MATH. SCAND. 44 (1979), 73-91

ON A CARTAN FORMULA FOR EXOTIC
CHARACTERISTIC CLASSES T

FRIEDRICH HEGENBARTH

It is our object to prove Cartan formulae for exotic characteristic classes
which will be given in part II. In particular we will be concerned with the exotic
characteristic classes for spherical fibrations as defined by D. Ravenel [9]. We
deal with the case of Z,-coefficients. These are elements ¢, € H*~!(BG; Z,),
where BG is the classifying space for stable spherical fibrations. The e, are
defined by twisted secondary cohomology operations based on the relation

k—1

Y Sq¥Sq* ¥ = 0.

j=0

What we need is therefore a Cartan formula for twisted secondary cohomology
operations. The untwisted case was done by L. Kristensen [6]. We will carry
over his method to the twisted case. This means first of all to use cochain
operations for the definition of cohomology operations. In particular we prove
two exact sequences on which the definition is based (see Thm. 1 and 2 of
section 1). The proofs rely on a very general theorem about cochain functors
[4, part II, Thm. 3.1] and are given in section 1 and section 2. In section 3 we
define twisted secondary cohomology operations. Section 4 is devoted to the
classes e, € H*“'(BG; Z,). In particular we will see fairly easy that the e, are
welldefined modulo ordinary characteristic classes. This is one of the main
points in Ravenels paper (compare Thm. 3.1.1 of [9]). I would like to thank L.
Kristensen and 1. Madsen for their interest and discussions as well as the
Matematisk Institut of the Aarhus University for partial support.

1. Twisted secondary cochain operations.

This section is devoted to the proof of two exact sequences on which the
definition of twisted secondary operation is based.

If X is a space let C*(X) denote the singular cochain complex of X over Z,.
Let Y be a fixed space. We consider the two functors from the category of pairs
of spaces to the category of chain complexes, dAb
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C(X) = C*(X) and C'(X) = C*¥xX).

Let O(Y) be the set of all natural transformations 6={6,},-¢,1,2,...: C = C
such that 6 preserves zero. So for each n

8,: C"— C"*a

is a natural transformation. q is fixed for all n and is called the degree of 6. We
write

0,(X) = 6X: C"(X) —» C"*"Y(Yx X).
If @ € O(Y) has degree ¢, we define 6+6' € O(Y) by
X +0%)(c) = 0X(c)+6%(c)

for each X and c € C(X). This is welldefined and makes O(Y) into an Z,-
module, i.e. if 04(Y) denotes the natural transformations of degree g, 09(Y) is a
Z,-module and O(Y) is the direct product of the 0(Y).

One also can define the composition 808 by (0-8)* to be the composition

C(X) 25 C(Yx X) 225, C(Yx (Y x X)) > C(Yx X)
where the last map is induced by
YxX — Yx(YxX)
0, x) = 0.y, %)

It is easily checked that -6’ is an element of O(Y) and that deg (6-6')=deg0
+degh'.

Because we do not assume additivity of the 0, 00 (6'+6")%+0-60'+6-6". But
(0+0)0"=0-0"+0-0" is true. In O(Y) we define a differential

V:0"(Y) - 0"*(Y)
by
V(6) = 60+606

where 6 is the boundary operator in C*(X) respectively C*(Y x X).
That is, VoV=0. Then we have

THEOREM 1. Let ZO(Y)=KerV. Then there is a homomorphism ¢: ZO(Y)
— H*(Y; Z,)® A such that

0(Y) %> ZO(Y) > H*(Y, Z))®A — 0

is exact. Here A is the Steenrod algebra mod 2.
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We call the elements of O(Y) twisted cochain operations of the first kind.
A twisted cochain operation of the second kind is a natural transformation
H={H, ,} of two variables

Hm,": Cm®cn — C1m+n+q

satisfying H(c,0)=H (0,c)=0 for all c. q is again fixed and called the degree of
H.

With Q(Y) we denote the set of all cochain operation of the second kind.
Again we can define the sum of H,H € Q(Y) by (H+H')(c,d)=H(c,d)
+ H'(c,d) which gives Q(Y) a Z,-module structure.

