide and we use the term measurable.
Every bounded measurable field a determines an operator on £(u, H) by
(af )(2)=a(2)(f(2)) and an operator a(y) € L (L*(u, H)) by a()(f (W)= (af) (),
f e £?%(u, H). In this situation a is called a disintegration of a(u). Let £ denote
the von Neumann algebra on I2(u, H) of operators @{u), ¢ € L™ (u). Let O
denote the set of bounded maps a: Z — £(H) such that « and «* are
measurable fields. It is easy to see that O is a sub C*-algebra of I*(Z, £ (H)). In
[8] and in [11] it is shown that there exists a positive linear map 4 +— A~ of &’
into O with A (u)=A. Especially a ~ a(y) maps O onto 9'.

Let .# =.#(H) denote the set of bounded maps a: Z — £ (H) with the
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property that there exists a family (H)),.; of pairwise orthogonal separable
subspaces of H, with (Hilbert) sum H, such that for each i € I H, is invariant
under a(Z), and z+— a(z)]H; is measurable. Then .#<Q. Our main
contribution is a simple proof that a — a(u) maps .# onto 2. We also show
that .# is a weakly sequentially closed C*-algebra and we give other
characterizations of the maps in .#.

We use [1], [3], [4] and [5] freely.

We are indebted to G. A. Elliott for several helpful remarks.

2. Preliminaries.

Let f be a strongly measurable map of Z into H; a point £ € H is called an
essential value of f; if for each £>0 the counter image of {n € H ] I1E—nll <&}
has positive measure. The set of essential values of fis a closed separable subset
of H, equivalent functions have the same essential values, and fis equivalent to
a strongly measurable function taking essential values only.

If (f,).en is a cOnvergent sequence of functions in %2 (u, H), tending to f in
%?(u, H), then the set of essential values of fis contained in the closure of the
union of the sets of essential values of the functions f,. In fact there exists a
subsequence (n);,cn of N and a set Y € 2 with complement of measure zero,
such that f, (v) — f(y) and f,(y) is an essential value of f, for each n when
y € Y, and then any essential value of f is contained in

) g ng Ja(Y).

Let K be a closed subspace of H; then #2(u,K) is a subspace of %%(u, H),
and there is a natural isometry of L?(u,K) into L?(u,H). If a function
g € £*(u, H) is orthogonal to ¢(u)é(u) for each ¢ € £*(u) and each ¢ € K
(identified with the corresponding constant function z — ¢ on Z), then any
essential value of g is orthogonal to K and g(u) € L?(u, K*). In fact, if there
exists Y € X with positive measure and ¢ € K, such that (g(y)|£)+0 for all
y €Y, then

0+ I Yi(s(y)li)ldu(}’) = (gWlewiw),

when @(y)=sign (g(y)|{), y€ ¥, and ¢(2)=0, z ¢ Y.

From this follows that L?(u, K)* = L?(u, K*), and that L?(u, K) is spanned by
{oWé W l o€ L), € K}. If (K); is a family of pairwise orthogonal
subspaces of H with sum K, then (L*(u,K));; is a family of pairwise
orthogonal subspaces of L2(u, H) with sum L?(y, K). If E is the (orthogonal)
projection on K, then E(u) is the projection on L?(u, K).
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3. Disintegration.

Lemma 1. Let of be a separable C*-algebra contained in @'. Let K be a
separable subspace of H. There exists a separable subspace K of H, containing
K, such that L*(u, R) is invariant under o.

Proor. We may assume 1 € . Let (4,),.n be a dense subset of o, and let
(£;)jen be a dense subset of K. For each (i, j) € N x N, let H; ; be-the subspace
of H spanned by the set of essential values of any function in .%%(u, H) with
class A;&;(u). Let K, be the separable subspace of H spanned by U jen
«nH; j Forany A € o and ¢ € K, A¢(y) is limit in L*(u, H) of a sequence of
vectors of form A,¢;(u); therefore K, contains the essential values of A¢(u). In
the same way we let K, be the subspace of H spanned by the essential values of
all A(u), A e, &cK,, and so on. Then R =U,_y K, contains the essential
values of all A¢(u), Ae o, &eR. All essential values of Ae(u)é(w)
=@(WAE(H), ¢ € L), is contained in K, so Ap(u)é(u) € L*(4, K), and
AL*(u, R)s L*(1,R). *

LeMMA 2. There exists a family (H),.; of pairwise orthogonal separable
subspaces of H, with sum H, such that L?(u, H) is invariant under sf for each
iel

ProoF. Let (H));.; be a maximal family of pairwise orthogonal separable
subspaces of H with each L?(u, H)) invariant under /. Then L=, ;H} is a
subspace of H with L?(y, L) invariant under &/. Let K be any separable
subspace of L, and let K be the smallest subspace of H containing K with
L?(u, K) invariant under . K is a separable subspace of L, so by maximality
R ={0}; therefore L={0}.

