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M-IDEALS OF COMPACT OPERATORS IN
CLASSICAL BANACH SPACES

ASVALD LIMA

Abstract.

Let K (X, X) be the space of compact operators on an infinite dimensional
Banach space X. It is known that K (X, X) is an M-ideal (in the space of all
bounded operators on X) when X =L, (u) for some measure u. We prove that:

1) If X=L,(p), then K(X, X) is not an M-ideal.
2) If X*=L,(u) then K(X, X) is an M-ideal iff X =c,(I').
3) If 1<p<oo, p*2,and X =L, (u), then K(X, X) is an M-ideal iff u is purely
atomic.

Introduction.

The object of this paper is to investigate when K (X, Y), the space of compact
operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded
operators from X to Y.

When Alfsen and Effros [1] introduced the notion of an M-ideal, they knew
that in the self-adjoint part of a C*-algebra, the M-ideals coincide with the self-
adjoint parts of the closed two-sided ideals. Later Smith and Ward [12] proved
that the M-ideals in a C*-algebra are exactly the closed two-sided ideals. In
particular, the compact operators on a Hilbert space is an M-ideal in the space
of all bounded operators.

Hennefeld [2] and Saatkamp [11] have proved that K (I, 1)) are M-ideals
when 1 <p=<g<oo and several authors have observed that K(X,c,) is an M-
ideal for all Banach spaces X [6] [11] [12]. Note that if 1 <g<p<oo, then
K(l,1l)=L(,l,) [8].

It is known that K(l,/,) and K(I,I,) are not M-ideals [12] and also in
some other cases involving L -spaces and preduals of L,-spaces K(X, Y) is not
an M-ideal [9] [11].

The paper consists of two parts. In the first part, we show that the X =c,(I")
are the only Lindenstrauss spaces such that K(X, X) is an M-ideal. In the
second part, we prove some theorems saying that if X and Y have some
properties (this is specified later), then K(X,Y) is not an M-ideal.
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When we say that K(X,Y) is an M-ideal, we mean that K(X, Y) is an M-
ideal in L(X, Y). A Banach space X is called a Lindenstrauss-space if its dual
X* is isometric to an L, (u)-space. The unit ball in X is denoted X, and the
closed ball in X with center x and radius r is denoted B(x,r).

A closed subspace J of a Banach space 4 is called an L,-summand (/<p
< 00) if there exists a projection P in A4 such that P(4)=J and for all x € 4 we
have

IxI? = [IPx]”+ [ x—Px|".

A closed subspace J of A is called an M-summand if J is the range of a
projection P in A such for all x € 4 we have

x|l = max (|| Px], [|x—Px]) .

A closed subspace J of A is called an M-ideal if its annihilator J° in A* is an
L,-summand. Alfsen and Effros [1] characterized M-ideals by intersection
properties of balls. In [5] we showed that a closed subspace J of 4 is an M-
ideal iff for all x € A4,, for all y,,y,,y; € J, and for all ¢>0, there exists

3
(* yeJN () B(x+y,1+¢).
i=1

If (*) holds when y, =y, = —y,, then we say that J is a semi M-ideal. We have
that J is a semi M-ideal iff for all x € A*, there exists a unique y € J° such that
|lx—yll=d(x,J°) and moreover this unique y satisfies ||x| = |yl +x—y|. [5;
Theorem 6.15 and Theorem 5.6.]

The set of extreme points of a convex set C is denoted J,C.

We say that a point e € A is an order unit for A4 if ||e| =1 and

max ([[x+el, [x—el) = x| +1

for all x € A. This definition is equivalent to the usual definition of order unit
[7; Theorem 4.7]. (See also [6]).

A maximal proper face F of 4, is called a base if 4, =co (FU —F).If Fis a
base for A4, then the functional on 4 which is 1 on F is an order unit for 4*. If e
is an order unit in 4* and

F={xed: |x|=1=e(x)},

then A, =co (F U —F) [6]. (The bar means closure and co means convex hull.)
We consider only the real case, but most of the results are easily extended to
the complex case.
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1. Characterization of ¢, (I').

