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ON M-IDEALS AND
THE ALFSEN-EFFROS STRUCTURE TOPOLOGY

ULF UTTERSRUD

Abstract.

The M-ideals of a G-space are characterized, and it is shown that a Banach
space V is a G-space if and only if the Alfsen—Effros structure topology on the
extreme points of the dual ball is Hausdorft.

Introduction.

Let V be a real Banach space and ¢V} the extreme points of the unit ball of
V*. Alfsen and Effros used in [3] the w*-closed L-summands of ¥ * to define a
structure topology on ¢V ¥. In this topology a p € (. V ¥ can never be separated
from its negative, hence is it sometimes more convenient to identity p and —p
and use the quotient space (¢ V§),. The Alfsen-Effros structure topology has
two important special cases:

1) It K is a compact convex set in a locally convex Hausdorft space, then
there is a facial topology on ¢ K (see [1] or [2]). Let V=A(K) (the set of all
continuous affine functions on K), then it is known that (. V}¥), is
homeomorphic to J.K.

2) If Vis a Lindenstrauss space (i.c. V' * isometric to an L, (u)-space), then the
structure topology on ¢ V¥ introduced by Effros in [S] coincides with the
Alfsen—Effros structure topology (see [3, p. 168]).

A subspace N of Vis an L-summand if there is a subspace N’ of V such that
NNN'={0}, N+N'=V, and for eachpe N,qe N’

lp+qll = lpl+lql

From the symmetry of the definition we see that N’ is an L-summand. N’ is
unique and hence we call it the complementary L-summand of N.

A closed subspace J ot V is an M-ideal if its annihilator J is an L-summand
of ¥*. In Corollary 5 we give a condition on the M-ideals of V that is sufficient
to ensure that V is a predual L,(u)-space. We then use an analog of this
condition or rather its equivalent formulation on the w*-closed L-summands
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of V*, to define a separation axiom for topological spaces. We call it the
splitting property and it follows that (Corollary 7) V'* is isometric to an L, (u)-
space if (6.V¥), has this property. The splitting property is stronger than T,
and weaker than Hausdorff.

In section 2 we characterize the M-ideals of a G-space (Theorem 9). We
show that a closed subspace J of V (={fe C(X):f(x)=4,f(y,)}) is an M-
ideal if and only if

J={feV: f(x)=0 for all xe F} for some closed set FS X .

Theorem 10 is our main result. We there generalize results ([2, Theorem 6.2]
and [5, Theorem 6.3]) on the facial topology ot ¢.K and the structure topology
on (6. V§), (V a predual L, (u)-space). We show that a Banach space V is a G-
space if and only if (é.V ), is Hausdorff. We also show that in a G-space the
intersection of any family of M-ideals is an M-ideal, and we raise the problem
whether the G-spaces can be characterized in this way. Finally in Theorem 12
we show that (0. V¥), is perfectly normal if V is a separable G-space.

In section’3 we give some examples of Banach spaces where (0. V §), has the
splitting property, and examples of families of M-ideals such that their
intersection is not an M-ideal.

Part of this paper is from the authors cand. real. thesis prepared in the period,
1974-76 at the University of Oslo under direction of professor Erik Alfsen.
Most of it is based on Asvald Lima’s paper Intersection properties of balls and
subspaces in Banach spaces [11], and many of the results must be regarded as
corollaries of his results. The author wants to thank Erik Alfsen, Asvald Lima
and in particular Gunnar Olsen for encouragements, discussions and valuable
suggestions.

1. L-summands and L, (u)-spaces.

In [11, Theorem 5.8] has Lima given several characterizations of
Lindenstrauss spaces. To make the geometrical content clearer we shall here
reformulate one of them. First we need some lemmas about L-summands.

LemMA 1. Let L, M and N be L-summands in a Banach space V. Then:
@) If NNL={0} then L&N'
(i) If N+L=V then NgL
(i) If NNL={0} and N+ L=V then L=N’
(iv) If NNL={0} and NN M={0} then NN (L+M)={0}
(v) If N L then there exists an L-summand M such that N+ M=Land NN M
= {0}
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Proor. The definition of an L-summand and simple verification.

LEmMA 2. Let N be an L-summand with dim N 2 2. Then N can be written as a
direct sum of two L-summands both different from N if and only if there exists an
L-summand L such that L& N and {0} +L+N.