If Q9(Y) are the elements of Q(Y) of degree g, there is a homomorphism

VQU(Y) - Q7TH(Y)
defined by
(VH)(c,d) = dH(x,y)+ H(dx,y)+ H(x, y)
for (c,d) e C™(X)®C"(X). We will prove the following

TueoREM 2. Let ZQ(Y)=KerV. There is a homomorphism e: ZQ(Y)
— H*(Y)®A®A such that the sequence

Q(Y) %> ZQ(Y) > H*(Y)@A®A — 0
is exact.
Both theorems are consequences of Theorem 3.1 in [4]. We will make this
more explicit.

To the cochain functors C and C’ are cohomology functors H and H'
associated, namely

H(X) = H¥*(X;Z;) and H'(X)= H*(YxX;Z,)
Note that if Uc X,
H'(X,U) = H¥(Yx (X,U)) = H*(YxX,YxU).
So we have coboundary operators 6*: H"(U) - H"*!(X, U).

A stable cohomology operation is a natural transformation A: H — H’
which commutes with the coboundary operators, i.e.

A% (u) = 6*A(u)

where u € H*(U). Let A(Y) be the set of all stable cohomology operations.
A(Y) has a Z,-module structure and if 4,4’ € A(Y) then
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H*(X) *% H*(Yx X) 2%, H¥(Yx Yx X) » H*(Y x X)

defines a composition product Ao 4. (The last map is induced by the map Y
XX — YxYx X given above). From Thm. 3.1 in [4] we have the following
result:

LeEmMMA 1.
0(Y) Y5 ZO(Y) 4> A(Y) - 0

is an exact sequence.

So it remains to prove A(Y)=H*(Y)®A. Note that 4A(pt)=A. An element
y®a € H*(Y)®A is identified with the element 6 € A(Y), where
0(x) = y®a(x)
for x € H*(X). This defines a map
d: H*(Y)®A — A(Y).

Proor oF THEOREM 1. We will construct a map
¥: A(Y) > H*(Y)®A4

which is inverse to .
Let 4 € A(Y) be given and set K, = K(Z,, n), the Eilenberg-Mac Lane-space
of type (Z,,n). Let 1, € H*(K,; Z,) be the generator.
Then 4
@) e Y HT(Y)®H(K,)+H (Y)®Z,

i=0
where deg i=q. If {d},...,d.} is a basis for H'(Y) we can write
q i X
i) = ) Y ami®idn)+y,®1
i=0 j=1
where a!™'®1(n) e H*"(Y)®H"*!(K,) and y,®1 € H"*9(Y)®H°(K,).
Similarly, we have
q i
ilgey) = Y Y a7 @+ 1)+y,,,®1.
1=0 j=1
The stability of / implies
2:0(1h41) = (1®0)i(1,44) ,

where o: H"*'(K,,,) » H"(K,) is the cohomology suspension. Because
d(1,44)=1,, this implies
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(1®0)A(1,+1)

A1)
and
Yn = VYarr = 0.
So we have for each i,j a sequence {1/(n) € H"*/(K,)},=.,.3,... with
o(t{(n+1)) = H(n)
which corresponds to an element 4 of 4. This correspondance is given by
M) = 1in) .
We define
YA = Z

Ti
i=0 j=0

AT

It is easy to check that ¥ is inverse to .

Before we prove Theorem 2 we note that the composition product in A(Y)
corresponds to the product defined by Massey—Peterson, see e.g. [8]: If x®a,
y®b are elements of H*(Y)® A, then this product is defined by

(*®a)o (y®b) = Y x-d'(y))®a’b,
where Y’ a'®a" is the diagonal of a. The map
?: H¥*(Y)®A — A(Y)
as defined above then satisfies
P(x®a) (y®b) = P(x®a) P(y®D),

where in A(Y) is taken the composition product.

2. Proof of Theorem 2.

To prove theorem 2 it is convenient to give Q(Y) another interpretation.