Note that if X or X* is an L, (u)-space, then e is an order unit for X * for all
e 0. X¥. We will use this property in the first lemma.

LEmMMA 1. Suppose e is an order unit for X* for all e € 6, X¥. If K(X,X) is a
semi M-ideal in L(X, X), then X is isometric to a subspace of c,(I') for some set
I'. If X is separable, then we can take T’ to be countable.

Proor. Note that if f,g € 6, X ¥ with f+g, then | f—g| =2 [6; Theorem 2.2].
Choose e € 6, X¥ and £¢>0 and let x, € X with ||x,||=1. Define
N = {fed Xt |f(x)|22s}.

We want to show that N is finite.
Define S € K(X, X) by S(x)=e(x)x,. Then ||S| =1. Since K(X, X) is a semi
M-ideal there exists an operator

UeK(X,X)NB(I-S,1+¢) N B(I+S,1+¢).
Thus
IS+I-U)| = 1+s [S-(U-V)| = 1+¢.
If fe N, then S*f=f(x,)e. Hence
I+e 2 max (| f(x)e+ (f=U*NI, I1f (x))e= (f=U*))
If Gl + 1L = U
2+l f-U|

and 1—¢e2| f-U*f|.
But then we get for f,g € N with f=*g,

IU*f-U*gll 2 I f—gl—If-U*fl—llg—U*gll 2 2.

Since U* is compact, we get that N is finite, Now we can take I'=6,X ¥. By
considering x; as a function on ¢, X ¥, we get x, € ¢o(I'). If X is separable, we
can take as I' a countable w*-dense subset of 6, X}.

[\

THEOREM 2. Suppose X is a Lindenstrauss space. Then the following
Statements are equivalent.

1) X is isometric to cy(I') for some set T.

2) K(Y, X) is an M-ideal in L(Y, X) for all Banach spaces Y.
3) K(X,X) is an M-ideal in L(X, X).

4) K(X, X) is a semi M-ideal in L(X, X).

Math. Scand. 44 — 14



210 ASVALD LIMA

Proor. 1) = 2) is proved in [6], [11] and [12].

2) = 3) = 4) is trivial.

4) = 1). Let F be a proper maximal face of X§ and let I'=0,X§ N F. By the
lemma above, we get X Sc, (") by the natural map. We have X ¥ =co (FU —F),
s0 ,X¥=('U —T) [5]. Since X necessarily is polyhedral, we get X*=1,(I")
=co()* [4] [10]. It follows from the Hahn—-Banach theorem that X =cy(I').

The same method of proof as used to prove the theorem above can be used
to prove the following result.

THEOREM 3. Suppose X is a Lindenstrauss space and assume X is canonically
imbedded into X**. Then the following statements are equivalent.

1) X is isometric to cy(I') for some set I.
2) X is an M-ideal in X**.
3) X is a semi M-ideal in X**.

Proor. 1) = 2). We have that for each finite set A<T,
1% = {(x@) e lo(I) = x(y) = 0 if y ¢ 4}
is an M-summand in X**=]_(I'). Hence
coll) = U1

(the union taken over all finite subsets 4 of I') is an M-ideal in X** by [5;
Proposition 6.20].

2) = 3) is trivial.

3) = 1). Choose x € X with ||x|| =1 and let ¢>0. First we want to show that

N = {e€d X} : le(]2¢)

is finite. Choose y € 6, X§*. Then |y(e)|=1 for all e € 6, X} [6; Theorem 2.2].
Use the balls B(y+x, 1) and B(y—x,1) and proceed as in Lemma 1 to show
that N is finite. Then argue as in the proof of 4) = 1) in the proof of Theorem
2, and it follows that X is isometric to a cy(I") space.

Although it is well known that K(l,,1,) is an M-ideal when 1 <p=<g <00, we
would like to give a simple proof of this using the characterization (*).