Proor. If N=L+M and L,M#N, then LN and {0} + L+ N. Conversely
if L& N and {0} +L # N, then from Lemma 1(v) there is an M such that N=L
+M, LONM={0} and M%N.

THEOREM 3. Let V be a real Banach space. Then the following statements are
equivalent
(i) V* is isometric to an L, (u)-space.
(i) [0,116,V¥=N{(LUL)NV¥: L is an L-summand in V*} and span (p) is
an L-summand for all p € 0. V}.
(iii) If N is any L-summand in V* of dimension 22, then N can be written as a
direct sum of two L-summands both different from N.

Proor. The equivalence between (i) and (ii) is proved in [11, Theorem 5.8].

(ii) =>. (ii1) Suppose (ii) is true, and suppose there is an L-summand N in V*
of dimension =2 that cannot be written as a direct sum of two smaller L-
summands. Let L be any L-summand in ¥V *. We cannot have NN L+ {0} and
NNL#N according to Lemma 2, hence NgL or NNL={0}. Then from
Lemma 1()) NgLor NcL, that is NgLUL' Thus

NNV¥ ¢ N{(LUL)N V¥ : Lis an L-summand in V*},
and from (ii)
NNV <[0,110.VE.

Let p € N and ||p|| =1, then p € 4.,V ¥. From (ii) span (p) is an L-summand, and
{0} #span (p)+ N. But this is impossible by Lemma 2, and we have got a
contradiction.

(ili) = (ii) Suppose (iii) is true. Since we always have

[0,116.V* < N{(LUL)N V¥ : L is an L-summand in V*}  ([11, p. 34])

it is enough to prove the converse inclusion. Suppose then p ¢ [0,1]0.V'}. We
may assume |p|<1. Let N(p) be the intersection of all L-summands
containing p. Then N(p) is an L-summand ([3, Prop. I. 1.13]). DimN({p)=1
since p#0. If dim N(p)=1, then N(p)=span (p) and

N@)NoVE = a(N@NVE) = {£lpl~'p}
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hence |p|~'p e 6. V¥. But that is impossible since p ¢ [0,1]6.V¥. Hence
dim N (p)=2 and there are L-summands N and M,NNM={0}, N+ M=N (p)
and N,M £ N(p). Now p ¢ N and p ¢ M since N(p) is the smallest L-summand
containing p. Define L=N + N(p), then L is an L-summand and p ¢ L since
pe N(p) and p ¢ N. It is also easy to prove (by using Lemma 1) that L'=M
and hence p ¢ L. Together p ¢ LUL' and we have

péN{(LULYNV}: Lis an L-summand in V*} .

It remains to prove that span (p) is an L-summand for all p € 6,V ¥. Let N(p) as
before be the smallest L-summand containing p. Suppose dimN (p)=2. Then
there are L-summands N,M, N+ M =N(p) and N, M =% N(p). We always have

peN(pP)NVE=(N+M)N V¥ = (NN VHU (MNJVH) .

Hence p € N or p € M. But that contradicts the choice of N(p). Thus dim N (p)
=1, N(p)=span (p) and span (p) is an L-summand. The proof is complete.

We are now turning to the w*-closed L-summands in V*.
g

DEFINITION. We say that we can split a w*-closed L-summand N in V* if
there exist w*-closed L-summands L and M, L,M #+ N such that N=L+ M.

REMARK. A simplex K is said to be prime (see [1, p. 164]) if for any two
closed faces F, F, such that K =conv (F, UF,), necessarily F; =K or F,=K.
This definition can be extended. Let F, F, and F, be closed splitfaces of a
compact convex set K. We say that F is prime if F=conv (F; UF,) implies F,
=F or F,=F. Let J be the M-ideal in V=A(K) defined by (see [3, p. 100])

J = {ae A(K) : a(x)=0 for all x e F},

and let N=J°. Then we can split the w*-closed L-summand N if and only if F
is not prime.

THEOREM 4. Let V be a real Banach space, then V* is isometric to an L (n)-
space if we can split every w*-closed L-summand in V* of dimension 2.