Let X be a space. We will consider the category y of “spaces over X”, i.e. an
object is a pair (V, f) with V a space and f: ¥V -» X a continuous map. A
morphism &: (V/, ') — (V, f) is a continuous map ¢: V' — V such that

A 4
"\ /7
X

commutes. Note that any object (¥, f) can be viewed as a morphism, namely
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V-4 X

N/

X
The functors C and C' are defined on y:
CV.f)=C*(V) CW.f)=C*YxV).
By the remark above f induces chain maps
[ X) - Cx(V)
and
(Ixf)F: C*(X) - C'*(V).

We define now S(X) to be the set of natural transformations from C to C'. An
element Te S(X) is a family (T"/),

THD: C*(V, f) = C*(V, f)

of maps which increases dimension by a fixed number g, the degree of T. We
therefore have for each n a map

TYD: C(Y, f) = C™ (V. ).

IfE&: (V,f)—> (V,f)isa fnorphism in x we obtain the following commutative
diagram

', f) L, emraqy, )

\f" a Xf)“/
13

gt Cn(X)M, C’"*‘Q(X) (1 %8

/(f')' (1x f’)"\

CV. 1) g €UV, )

We further require that the zero elements are preserved, i.c.
TVN0) = 0.
As above we can define T+ T’ by
(TN 4 TV )(x) = TV N(x)+ T'V(x) .
We denote by S%(X) the elements of degree ¢. A differential
V: §9(X) - STtL(X)
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is defined by V(T)=0T+ Té. Then (S(X),V) is a chain complex. A continuous
map g: X' — X induces a chain map S(g): S(X) — S(X'). If V-5 X' is a
“space over X" and T € S(X), then

Se(T)¥) = T8N

Therefore S is a functor (contravariant) from the category of spaces to the
category of chaincomplexes.

Next we consider O(C, S), the set of natural transformations between C and
S which preserve zero. We use the notation of [4]. So for example O(Y)
=0(C,QC).

O(C,S) is a chain complex. The differential, also denoted by V, is given by

V(F) = VF+F$ .

Lemma 2. The chain complex Q(Y) can be identified with (O(C,S),V).

Proor. We define chain maps
10(Y) - 0(C,S)

and ": O(C,S) — Q(Y) which are inverse to each other.
First let F € Q(Y) be of degree q, i.e.

FX: C"(X)@®C"(X) — Cm+mta(x)
For a fixed x € C™(X) we have
FX(x) = FX(x,"): C"(X) —» C"*m*9(X)
and one defines FX(x) € S(X) by
(FX ()9 = F¥(g (x)) .
Then F: C — S can be defined by
BX: C(X) - S(X).

It is easily checked that F is a natural transformation. Conversely let
Te O(C,S) be given. For any space X then

TX: C(X) — S(X).
If (x,y) € C"(X)@®C™(X) we define
T*(x,y) = (T¥(x)*9)(y)

We will check naturality of T. Let f: X' — X be given. We note first that by
naturality of T
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(SUNTX @)™ = (TX(f* )™
for any map ¢: W— X'. By definition we have
(SOTXEN ™ = (THE)H/.
Taking ¢=1d: X’ — X' we have
(TX)XD = (TX(FH )X
Therefore
A xNHTX ) = AxF(T¥FE)
= (T ) 0)
= (T¥(f* () > *0)
= TX(f* (). f*0) -
The second equality is the commutativity of the diagram

c(x) D, o (x)

A ax ¥

C(X’) (Tx(x)!(x"“ C/ (X/)
because TX(x) € S(X).

It is easy to check that ~ and ~ are chain maps.

Remember that we have fixed a space Y at the beginning of the section. To
prove theorem 2 we need also the following

LEMMA 3. For any space X the chain complex S(X) can be identified with
0(Y x X).
Proor. We define
@: 0(YxX)— S(X)

by the rule: Let f: ¥V — X be a map, ie. (V,f) is an object in x and let 0 €
O(Y x X). With

Vo XxV
v— (f()v)
we denote the graph of f. Then @ (0)" is the composition
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0" (1 xJ)*
CV) 25 C(Yx X x -, c(yxvy.