Tueorem 4. K(1,,1,), K(l,, co) and K(co, ¢o) are M-ideals when 1 <p<g<o0.

Proor. We write out the details only in the case K(/,,1,) with 1 <p=g<o0.
Let §,,8,,5; € K(I,,1,) with ||S;[| <1 and let Te L(l,,1,) with || T|| £ 1. Since we
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have an ¢> 0 at our disposal in the formula (*), we may suppose S$;=0,SP, for
i=1,2,3 and some m and n where Q,, and P, are the projections

Pn((xk)) = Qn((xk)) = (X1,- 3%, 0,...) .

Let U=Q,T+TP,—Q,TP, e K(l,,1). Then T-U=(I-Q,)T(I—P,). Let
x € l, with |x||=1, and let y=P,x and z= (I — P,)x. Then

L= x]|” = |Iyll*+z||®
and
Iyl = 1Pxll 2 1QnS:iPuxll  (i=1,2,3)
Izl = 1= P)xl| 2 I(I - Q)T —P)x| .

Hence, since' §;=Q,,S;P, for i=1,2,3,
L= {yl*+z||?
Z lyl*+1z)*
Z [ QnSiPuxl*+ (I - Q)T - P)x|
= [QnSiPux+ (I — Q)T - P,)x|*
= |Sx+ (T—U)x|9.
This shows that

3
Ue () B(T+S,1).
i=1

2. Conditions which ensure that K (X, Y) is not an M-ideal.

The following theorem is an easy consequence of (*) and of [7; Theorem 6.1]
and [13]. (We consider here only infinite dimensional spaces.)

THEOREM 5. Let Y be a Banach space. K (1,(I'), Y *) is an M-ideal for all sets I
if and only if K(X, Y*) is an M-ideal for all Lindenstrauss spaces X. If K(X, Y*)
is an M-ideal for some infinite dimensional Lindenstrauss space X, then
K(co, Y*) is an M-ideal.

The theorem remains true if we read semi M-ideals instead of M-ideals.
Since K (cy, ;) is not a semi M-ideal [11], we get that K (X, I,) is not a semi M-
ideal for any infinite dimensional Lindenstrauss space X.

It also follows from (*) that if X and Y are 1-complemented in M and N and
K(M,N) is an (semi) M-ideal, then K (X, Y) is an (semi) M-ideal.
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Since K(l},1,) (1=p<oo) and K(l,,1,) (1<p<oo) are not semi M-ideals
[11], we get that K(L;(p),L,(v)) (1=p<oo) and K(L,(v),l,) (1 <p<oo) are
not semi M-ideals in the infinite dimensional cases. [3; Theorem 3].

As we will show now these results are special cases of more general results.
Note that all maximal proper faces of the unit balls of L, (u)-spaces and
Lindenstrauss spaces are bases [5; Corollary 3.6]. These spaces also have the
property that every extreme point in the dual unit balls is an order unit for
the dual space.

THEOREM 6. Suppose X* is an order unit space with order unit f and suppose Y
is an order unit space with order unit e. If K(X, Y) is a semi M-ideal in L(X,Y),
then K(X,Y)=L(X,Y).

ProoF. Let F={x € X : |x|=1=f(x)}. Then co (FU — F)= X, [6]. Hence,
the compact operator S defined by S(x)=f(x)e, has norm 1. Suppose
Te L(X,Y) with |T| =1 and let ¢>0. Then there exists

UeK(X,Y)NB(T+S,1+¢) N B(T-S,1+¢).
We get
max |S+(T-U)| £ 1+¢.

Let

G={*eY*: [y*| =1 =y*@e)}.
Then Y§{=co (GU —G). If y* € 3,G, then S*y*=y*(e)f=f. Hence we get for
y* € 0,G

146 = max || f+ (T*y* — U*y*)|
+

L+ [[(T*=U*y*| .
Thus
IT-U|l £ e.

Since U € K(X,Y) and £¢>0 is arbitrary, we get Te K(X,Y).