Proor. Let N be any L-summand in V* with dim N =2 and let N* be the
intersection of all w*-closed L-summands that contains N (there does exist one
since V* is an L-summand). N* is a w*-closed L-summand, and dimN* =2
since N & N*. Hence there exist w*-closed L-summands L and M, L, M+N*
and L+ M = N*, Since N* is the smallest w*-closed L-summand containing N,
we have N&L and N¢ M. Now NNL=+{0} or NNM#{0} because if NN L
={0} and NN M={0] then from Lemma 1(iv)

{00 =NN(L+M)=NON*=N.
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Without loss of generality we may assume N N L= {0}, hence {0} +NNL=+N.
By using Lemma 2 we verify statement (iii) of Theorem 3, and V' * is isometric
to an L, (u)-space.

If J is an M-ideal in a Banach space V then the annihilator J* is a w*-closed
L-summand, and if N is a w*-closed L-summand in V* then there exists an M-
ideal J in V such that J°=N. Hence we can find a property for the M-ideals in
V that is an analog to the split property for w*-closed L-summands in V*.

DerinITION. We say that an M-ideal J £ V is reducible if there exist M-ideals,
J,and J,, J%J,J, such that J=J, NJ,. An M-ideal is irreducible of it is not
reducible. (This definition is due to Alfsen.)

CoROLLARY 5. A Banach space V is isometric to a predual L, (u)-space if every
irreducible M-ideal J %V is a hyperplane (i.e. codimJ=1).

Proor. Use Theorem 4, the comments above and the fact that J]+J3
=(J,NJ,)° for all M-ideals J, and J, in V ([11], Lemma 6.18).

DerinviTiON. We say that a topological space has the splitting property if for
every closed set F that contains more than one point, there exist closed sets
F,,F, and F,,F,#F such that F,UF,=F.

If Y has the splitting property then Y is T,, because {7} can be written as a
union of two smaller closed sets if it contains more than y, and that is
impossible since {y} is the smallest closed set containing y. It is not difficult to
prove that a T,-space where all convergent nets have at most finitely many
limitpoints will enjoy this property, and hence every Hausdorff space has the

splitting property. But such a space is generg]ly not Hausdorff.

LEMMA 6. Let V be a real Banach space. Then (0.V¥), has the splitting
property if and only if we can split every w*-closed L-summand in V* of
dimension =2.

PROOF. A set in 8,V ¥ is (structure) closed if and only if it is of the form
NNo.V¥* where N is a w*-closed L-summand. Hence the splitting property on
(6.V¥), is equivalent to the property that to all w*-closed L-summands N of
dimension =2 there exist w*-closed L-summands N, and N, such that

(1.1) NNaVH = (N,NEVHU (N;NOVE

and
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(1.2) NNV £+ NNoVE i=12.

Suppose (1.1) and (1.2) are true. N; + N, is a w*-closed L-summand (see [11,
Lemma 6.18]) and from [3, Il Prop. 1.15]

NNV = NNaVF = (N,N3VHU (N,NO.VH)
= (Ny+N)NaVF = o ((N,+N)) N V)

and hence NNV¥=(N,+N,)NV¥ (The Krein—-Milman theorem). Now N =
N;+ N, since N and N, + N, are subspaces, and from (1.2) N;, N, % N. If con-
versely N =N, + N, and N, N, %N, then it is trivial to prove (1.1) and (1.2).

CoROLLARY 7. Let V be a real Banach space. V* is isometric to an L, (u)-space
if the structure space (0,V{), has the splitting property.

Proor. Use Lemma 6 and Theorem 4.

2. G-spaces.

A real Banach 'space V is said to be a G-space if there exists a compact
Hausdorff space X and a set

S = {(XpYwid} & X x X x[-1,1]
such that V is isometric to the space

A ={feCX): f(x)=4f(y) for all (x,y,4,) € S}.

A G-space is isometric to a predual L,(u)-space. This was first proved by
Lindenstrauss [13, Theorem 6.9]. Lima has given a new proof in [11, Theorem
7.10].

In [3] a subspace N of V* is defined to be hereditary if g € N and |jp|| + |lq
—pl=llql implies p € N. .

LeMMA 8. Let X be compact Hausdorff and V< C(X) a Banach space and let
J £ V. be closed subspace such that J° is hereditary. Then there exists a closed set
Fg X such that

J={feV: f(x)=0 for all xe F}.