We define ¥: S(X) — O(Y x X) by the rule: if Te S(X) we set ¥(T)" to be
the composition

TXxV,m)
—

C(V) s C(X x V) C(YXXxV),

n,: XxV— V,m,: X x V— X are the projections. To prove ¥® ()" =6" we
note that

C(V)—= — C(XxV)

'\4 0X xV

C(YxXxV)-Zs C(YXXxXxV)

C(YxXxV)
is commutative. Here

My YXX XX xV— YxXxV maps
0, x,x",v) = (1, x,0) .
To prove @(¥(T))")) we note that the following diagram commutes:

TX xV,m)
i

C(V) "> 4, C(XxV) C(YxXxV)

\ T (Ixfy

TP, C(Yx V)

From theorerh 1 and lemma 3 we have immediately

COROLLARY 3. The cohomology H*(S(X), V) of the complex S(X) is isomorphic
to H*(Y x X)®A.

We are now ready to prove theorem 2. We will again apply theorem 3.1 of
[4]. C and S are cohomology generating functors and satisfy the required
assumptions. Here

HS(X) = H*(Yx X)®A

is the cohomology associated to S.

Math. Scand. 44 — 6
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Let A(H, HS) denote the set of all stable cohomology operations from H to
HS. Then we have from theorem 3.1 the following exact sequence:

(S) 0(C,8) X Z0(C,S) > AH,S% — 0
(ZO(C,S) = KerV).
To compute A(H, HS) we have to identify a natural transformation

0X: H*(X) » H¥*(Yx X)®A

or
6X: H*(X) —» (H*(Y)@ A)Q@H*(X) .

H*(Y)®A=M is a fixed module and by the same method as in the proof of
theorem 1 one obtains

AH,H5 = H*(Y)QARA .
By lemma 2, the sequence (S) can be identified with
Q(Y) 5 ZQ(Y) » H*(Y)®A®A — 0.
This proves theorem 2.
To define secondary operations we will need a slight generalization of

theorem 1. We will have to use cochain operations of m variables. To be more
precise, we consider natural transformations

0,:C"x...xC"— C"*9,
So for any space X,
0X:C"(X)x ... xC"(X) > C"*(Yx X) .

It is required that 8X(x,,...,x,)=0if x,=x,=...=x,=0. Cx ... xC and
C' are cohomology generating functors. The differential in C x ... x C is given
by

O(Xyse o s Xp) = (0%y4,...,0%,,) .
From theorem 3.1 of [4] one obtains the following generalization of
theorem 1.
THEOREM 1'.. Let V: O(Cx ... xC,C')—> O(Cx ... xC,C’) be defined by
VO(xy,. . s Xpm) = 00(xg,. . s %) +0(0xy,. . .,0x,) .
Then there is an exact sequence

0(Cx...xC,C)-Y ZO(Cx ... xC,C) > H*(Y)®(A@.‘..@A)—+ 0.
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3. Definition and properties of twisted secondary cohomology operations.

Let (D, S) be a pair of spaces and n: D — Y a map. We consider H*(Y)® A
as the Massey—Peterson algebra, i.e. the multiplication is that given at the end
of section 1. To keep this in mind we follow the convention and write
H*(Y)OA for it. So H*(Y)®A can be considered as the algebra of stable
cohomology operations from H*(X) to H*(Y x X).

In this section we will associate to a relation in H*(Y)©®A a cohomology

operation H*(D,S) —» H*(D,S).
Let ay,...,a,b,,...,b, € ZO(Y) with dega;+degh,=q+1 and set ¢
=3"1_,a;b;. Then

Ve = dc+cd = Y dab,+abd =0

since da;=a;0 and 8b,=b,4.

We have the map ¢: ZO(Y) - H*(Y)OA and we will abbreviate &(x)=X.
Assume ¢(c)=¢=Y"_, 4,b,=0.