THEOREM 7. Suppose X* is an order unit space with order unit f. Let Y be a
Banach space that contains a proper L ,-summand for some 1 <p<oo. If K(X,Y)
is a semi M-ideal in L(X,Y), then K(X,Y)=L(X,Y).

Proor. Write Y=E@®, F. For simplicity, assume p=1. Let Te L(X, Y) with
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[Tl =1, and let P be the L, -projection in Y with range E. Choose x, € E with
x,l=1 and let ¢>0. Define S € K(X,Y) by S(x)=f(x)x,. Then there exists

UeK(X,Y)NB(T+S,14+¢) N B(T-S,1+¢).
Hence
max S+ (T-U)|| = 1+¢.
For x € X with ||x|| =1, we get
I+e 2 || f(x)x, — (T-U)x|
= [/ (x)x, =P(T=U)x—(I-P)(T-U)x|
[ f(x)x; = P(T—U)x+ (I - P)(T—U)x|

and we also have
l+e = | f(x)x,+P(T—-U)+ (I —P)(T-Ux]| .
Hence we get when x e H={x € X : | x| =1=f(x)}
2(1+¢) 2 [f(x)x,—P(T=U)x+(I-P)(T-U)x]|
+ £ (x)x; + P(T=U)x+ (I — P)(T— U)x||
2 2| f(x)x; + = P)(T-U)x|
2lxy 1+ 211 = PUT=U)x]| .

Il

This together with X, =co (HU — H) yields

€2 [I=P(T-U)| = |I-PT-U-P)U| .
Thus (I-P)Te K(X,Y). Similarly, we get PTe K(X, Y) by choosing x, € F,
so Te K(X,Y).

A proof similar to the proof of Theorem 7 shows that we also have the
following result.

THEOREM 8. Assume X contains a proper M-ideal or a proper L ,-summand for
some 1 <p <00, and assume Yis an order unit space. If K(X, Y) is a semi M-ideal

in L(X,Y), then K(X,Y)=L(X, Y).

A bounded subset A of a Banach space Y is said to be dentable if for all ¢>0,
there exists t>0 and fe Y* with | f| =1 such that the slice

S(fit) = {xeA : f(x)>supf(a)—t}
aeA
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has diameter less than e In reflexive spaces and separable dual spaces, all
bounded sets are dentable. [14].

THEOREM 9. Assume X* has an order unit e and assume Y, is dentable. If
K(X,Y) is a semi M-ideal, then K(X,Y)=L(X,Y).

Proor. Assume K (X, Y)is a semi M-ideal and let Te L(X, Y) with |T | =1.
Assume for contradiction that d(T,K(X, Y))>¢ and ¢>0. Let S(f;t) be a
slice of Y; with diam S(f; ) <e. By the Bishop—Phelps theorem, we may assume
Ifl=1=f(y)for some y € S(f,t)< Y, [14]. Define S € K(X, Y) by S(x)=e(x)y.
Choose 0<d <1 such that (1—-8)(1+68)~!>1—t. Since K(X, Y) is a semi M-

ideal, there exists U € K(X, Y) such that for both +:
ISE(T-U)| £ 1+6.

Since |T— U| > ¢, there exists x € X, with e(x)=1 such that ||(T—U)x| >e.
Then S(x)=y. Let z=(T—U)x. Then

max |ytz|| £ 1+0

such that
146 > f(yx2) = 1£f(2)
and
lf@l 9.
But then

ytz - 1-6
Raehll N AN
f<1+5>—1+5> !

so (yxz)(1+9)~! € S(f,1). diam S(f,t)<e implies that
2e < 2|zl = ly+2)——2) < e(1+9)
such that 6> 1. This is a contradiction. Hence K(X,Y)=L(X,Y).

THeOREM 10. If'1, is isomorphic to a subspace of X, then K(X, X) is not a semi
M-ideal.