PrOOF. Let ¢,, x € X be the point measure and define F={xe X : ¢, € J°},
F is closed since J° is w*-closed. Now f € J is equivalent to p(f)=0 for all
peJ°. Let fe J and x any pointin F, then ¢, € J° and hence 0=¢, (f)=1(x),
thus f(x)=0 for all x € F. Assume conversely that f(x)=0 for all x € F. Let
ped.(J°NVY), then pe J°NJ V' since J° is hereditary ([3, Prop. II 1.15])
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and hence there exists x € F and 4, |4|=1, such that p=/¢,, and so p(f)
=&, (f)=Af(x)=0. From the Krein—-Milman theorem every q € J° is the
w*-limit of a net {p,} where each p, is linear combination of points from
0.(J°NV¥), thus g(f)=0 and hence fe J.

If F is a subset of X and V< C(X), we define
Je={feV: f(x)=0 for all xe F]}.

Let F be the closure of F, then Jz=Jf since all f € V are continuous on X.

THEOREM 9. Let V£ C(X) be a G-space (ie.
V={feCX): f(x)=2S()}) -
A closed subspace J of V is an M-ideal if and only if J=Jg for some closed set
FcX.

Proor. “only if” follows from Lemma 8 since J° is an L-summand and
hence hereditary. Let F be any closed subset of X, and let J=Jf. It now
suffices to prove that J is a semi M-ideal since all semi M-ideals in a predual
L, (w)-space are M-ideals. (A consequence of [11, Theorem 5.5]). Choose any
functions fe J, g e V with || f|| £1, |g| 1. If we now are able to prove

1) JNBE+/L1)NBE-f1) # &

then we can use Theorem 6.15 of [11] (with £=0) to conclude that J is a semi
M-ideal. Define h,h, and h by h,(x)=g(x)+f(x), h,(x)=g(x)—f(x) and

h(x) = max (h,(x), h,(x),0)+min (h,(x),h,(x),0)—g(x), xeX.
Now h+g e V ([13, Lemma 6.7]) and hence h € V. Let x € F, then f(x)=0 and
h(x) = max (g(x),0)+min (g(x),0)—g(x) = 0,

and so he J. Let x € X, then

g(x) if hy(x)Shy(x)<0 or 0= hy,(x)Shy(x)
() —h(x) = | f() if hy(x)SOShy(x) or hy(x)SOSh,(x)
lhl(x)+f(x) if h,(x)Sh, (<0 or 05k, (X)Shy(x)

In the third case we have |k, (x)+f(x)|Smax (|f(x)l,|g(x)]) and hence |h;(x)
—h(x)|£1 for all x since || f||<1 and |g|| £1. Thus

lhy—hl =1 or lg+f—h| =1
and h € B(g+f,1). Similarly we prove h € B(g—f,1) and so we have (2.1).
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REMARK. Let Y={xe X 1 ¢, e ( V¥], a set FEY is said to contain all its
extreme points if {1 (0)NY : fe Jg} =F. Such a set has to be relatively
closed in Y. Now it follows from Theorem 9 that a closed J=V is an M-
summand if and only if J = J for some relatively open-closed F £ Y and both F
and CF contain all their extreme points. If 0 ¢ ¢,V¥ (w*-closure) and X is
connected, then V does not contain any nontrivial M-summands. But if
0 e V¥ or X is not connected, we can have, but we need not have, any
nontrivial M-summands.

THEOREM 10. Let V be a real Banach space. The following statements are
related in this way: (i) <> (i) and (i) = (iii)
(1) Vis a G-space
(i) (¢ V'¥), is Hausdorff
(iii) The intersection of any fumily of M-ideals is an M-ideal and ker (p) is an M-
ideal for all p € ¢ . V¥.

Proor. (ii) = (i) If (C.V'}), is Hausdorff, then it has the splitting property
and hence by Corollary 7, V* is isometric to an L, (u)-space. Since the structure
topology on (c.V§), coincides with the biface topology we can use [5]
Theorem 6.3 to conclude that V is a G-space.