By theorem 1 there exists a 0 € O(Y) with

VO =c=Y ab,.
Let [u] € H"(D,S) have the property
blul =0 1=1,2,....r

and let bu=odv; for some v; € C""'(Yx (D,S)). Consider O(u)+ X", a;(v) €
C"* (Y x (D, S)):

S0+ a;(v)) = 00w+ day(v) =
VO(u)+0(0w)+Y. a,(dv) = c(u)+Y. ab;(u) = 0.
Therefore [0(u)+ 3}, a;(v)] € H**9(Y % (D, S)).
REMARK. Strictly speaking a;(v;) € C"*4(Y x Y x (D, S)) but we think of it as

an element of C"*4(Y x (D, S)) under the induced map of Yx (D,S) -» Yx Y
x (D, S) sending (y, x) to (y,y,x). This is consistent with the product in O(Y).

The class [0(u)+ 3 a;(v)] depends on various choices. Let 6 € O(Y) also
satisfy V8&'=c. Then w=60'—60 € ZO(Y) and

[9(“)+Z a;(v;)] —[0'(“)+Z a;(v)] = w([ul) .

Before we determine the dependence of the v; we need the following

LemMA 4 (see L. Kristensen [5]). There exists to each a € O(Y) a d(a) €
O(Cx ... xC) (t factors, t arbitrary) such that



84 FRIEDRICH HEGENBARTH

1) aley+...+x)+ax)+...+alx)=4dd(a; x;,...,x)+
d(a; 6xy,. . .,0x,)

and

2 d(a;0,...,x;0,...,00=0.

Proor (as in [4]), a(¥ x;)+Xa(x;) can be considered as an element of
ZO(C x ... x C). Because d is additive it is mapped to zero under ¢. By theo-
rem 1’ there exists s'(a) € O(C x ... x C) with

Vd (a)(xy,. . -, x) = a(}, x)+ alx) .
From this we get
vd'(a)(0,...,x,0...0) = a(x)+a(x) =0,
or
éd' (a)(0,. ..,x,0...0) = d'(a)(0s..,6d,0...0).
Therefore we may replace d' (a)(xy,. . .,x,) by
' d(a; xy,...,x) = d(a)(xy,. . ‘,x,)—i—‘}l:l d'(a)(,...,x;0,...,0)
which has the desired properties.
Let now v} € C"~ (Y x (D, S)) also satisfy
bu = ov;.
Then v,=v,+2z; with éz;=0 and using lemma 4 we have
O+, a;,(v) +0()+ Y, a;(v)
=Y a(v;+z)+) a;(v)
= Y a,(v) +a;(z) +8d(a; v, z) +d(a;; 60, 0)+ Y a;(v)
=Y a/z)+06 ) d(a; v,2) .
So we have
[0+, a,@)]=[0W+), a;(v)] = ¥ 4([z]) .

At last let «’ be another cocycle representing [1]. Then the same proof as in [5,
p. 73] gives

[0W)+Y )] = [0@)+ ai(v)]

where v;=b;(1).
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Summarizing we obtain an element in
H"9(Yx (D,S))/Y. 4,H" " *4€%(Y x (D,S)) .
Here 4,H*(Y x (D, S)) is understood to be the image of

H*(Yx (D,S)) %> H*(Yx Yx (D,S)) -4x1", H*(Yx (D,S)),

with 4: Y > Y xY the diagonal.

Using the map =n: (D,S)— Y, H*(D,S) is a H*(Y)OA-module. If
de H*(Y)OA and we H*(D,S) then a-w is the image of w under the
composition

H*(D,S) %> H*(Yx (D,S)) =~ H*(D,S)
with #: (D,S) — Yx (D,S), (x)= (n(x),x) the graph of n. The class of [0(u)
+> a;(v)] in

H™*9(Yx (D,S))/Y. 4,H"'*%&4%(Yx (D,S))

therefore maps under 7* to a class in
H™*4(D,S)/Y. a,H" "' *4%(D,S) .
Denote this element by ¢(c, 6)([u]). The following theorem lists properties of

@ (c,0). We proved only (b) of the theorem. For the rest we refer to Kristensen

[5].

