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PLUCKER RELATIONS FOR p(e)

J. R. QUINE

Introduction.

Let p be a polynomial of degree n. In connection with the problem of
determining whether p is univalent in the unit disc, we showed in [4] that the
closed curve p(e”) has at most (n—1)? vertices, proving a conjecture of Titus
[7]. In a later paper [5], we showed that p(e”) may be considered as a real
algebraic, rational curve, and its algebraic completion f in PC? has certain
interesting properties, most notable of which is that the circular points on the
line at infinity are (imaginary) points of order n on f. In this paper we derive the
four Pliicker relations for f. Since Pliicker’s relations are classically for curves
with simple singularities, we must examine carefully the contribution of the
multiple singularities on the line at infinity. We discover that the above
mentioned result in [4] is a consequence of one of the Pliicker relations. We
further show that the number u of zeros of p' symmetric in |z|=1 is closely
related to the Pliicker characteristics of f.

Finally, we show as a consequence of Pliicker’s relations that f, and
therefore p(e*), has at most (n—1)(2n—3) double tangents.

1. p(e") is algebraic.
Let p(z2)=37 -, a;z* where for the duration of the paper we will assume that
a,%0, a;+0, and n>1. Let

n

pE) = Y @zt and  p*() = p(1/2) = 2 @y
k=0
We will study p(e®) using the method of inversive geometry (see Morley [3]).
We write n=p(e") in (n,7) coordinates: n=p(z), = p(1/z) where z=e¢". Thus
we consider the rational curve z — (p(z),p(1/z)). To study the algebraic
completion in PC?, we let [,&(] be the point in PC? with the given
homogeneous coordinates, with the line { =0 being the line at infinity. We now
look at the rational curve in PC? determined by (p(z), p(1/2),1)= (3, &,{). This
determines a map f from the extended complex plane C into PC? whose
image is the algebraic completion of our original curve. The map
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z — (z"p(2), p*(2),2") from C into C*>—{0} determines f in local coordinates
about z=0. The map w — (p*(w), w"p(w), w") with w=1/z likewise determines f
in local coordinates about z=00. We note that f(0)=[0,1,0] and f(o0)
=[1,0,0]. These are the circular points in classical projective geometry and are
the only points of f on the line at infinity. The subset of PC? given by #j= ¢ and
{ real is identified with PR2, We see that f(¢”®) is in PCN f(C), i.e., in the real
part of f, and is essentially the point p(e'’) given in conjugate coordinates. We
will often write p(e®) for f(e®).

2. Pliicker’s relations.
The classical Pliicker relations for algebraic curves in PC? with simple
singularities are

(1) 2-2g+M+k = 2N
) 2-2g+N+i = 2M

3) (N=1)(N=2) = 2(6+k+g)
) (M—1)(M-2) = 2(t+i+g)

where N is the order, M is the class, i is the number of inflection points, k is the
number of cusps, J is the number of double points, 7 is the number of double
tangents, and g is the genus (Coolidge [1]). We note that (1) and (2) are dual;
(3) and (4) are dual. For curves with multiple singularities such as the one we
are considering, things are more complicated ; however, if the curve is rational
the analysis is easier. The theory of meromorphic curves as in Weyl [9] or
Cowen and Griffiths [2] is useful. Suppose, then, that f: C — PC? is a rational
curve. Then g=0 and Pliicker’s formulas become

(1) M+ Y (vy), = 2(N-1)
) N+ Zc (vy), = 2(M—1)
3 N-1)(N-2) = 01
3) (N=1)(N=2) (z,;)gtxc( ).
4 M-1)(M-=2) = o
@) (M —1)(M -2) M;xc (620

where the integers v,, v,, 4, and &, will be explained in the next paragraph.

The integer (v,), is called the first stationary index at f'(z), or the ramification
index of f at z. Suppose ¢(t) € C*—{0} gives fin local coordinates with t=0
corresponding to z € C, then (v,), is the smallest integer a such that ¢ *(0)
and ¢(0) are linearly independent. Since (v,), is a projective invariant, we may
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characterize it another way. By a projective linear transformation assume that
¢ is in the normalized form

() = (1+00),*+ 0 ), P+ 0 (1))

where 0 <a <. Then (v;),=a—1.If f(z) is a simple cusp then (v,), =1, thus in
the special case that f has only simple singularities, (1') becomes (1) with g =0.
We define (6,),, =0, unless f(z)=f (). If f(z)=/(() with z+{, then let o)
and ¥ (s) give f in focal coordinates about z and ¢ respectively as above, and let
(a, b, ¢) be Pliicker coordinates of ¢(t) A Y/(s). Then (01), ) is defined to be the
algebraic intersection number of b=0 and ¢=0 at s=¢t=0. If z=/{, then let
(a,b, ) be Pliicker coordinates of ¢(s) A (t)/(s—t). Then (01)(z, - 1s defined to
be the algebraic intersection number of b=0 and ¢=0 at s=t=0. Note that
(01)z, >0 only if (v,),>0, (8y)¢. )= (01).=1if f(2)=1(() is a simple node,
and (9,), =2 if f(z) is a simple cusp. In the special case, (2') becomes (2) with
g=0.