Proor. Assume for contradiction that /, is isomorphic to a subspace of X
and that K(X,X) is a semi M-ideal. Let £¢>0. Then there exists a linear
operator T: l; — X such that for all x €/,

Ixl = I1Txl = lxlI(1+¢)
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[15; Proposition 2..3]. In order to avoid technical complications, we will
assume || x| =||Tx| for all x € [,. Let Y="T(l;). We will identify Y with /,. Let
e=(1,1,...)€ 0,Y¥ and let é be a normpreserving extension of e to X. Let
xo=(1,0,...) € ,Y, = X,. Define S € K(X, X) by

S(x) = é(x)xg .

Then S*(f)=f(xo)é. For each g € 3,Y¥, let § be a norm-preserving extension
o X.
Suppose U € K(X, X) is such that

UeB(I+S,1+¢) N B(I—-S,1+¢).
Then |S+ (I-U)||£1+¢, and if g € 6, YT, then
1+ = max ||S*@) (- U*)

= max ||§(xo)é + (g— U*3)|

I

max [é+ (- U*g)|

v

max [e+ (g—U*gly)ll

1+|g—U*glyl .
Therefore

lg—U*glyl = ¢.

But then if g,,g, € 6, Y¥ and g, +g,, then
[U*g, —U*g,|
1U*g1ly —U*galyll
lg:— g2l —llgs — U*gilyll — 182 — U*galy |l
2—-2.

v v

v

If now e<4, then this clearly contradicts that U* is compact.
We conclude with the following theorem.
THEOREM 11. Let 1 <p<o0 and p#+2. Let X = L,(u) for some measure p. The

following statements are equivalent:

1) p is purely atomic.
2) K(X, X) is an M-ideal in L(X, X).
3) K(X, X) is a semi M-ideal in L(X, X).
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ProOOF. 1) = 2) is proved in Theorem 4.

2) = 3) is trivial.

3) = 1). Assume u is not purely atomic. We will show that K(X, X) is not a
semi M-ideal. Then it is well known that L,(0,1) is 1-complemented in L, (u).
Hence it follows from (*) that it is enough to show that K (X, X) is not a semi
M-ideal when X =L,(0,1). We can also assume p>2.

Let (xn)aZ: be the Haar basis in L,(0,1), and let P,(33%; a0 =2 k=1 %X
be the natural projections. (x,)5%; is @ monotone basis so | P,||=1 for all n.

Let 1>¢&>0. Since L,(0,1) is uniformly convex, there exists £26>0 such
that if x| <1, |yl =1 and |[x—y|>¢, then |x+y|=2(1-9) [8].

Assume for contradiction that K(X, X) is a semi M-ideal. Then there exists
U € K(X, X) such that

) B
I-U+P,| < 1+ I I-U-Py| < 1+§.

55
Since |z, =1, we get

8 5
1Ux:ll < 1+§, 12, = Uxsll < 1+5.

If 2|y, — Uy, |l = e(1+%6), then by the uniform convexity, we get
o
(1+5)2(1 —8) 2 1@~ U+ Unll = 2.

This is a contradiction, hence

lxi—Uxall < %8(1-}-;) <e.
Hence we may assume Uy, =y, and
[I-U—-P|| < 1+2e.
We define a sequence (y)i%; in L,(0,1) by

Ve = Z (%1 45+ X2k 42j-1)

where j runs from 1 to 2*71. Let u be the Lebesgue measure on (0, 1). Then we
have for all k

u({x : yx)=-1}) = 3
and

u({x : y(x)=2}) = 3 = u({x: n(x)=0}).
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Define K >0 by K? =127 +437. We have || —2x, + ;| =K for all k. Since p>2,
we have 147+ 1> 3?. Hence there exists ¢>0 such that for all k

121+l = G4P+327 437 = K+c.
(L+2¢)ll = 2x5 + il
I(I—=U—P)(—2x; +ydll
121 +yill = 1 Uyl

¢+ =2+ vl = 1Unil

v v

such that

¢ = |Unll +2eK .

Choosing ¢ small enough, we get ||Uy,||=4c. This is impossible since U is
compact, so K (X, X) can not be a semi M-summand.
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