THEOREM 3. Let ¢c=Y"_, a;b; with a,b; € ZO(Y) be given and assume c is a
relation, i.e. ¢=Y d4;6,=0. Let

D(n,c,(D,S)) = {[u] € H"(D,S)| b,[u]...=b[u]=0}.
If 6 € O(Y) with VO=c, then
@) ¢(c,0): D(n,c, (D,S))— H"*9(D,S)/Y a,H"~1+deé(D,5)

is a homomorphism.
(b) If & € O(Y) also satisfies VO =c, then there exists w € H*(Y)Osuch that

@(c,O[ul—@(c,0)[u] = {Wlul}
where {-} denotes the class in the quotient

H"+q(D, S)/Z a*lHn—l-fdegﬁ,-(D’ S) .
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(c) Let
(D',8) -5 (D, S)

n’ n

be commutative then

D(n,c, (D,S)) 28 H"*4(D,S)/y. a,H"'*424(D, )
r* {r*}
D(n,c, (DI, SI)) M H"+q(D,, S/)/Z é,Hn_l+deg&'(D,, S/)

is commutative.
(d) The boundary operator 6*: H*(S) — H**1(D,S) induces the following
commutative diagram:

D(n,c,S) -2&0, Hr+e(S)/y g, H" 1 *desd(s)
6 (8%

D(n+1,c, (D,S)) 20, H"+a* (D S)/Y g H 484 (D, S) .

4. Ravenels exotic characteristic classes of spherical fibrations.

In [9] Ravenel defined exotic characteristic classes. We will define these
classes using our construction of twisted secondary cohomology operation.
One of the main points in [9] was to show that these classes are welldefined
modulo ordinary characteristic classes. We use a simple structure property of
H*(BSG) (see [1]) to prove it.

Let g; € H*(BSG) denote the ith Wu-class of the universal spherical
fibration. We recall from [8] the following fact: There is an injection

j: A— H*(BSG)OA
as algebras such that
j(8q") = .il 9;®8q""" .
We recall that the product in H*(BSG)(©A is the composition product. For
x®a, y®b € H*(BSG)OA it is
(x®a)° (y®b) = Y xd'(y)®a"b

where Y a’'®a” is the diagonal of a.
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LeEMMA 5. There is a map of algebras
h: H*(BSO)OA — H*(BSG)©OA .
ProoF. By lemma 3.2 of [1] there is a map f: H*(BSO) — H*(BSG) of Hopf

algebras, and f is a map of left A-modules. Then we may take h=f®Id,
because :

h((x®a)- (y®b)) = h(}, xa'(y)®a"b)
=) f(xa'())®a"b
=) f(x)a' f()®a"b
= (h(x®a)) (h(y®D)) .
Now there is also an algebra injection
j: A— H*(BSO)OA

with j'(Sq") =3 ¢;®Sq"". The following lemma is then clear

LEMMA 6.

H*(BSG)OA

A h
7 T H*(BSO)O A
is commutative.

By a wellknown theorem of homological algebra (see fe. [3, p. 169,
Corollary 10.13]) there exists a chain map

h: 0(BSO) — O(BSG)
which induces h. h is unique up to chainhomotopy. So there is a commutative
diagram:

0(BSG) ¥» ZO(BSG) -+ H*(BSG)©OA — 0

h h h

0(BSO) ¥ Z0O(BSO) %> H*(BSO)OA — 0
Let BSG, be the classyfing space for (n— 1)-spherical fibrations and
k: BSG, —» BSG
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the natural map. For convenience we write down the following commutative
diagram:

O(BSG,) -Y» ZO(BSG,) > H*(BSG,)OA — 0
k k k*®I1d
0(BSG) Y> ZO(BSG) > H*(BSG)®A — 0

h h h

0(BSO) Y- ZO(BSO) —*» H*(BSO)OA — 0
k: O(BSG) — O(BSG,) is defined by
k@): C(X) % C(BSG x X) kxl¥, C(BSG,x X) .
Note that h, k have the following properties:
hV = Vh but hé + oh
k(60) = ok(©), k(65) = k(6)d .