(i) = (ii) If two Banach spaces are isometric, then the structurespaces are
homeomorphic, hence it is sufficient to prove it for a G-space V£ C(X) (ie. V
={fe C(X): f(x)=2,/0,)}). Let p,,p,ec.V} be linearly independent
points, then there exist x,,x, € X such that p;=4g,, |4]=1, i=1,2. Without
loss of generality we may assume 4, =/,=1. Choose w*-continuous linear
functionals, i.e. f,g € V such that f(p,)=g(p,)=/(p;)= —g(p,)=1. Define

F, ={xeX: f(x)20, g(x)20 or f(x)<0, g(x)<0}
and
Fy={xeX: f(x)20, g(x)<0 or f(x)<0, g(x)=20},

and N;=Jp, i=1,2. N, and N, are by Theorem 9 w*-closed L-summands.
Now
(anaer) u (Nznaeyf) = 0 V!

since F;UF,=X,and p; € N;N¢ .V}, i=1,2since x; € F, and x, € F,. Define
h(x) = max (f(x),g(x),0)+min (f(x),g(x),0)—f(x)—g(x) forall xeX.

Then h € J, and h(x,)= —1, hence p, ¢ NN ¢ VY. In a similar way we find
p: & NyNéVE Thus (G V), is Hausdorff.
(i) = (iii) It suffices to prove it for G-spaces

V= {je C(X): f(xa)z’izf(yz)} .
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Let {J,} be any family of M-ideals in V, then there exists by Theorem 9 a family
{F,} of closed sets in X such that J,=J for each y. Now

NJ, = NJe = Jur, = JTF,
v ¥

and hence (1, J, is an M-ideal by Theorem 9.
Let p e ¢.V§, then p=+¢,, x € X and

ker(p) = {feV: f(x)=0] = J;y .

1
]

Hence ker (p) is an M-ideal by Theorem 9.

REMARK 1. (i) = (ii) was proved by Effros [5] in the separable case, and later
generally by Fakhoury [7] and Taylor [16]. The main idea in our proof is from
Taylor.

REMARK 2. We do not know whether (iii) = (i) is true or not. This is a more
general form of a problem raised by Effros [6, p. 115] and solved in the
separable case by Gleit [9]. He proved that if V is a separable simplex space
then V is an M-space if and only if the intersection of any family of M-ideals is
an M-ideal. Statement (iii) can also be formulated in terms of L-summands in
V*, that is 3 N, (w*-closure) is an L-summand for any family {N,} of w*-
closed L-summands (this is simular to Stermers axiom for compact convex
sets, see [ 1, p. 146]) and span (p) is an L-summand for all p € ¢,V ¥. Lima has
proved such a result for compact convex sets, [12, Theorem 20].

REMARK 3. Roy proves in [15, Lemma 4] that for a G-space V the family
{U,: fe V] where
Uy ={pedlVt: f(p+0],
is a basis for the structure topology on .V ¥. Now it is not difficult to prove

that a Banach space V satisfies statement (iii) if and only if the family
{U,: fe V} is a basis for the structure topology on . V{.

The following corollary was first proved by Alfsen and Andersen (see [1,
Theorem 11, 7.8] or [2, Theorem 6.2]).

CoROLLARY 11. Let K be a compact convex set in a locally convex Hausdorff
space. Then the facial topology of d.K is Hausdorff if and only if K is a Bauer
simplex.

ProoF. Let V=A(K), then 0.K with facial topology is homeomorphic to
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(0. V1), with structure topology. Now A4(K) is a G-space if and only if K is a
Bauer simplex, and the corollary follows from Theorem 10.

Effros proved as mentioned above, that (0.V¥), is Hausdorff if V is a
separable G-space. Roy has pointed out ([15, p. 145]) that a slight change in
his proof gives that (0.V}), is in fact a normal space. We will show that (6. V }),
is perfectly normal, and our proof is almost a copy of a part of the proof Gleit
made for [8, Prop. 1.6].

THEOREM 12. (0.V'¥), is perfectly normal if V is a separable G-space.