THEOREM. Let (Z, X, p) be a finite measure space, and H a Hilbert space. Let 9
denote the algebra of multiplication operators on L*(u,H), and let o/ be a
separable sub C*-algebra of D'. There exist a family (H); of pairwise
orthogonal separable subspaces of H, with sum H, and a field m on Z of
representations n(z) of & on H, with the properties

(a) VielVAe A Vze Z: n(z)(AH;cH,, and

(b) for each A € o, z v n(2)(A) is a measurable field A on Z with A" (u)= A.

Proor. Choose (H),.; as in Lemma 2. Define
o = {A|L2(wH)| Ae}.

For each i € I there exists a field n; of representations 7,(z) of &f; on H; such
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that z— m(z)(A|L*(u, H)) is a measurable field 4; on Z with A;(u)
=A|L*(u,H) for each A € o/ (see [4, 8.3.1. Lemme]); then

Im:(2) (A1 L?(u H)Il < 114] -
Define n(z)(A) as the operator on H satisfying
n(@)(A) | H, = m(2)(A|L*(n, H)) for each iel.

Using the notation .# introduced in Section 1, we have the immediate
consequence:

CoRroLLARY. Each A € &' has a disintegration in 4.

4. The notion of measurability.

Let B be a von Neumann algebra on the Hilbert space H. It is well known
that the following conditions on B are equivalent

a) B has separable predual B,

b) B is-of countable type and countably generated,

c) the center of B is of countable type and B is countably generated,
d) B has a faithful normal representation on a separable Hilbert space,

cf. [3, Chapitre I, § 7, ex. 3 and § 3, ex. 4].

ProposITION 1. Let B be a von Neumann algebra on the Hilbert space H. The
following conditions on B are equivalent.

a) Every non-zero central projection in B has a non-zero central subprojection
E with BE countably generated.

b) For each central projection E in B of countable type with respect to the
center of B, BE is countably generated.

c) B is isomorphic to a direct product of algebras with faithful normal
representations on separable Hilbert spaces.

d) B is isomorphic to a sub von Neumann algebra of a direct product of
algebras ¥ (H,), with each Hilbert space H; separable.

€) B has a separating family of normal representations on separable Hilbert
spaces.

f) For each normal state ¢ of B, the Hilbert space of the representation =,
associated to ¢ by the G.N.S. construction is separable.

g) For each £ € H, BE is separable.

h) For each projection E' € B' of countable type in B, E'H is separable.

i) There exists a family (H}),.; of pairwise orthogonal separable subspaces of
H, with sum H, each invariant under B.
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Proor. We first prove that a), b), ¢), d) and e) are equivalent.

The implications a) = b) = c) => d) = e) are straightforward.

Assume e); then the supports of the normal representations in the separating
family form a family (E)),, of central projections in B, with sup,, E;=1, such
that each BE, is countably generated. This implies a).

Next we prove b) = g) = h) = i) => ¢) and g) = f) = e).

Assume b); when ¢ € H, the smallest projection E in the center of B with E&
=¢ is of countable type in the center; thus BE has a strongly dense countable
subset, and B¢ is separable, that is g) holds.

Any projection E’ in B’ of countable type is sum of a sequence of projections
on pairwise orthogonal spaces of form B,, £, € H, so g) implies h).

By [3, Chapitre I1I, § 1, Lemme 7], there exists a family of pairwise
orthogonal projections of countable type in B, with sum 1; therefore h) implies
i). It is trivial that i) implies e).

To prove that g) implies f) we may assume that each normal state of B is a
vector state wy, because g) is equivalent to the space free condition a); then the
space of the corresponding representation is isometric with the separable space
BE. It is trivial that f) implies e).

DEeFiNITION. We call a von Neumann algebra locally countably generated
(L.c.g), if it satisfies the equivalent conditions in Proposition 1.

Any sub von Neumann algebra of a product of l.c.g. algebras is l.c.g., by
Condition d) of Proposition 1.

ProPOSITION 2. Let (B,),.N be a sequence of l.c.g. algebras on a Hilbert space
H. The von Neumann algebra spanned by U, .\ B, is l.c.g.

Proor. This can be shown on the basis of Proposition 1 i), by a
combinatorial argument combined with Zorn’s lemma. We are indebted to the
referee for the following simple proof, also suggested by G. A. Elliott.

Note that B,K is separable for each n € N and each separable subspace K of
H. For each ¢ € H, B¢ is the closed linear span of

U0 0.0 B,B, ... B¢,

n=1i=1 ip=1 i,=1

so B¢ is separable, and Proposition 1 g) applies.