To define v, and 4,, we need the notion of first associated, or dual curve. If
@(1) is a local equation for f near z as above and a=(v,), then ¥ (¢)
=t"%(t) A ¢'(t) is a local equation for f;: C — PC2, the first associated, or
dual curve. Now (v,), for f is defined to be (v,), for the dual curve. Likewise
(0), ) for fis defined ta be (1) 2, for the dual curve. We note that (v,), =1 at
a simple inflection point, (8,),.,)=(8,)¢., =1 if f(2) is a simple double tangent
where f,({)=/,(z), and (,),,,,=2 if f(z) is a simple inflection point. ’

3. Pliicker’s relations for p(e®).

Let f be the completion of p(e*) as in section 1. From the representation z
— (2"p(2), p*(2), 2") for fin C, we see that N =2n. By a linear transformation of
the image space, this representation can be transformed to one of the form

z — (1+0(Z),2"+O(Z"+l),2"+l+O(Zn+2)) .

Thus we see that (v,)o=n—1. Likewise by symmetry (v,), =n—1. From the
representation z — (p(z), p(1/z),1) in C—{0} we see that if z+0, 0o, then (v,),
is the largest integer a such that z and 1/Z are zeros of order a of p’. We say that
P’ has p zeros symmetric in the unit circle if p'(z) and p'*(z)=z"~ 1p'(1/2) have u
zeros in common including multiplicity. Thus we see that if p’ has p zeros
symmetric in the unit circle, then =¥ <\, <4, (v;),- Combining this with (v,),
= (V1) =n—1 and (1') we get

1" M4y =2n

and this is the first Pliicker relation for p(e®).
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We mention another way of deriving (1”). We compute that
z— (P*(2),2"7 P (2), p* (2)p(2) + zp* (2)p' (2))

defines f; near z=0. Let h be the greatest common divisor of p’ and p'* and
write

P'(2) = h(z2)q(z) and p'*(z) = h(2)r(2).

Then
z — (r(z),2""'q(2), r(2)p(2) + zp*(2)q(2))

defines f; in C. Since p=degh we see that the class of f; = M =2n— u, and this
is exactly (1”).

In connection with (1”) we mention an interesting example. Suppose u=n
—1, i.e. all zeros of p’ are symmetric. Here p’'(z)=cp'*(z) where |c|=1, and it
easily follows as in Suffridge [6] that d arg e”p’ (€”)/d0 = (n+1)/2 for p'(e®)%O0.
Thus the argument of the tangent to p(e”) changes at a constant rate with
respect to 6. The total change is (n+ 1)x, showing that the apparent class of f,
i.e. the class of the real part (see Coolidge*[2]), is the same as the class of f
which by (1) is n+1.

Now (2') becomes
(2") Zc (v), = 2(n—1)-2p.

As a simple consequence, there are at most 2(n— 1) simple inflection points on
p(e”). In general p’ has no symmetric zeros, u=0, and f has 2(n— 1) inflection
points, some of which may be imaginary.

Next we look at (3') and compute the contribution to Y (8,),.,, by the
singular points f(0) and f(co) on the line at infinity. As before after a linear
transformation f is given near z=0 by

(P(Z) = (1+0(Z),Z”+0(Z"+1),Zn+l +0(Zn+2)) .

We compute that the last two Pliicker coordinates of ¢(s) A ¢(t)/(s—t) are of
the form s"+s" " 't+...+t"+ (higher order terms) and s" '+4s""%t+...
+t""! + (higher order terms). From elementary properties of intersection
numbers (Walker [8, p. 114, Theorem 5.11]) these intersect n(n— 1) times at
s=t=0. Thus (8,),0)=n(n—1). Likewise (8,) 0, o)=n(n—1). Since f(0) %/ (z)
for z#0 and f(00) *f(z) for z+00, (3') becomes

3" Y @By = 2(—1).
(z.0eCx C—{0}

Thus (3') gives an alternate proof of the theorem proved in Quine [4] that p(e')
has at most (n— 1)?> nodes. Taking p(z) = (rz)" —n(rz) for r large shows that the
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theorem is sharp, i.e. there is a polynomial p for which all the nodes are on the
real part of f.

We now apply Pliicker’s relation (4') to f. There are no contributions to
Y (0,)(, ) from the singular points of f on the line at infinity, since these are not
in general singular points of f;. Combining (2”) and (4') we get

4" % (6)z.0 = 2@n—1)(n—1)+pu(3—4n)+p* .
(z,0)eCxC
We now use (4”) to prove

THEOREM The curve p(e®) has at most (2n—3)(n—1) simple double tangents,
and this bound is sharp.

ProoF. We prove the theorem in the generic case u=0. The general case
follows either by a similar argument keeping track of terms involving u, or
simply by a continuity argument. If u=0, we have by (4”) that

(z{)&xt 02)e,p = 2@n=1)(n-1)

and by (2”) that ZZGE (vy),=2(n—1). Now since (v,),=1 implies (J,). =22, it
follows from the latter equation that

"Zc (52)(2,2) g 4("“‘1) .

Now combining this with the first equation gives

) (0 = 2(2n=3)(n-1),
(z,0)eCxC-4
where 4 is the diagonal of C x C. The conclusion of the theorem now follows.
To show that the theorem is sharp we look at p(z)= (rz)" —n(rz) for r slightly
larger than 1, and note that this curve has exactly (2n—3)(n—1) double
tangents. For example if n=4, the curve looks as in Figure 1. This curve has 15
double tangents.

Fig. 1
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