Proor. From the above remarks it suffices to show that each closed set is a
G;. Let N be any w*-closed L-summand in V* The w*-topology on V¥ is
metrizable, and Gleit constructs the following metric that generates the w*-
topology.

d(p,q) = Y, 27 "a,(p)~a,(q) Pp,ge VY
where {a,} is dense in the unit ball of A(V{). Then he defines
f(p) = dpp,NOV}) peVy

and shows that this f'is a continuous and convex function and f(0)=0. Define

c, = {peaem : f(p)g%} n=1,2,...

then each C, is structurally compact in 0.V} (see [5, Prop. 4.8]). Now d(—p,q)
=d(p, —q) and hence f(p)=f(—p) and thus each C, is symmetric. Since
(0.VY), is Hausdorff each C, is structurally closed, and

U, = {peavts st}

structurally open. Now NN, V¥=,U, and hence NN V¥ is a G,

3. The splitting property.
Let X be compact Hausdorff, x, € X and y, |||l <1 a regular Borel measure
on X with u({x,})=0. Define Vg C(X) by
V= {feCX): fx)=p(f)}.

Then V is.a Banach space, and it is possible by using [11, Theorem 6.17] and
our Lemma 8 to prove the following Proposition:
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ProPosITION 13. Let V be as above and J SV a closed subspace. Then J is an
M-ideal if and only if J = J¢ for some closed F < X where x, ¢ F, or x, € F and
supp u\ F contains at most one point.

CoroLrary 14. (6.VY), is homeomorphic to the space Y= X \ {x,} where all
the sets FNY, F closed in X, and x, ¢ F or ({xo} Usupp u) S F form the closed
sets of the topology on Y.

Proor. If supp u\ F contains just one point x, then F'=F U {x} is closed
and J]::JF'.

COROLLARY 15. Assume supp u contains more than one point. Then (3,V¥),
has the splitting property if and only if x, ¢ suppu, and (8.V¥), is never
Hausdorff.

ProOOF. If x, ¢ supp p then it is simple verification to show that Y (defined in
Corollary 14) has the splitting property. If x, € supp u then it is impossible to
split the closed set suppu. (We all the time assume u({x,})=0). Y is never
Hausdorff since it is impossible to separate the points of supp u.

.

From Corollary 15 and Corollary 7 we have that
V={feCX): flx))=n(f)}

is isometric to a predual L, (u)-space if x, ¢ supp u. This is also true when
Xo € supp . A more general result was proved by Gleit [10] and Bednar and
Lacey [4]. They proved if foreachi=1,2,...,n, y;is a regular Borel measure on
X, lwll =1, x; € X and |u|({xy, X3 . ., X,})=0, then

V=1{feCX): f(x)=w(f) i=1,...,n}

is isometric to a predual L, (u)-space and a simplex space if all y, are positive.
Lima has pointed out that the condition |w|({xy,...,x,})=0,i=1,...,n,is not
necessary for the conclusion that V is isometric to a predual L, (u)-space.

ProrosiTION 13 can now in a natural way be extended to finitely many
measures y;.

ExampLE 1. Let m be the Lebesgue measure on [0,1] and

V={feC([0,1]): f@=m(N)},

(6.V}), does not have the splitting property since 4 € [0, 1] =supp m. Perdrizet
[14] used this space as an example of a simplex space with a family of M-
ideals such that the intersection is not an M-ideal. Let F,={}+1},n=2,3,...,
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then by Proposition 13, Jg is an M-ideal for each n, but NJp =J; where
F=(UF,U{}}, is not an M-ideal since + € F and [0,1]\ F=suppm\ F
contains more than one point.

ExampLE 2. Let u=4e,+1e,, and
V=1{feCI01]): f@=n(N)],
(@.V¥), has the splitting property since § ¢ {0,1} =supppu. Let F,, n=3,4,...

be as above, then by Proposition 13, J¢ is an M-ideal for each n, but nJg F, 18
not an M-ideal by the same reason as above.

ExampLE 3. Alfsen gives in [1, Proposition II 7.17] an example of a prime
simplex. If u is positive, |u||=1 and pu({x,})=0 then

V= {feCX): f(xo)=ulf)
is a simplex space with unit, and hence
K = {pe V*: p positive and |p| =1}

is a simplex. Assume supp u=X. From Corollary 15 and an earlier remark we
have that K is prime. Alfsen used in his example X =N U {oo} (the one point
compactification of the natural numbers), u=32""¢, and x,=00. Now (K
with the facial topology is homeomorphic to (¢.V ), and hence by Corollary
14 homeomorphic to N with closed sets N, & and the finite ones (because a
closed infinite subset of X must contain oo).
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