ProrosiTION 3. Let (Z, £) be a measurable space, i.e. £ is a Borel structure on
the set Z. Let H be a Hilbert space, and let a be a bounded mapping of Z into
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&L (H). Let W denote the von Neumann algebra generated by a(Z). Let B be a von
Neumann algebra on H containing .
The following conditions are equivalent.

a) There exists a family (H));.; of pairwise orthogonal separable subspaces of
H, with sum H, such that for each i € I the space H, is invariant under a(Z) and
z > a(z)| H; is measurable.

b) For each ¢ € H, a(Z)¢ and a(Z)*¢ are separable, and a is scalarly
measurable.

c) is L.c.g, and a is scalarly measurable.

d) W is L.c.g., and for each normal state ¢ on B, @oa is measurable.

e) WUis l.c.g., and for each normal representation n of W on a separable Hilbert
space, moa is measurable.

f) There exists a separating family (m;);c; of normal representations of U on
separable Hilbert spaces, with n,oa measurable for each i € I.

Proor. It is easy to prove d) = c) = a) = b), and d) = ¢) = f). We prove
b) = f) = d) below.

Assume b). Let P denote a(Z)Ua(Z)*. Given & € H, define K,=¢ and
recursively K,=VK,_, n € N; the closed span & of U,_y K, is separable and
invariant under . The representations 4 > A|& of A for e H separates .
Thus b) implies f). .

Assume f). By Condition e) of Proposition 1, U is Lc.g. The set of normal
functionals ¢ on U, for which ¢@oa is measurable, is a closed subspace of 2,
separating the points of U, because it contains all functionals of form yomn,
¥ € m;(A),; by the bipolar theorem it contains all normal states of U. This
proves d).

The set of bounded maps of Z into .# (H) satisfying the equivalent conditions
of Proposition 3 we denote .# = .# (H), cf. Section 1.

ProPOSITION 4. In its natural representation on 1*(Z,H), #H is a weakly
sequentially closed C*-algebra.

Proor. This follows from the fact that by Proposition 2 for any sequence
(@)nen Of maps in # the union U, .\ a,(Z) is contained in some l.c.g. algebra.

ExaMPLE 1. A scalarly measurable field 4, such that a(Z)¢ is separable for
each ¢ € H, but a(Z)*¢ is not:

Let Z be [0,1], X the topological Borel structure on Z, and H =12(2). Let ¢,
denote the characteristic function of ¢, t € Z. Define a field a: Z — £ (H) by



DISINTEGRATION THEORY ON A CONSTANT FIELD ... 359

a(é = 274 E+E), EeH, t1eZ;

then a(t)*E=2"H&| E)(Ep+E), sO t > a(t)* is not a measurable field.

ExampLE 2. A field a of one-dimensional projections, such that a(Z)¢ is
strongly measurable for each & € H, but a(Z)¢ is not separable when ¢+0:
Let

Z = {(s0e[0,172] |s—t|237"}.

Further let X be the topological Borel structure, u the restriction to Z of two-
dimensional Lebesgue measure, and H=1[*([0,1]). Define &, t e [0,1], as
above, and define

a(s,¢ = FEIEHENEA+E),  (NeZ.

5. Constant fields of .von Neumann algebras.

Let a finite measure space (Z, X, u) and a Hilbert space H be given.

Let 2, denote the maximal abelian von Neumann algebra of multiplication
operators on L2(u). Let B be a von Neumann algebra on H, let .#(B) denote
{ae # l a(Z)< B}, and let B(u) denote the von Neumann algebra on L?(y, H)
spanned by all the operators a(u), a € .#(B).

It is well known that L2(u, H) is naturally isomorphic to the Hilbert space
tensor product L?(u)®@H ; under this isomorphism 2 corresponds to the von
Neumann algebra tensor product 9,®Cy, 9’ corresponds to 2,®.% (H),
{b(w) | b € B} corresponds to C;z,,®B, and B(u) corresponds to a von
Neumann algebra containing 2, ®B; since B(u) and B'(4) commutes, and
(2,®B)=92,®B (by [10], cf. [11, Corollary 4.2]), B(u) corresponds to
2,®B, and B(uY =B ()

If A is a von Neumann algebra on H, the von Neumann algebra spanned by
the tensor products C;z,, @A’ and C;:,, ®B' is the tensor product of C;z,
with the von Neumann algebra spanned by &' and B', so (2,@U)U (2, ®B)
spans 2,® W' U B’)’, and

(2,W N (2,®B) = 2,™UNB),
and A(y) N B(p)= AN B)(p).

LeMma 3. Let W and B be von Neumann algebras on Hilbert spaces H and K
respectively, ® a normal homomorphism of W into B, and ®(u) the normal
homomorphism of W(y) into B(u) corresponding to the homomorphism 1@ ® of
2,®U into 9,@B. Let a be a map in MQ). Then doae #(B), and (P-a)

()= () (a(p).