Let y, — BSG, be the universal (n—1) spherical fibration, MSG,=T(y,) its

Thom space and [u] € H"(MSG,) the Thom class. We consider T(y,) as a pair

of spaces over BSG,, n: (D,S) — BSG,. Suppose given a relation 3 a,b,=0in 4

of degree g+ 1 such that degh,>0. Then by [8, theorem 4.1],
((k*®1d)hj)(b))[u] = 0.

We write &, =j(d,), B,=j(b,).
c=>a- [i, € ZO(BSO) is a relation by lemma 6.
Choose 0 € O(BSO) with VO=c and v; € C""(BSG, x (D, S)) with

Eﬁ(ﬂi)(“) = 0v; .

Then we claim that
(KR@)w)+ Y. (kh(x))(v) € C"*4(D, )

is a cocycle.

Before we prove it we note that the above cochain is in C"*4(BSG, x (D, S))
but maps under 7 to the above element in C"*4(D, S).

Now

O(kh(0)(w)) = kdh(0)(w) = k(Vh(0)(u)+h(6)d(u))
= kVh(®)(u) = kh(VO)(1) = kh(c)(u)
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8(Y, kh(a)(v) = 3. kdh(e)(v;)
= Y k(Vh(a)(0) + h(e;) (d0)
= Y kh(Vay)(v) + Y, k(R(@2)h(B))(v)
= Y kh(aB)(v)

This proves that it is a cocycle. We used h(a;8)="h(;)h(B). We will prove
below that we can find a cochain map h: O(BSO) — O(BSG) with this
property.

The class [kh(0)(u)+ X kh(a;)(v)] € H"*4(MSG,) is welldefined (see [8,
Proposition 4.2]. Under the Thom-isomorphism we obtain an element in
H4(BSG,). If we take another 6 our construction shows that the resulting class
in H"*49(BSG,) is changed by ordinary characteristic classes.

Ravenels classes ey_, € H* “!(BSG,) are then defined by the above
procedure with

i-1

Y ¢(Sq* " H)e(Sq?) = 0

i=0

as relation.
To construct a chain map h with h(a;c ;) =h(x;)oh(B;) we proceed as follows.
Let

y =[] K,

n>0

and
q:BSO— Y, ¢q:BSG—-Y

be the total Wu-classes. The diagram

H*(BSO) -~ H*(BSG)

q‘\\ /q’)*
)

H*(Y

commutes.
g and ¢ induce 4: O(Y) — O(BSO) and g": O(Y) — 0(BSG). Note that g
and ¢ preserve compositions, i.e. if 6,1 € O(Y), then

G@on) = G(O)4(n) and g(O-n) = §(0)q ).
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Consider then the diagram:

0(BSO) ¥-» ZO(BSO) *» H*(BSO)® A

q*®ld

£l
Sl

oY)| Y ZOo(Y)| > H*(Y)®A |n

N
=
=y
=

q*®I1d

0(BSG) Y> ZO(BSG) -+» H*(BSG)®A

It is easy to construct a chain map h which makes it commutative. The relation
under consideration ¢=Y a,ob, € ZO(BSG) comes from an element z=3 x;
oy; € ZO(Y). Let for instance a;ob;= (q,®sq™)° (¢,®s9"), then

xpoy; = (1,®sq™)e (1,s9") .

(For any space Y and c®ae C*(Y)®O0, cQ®a: C*(X) » C*Y)®C*(X)
=~ C*(Y x X) defined by (c®a)(x)=c®a(x), can be considered as an element of
O(Y). Here 0=0(pt)). For the definition of sq" see [5].

Note that z € ZO(Y) is not necessarily a relation, ie. &(z)=0. In fact,
Ravenel claims that the only indecomposable relation which can be lifted to a
relation in ZO(Y) comes from

i-1
Y Sq¥sq* ¥ =0,
j=0
see [9]. But §(z) € ZO(BSO) is a relation because h is injective.
We see that g(z)=3Y o;°f; and therefore

E(O‘i"ﬂi) = q(x;op) = q’(xi)”?()’i) = a;ob; .
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