360 ESBEN T. KEHLET

Proor. The statement about measurability follows from Proposition 3. If @
has the form a — a|E'H, a € A, where E’ is a projection in ', then ®(u) is the
map A — A|E (u)L2(u, H), A € (), and the lemma follows easily. The lemma
now follows from the known structure of normal homomorphisms, cf. [3,
Chapitre 1, § 4, Théoréme 3].

LemMA 4. Let (H);c; be a family of Hilbert spaces, with Hilbert sum H, and for
each iel let a;e M(H) Assume sup;. ..zla;(z)]|<oc. Then zi> a(z)
=@, d;(2) defines a map a € M (H), with a(u)= D;.;a;(u).

PRroOF. It is clear that a € .# (H). It is enough to check the equality on each
L?(u, H)), cf. Section 2, and there it is trivial.

ProprosITION 5. (cf. [11 Theorem 4.1, 2)]). Let B be a von Neumann algebra on
H. Any A € B(u) has a disintegration in .# (B).

Proor. If B has a faithful normal representation on a separable Hilbert
space, the proposition follows from Lemma 3 and [3, Chapitre II, § 3,
Théoréme 1]. If B is L.c.g. it follows from the above, Proposition 1, and Lemma
4. We now consider the general case.

Let A € B(u) be given. Let a € # be a disintegration of 4, and let 2 be the
von Neumann algebra spanned by a(Z). Then UNB is lcg., and
A eU(uw)N B(p)= (AN B)(u), so 4 has a disintegration in .4 @ N B)<c .#(B).

REMARK. It is easy to generalize the contents of this paper to the framework
of Radon measure spaces (see [2], cf. also [9]). By use of Proposition 3 and the
structure of Radon measure spaces we see that the relevant definition of .# is
that .# is the set of bounded scalarly measurable maps a: Z — ¥ (H) such
that the von Neumann algebra spanned by a(K) is lLc.g. for each compact
subset K of Z.

6. Nori-constant fields of Hilbert spaces.

Let a finite measure space (Z, Z, u) and a field H = (H(z)). .z of Hilbert spaces
be given.

By a measurable structure on H we shall here understand a family % of
vector fields n € [,z H(z) with the property:

There exists a family (&;);¢; of fields in &, such that (,(2));.; spans H (z) for
each z € Z, such that for each i € I (;|;)=0 everywhere for all but countably
many j € I, and such that # consists of the fields £ equal a.e. to a field n with
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(n] £;) measurable for each i € I and (n] £;) =0 everywhere for all but countably
many i € .

We call (£);.; a fundamental family of measurable vector fields.

Our conditions are analogous to the conditions used in [8], compare [7] for
a much more general, and less elementary, theory.

Constant fields are measurable.

Now assume given a measurable structure & with fundamental family (£);.}.

It is easy to see that & is a vector space, invariant under multiplication with
measurable functions.

It is easy to show, by Zorn’s lemma, that there exists a family (I(})),., of
pairwise disjoint countable subsets of I, with union I, such that (¢;|£;)=0
whenever i € I(l), j € I(m), [+m. For shortness, we call such a family a splitting
of I.

Since we can orthonormalize (£);, for each [ € L, we see that # has a
fundamental family which at each point z of Z is an orthogonal system
containing a basis of H(z). It follows that (£|#) is measurable for all £,n € £#.

Ifn € & and (] &) +0, say that n and i are associated. Call i inessential for
if (n1&)=0 ae., and essential otherwise. Then the set of essential indices of # is
countable, equivalent vector fields in & have the same essential indices, and n
is equivalent to a field in & associated with essential indices only.

Wheh 7 € & let n(u) denote the equivalence class of #, and let H(u) denote
the set {n(n) | n € &, Inl € L*(u)}. H(y) is a Hilbert space.

Let J be a subset of I, with (£;1£,)=0when j € J, k € I\ J. Let H;(u) denote
the set of n(u) in H(u) with all essential indices in J; then H,(y) is the closed
subspace of H(u) spanned by

Ao | peLxw), jel),

and H,(p)" =H;« y(w). If (I(])),c_ is a splitting of I, H (u) is the sum of the spaces
Hl(l)(ﬂ)» lelL.

Call a field a of operators a(z) € .#(H(z)) measurable if an € & whenn e £.
If a is also bounded, let a(u) denote the corresponding operator on H(u). Let 2
denote the algebra of operators ¢@(u) of multiplication with functions
@ € £ (p) on H(p).

The proof of Theorem 1 can now be carried over in this framework.

Let o/ be a separable sub C*-algebra of 2'. There exists a splitting (I(l)),c, of
1, and a field n on Z of representations n(z) of o on H (z), such that Hy, is o/-
invariant for each I, and z - n(z)(4) is a measurable field A” with A (u)= A.
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