THE LEVI PROBLEM IN STEIN SPACES

JOHN ERIK FORNÆSS

1. Introduction.

Let X denote a Stein space and let Ω be an open set in X. Assume that for every $p \in \partial \Omega$ there exists an open neighborhood U(p) such that $\Omega \cap U(p)$ is Stein.

THE LEVI PROBLEM. Is Ω necessarily Stein?

In case X is a complex manifold this was solved affirmatively by Docquier and Grauert [4], and in case X has at most isolated singularities it was solved affirmatively by Andreotti and Narasimhan [1].

THE UNION PROBLEM. If $\Omega^{\text{open}} \subset X^{\text{Stein}}$ and $\Omega_1 \subset \Omega_2 \subset \ldots \subset \bigcup \Omega_n^{\text{open}} = \Omega$ with each Ω_n Stein, is Ω Stein?

This was proved to be true if $X = \mathbb{C}^k$ by Behnke and Stein [2]. The case when X is a Stein manifold follows from the work of Docquier and Grauert [4] via the embedding of X as a closed complex submanifold of some \mathbb{C}^l , Remmert [13], Bishop [3] and Narasimhan [9].

If one drops the assumption that X is Stein, the result is not true, Fornæss [6].

Suppose next that $\{\Omega_t\}_{t\in\mathbb{R}}$ is a family of Stein open subsets of X and that $\bigcup_{\tau<\tau}\Omega_{\tau}$ is a union of connected components of Ω_t and that Ω_t is a union of connected components of $\inf \bigcap_{\tau>\tau}\Omega_{\tau}$ for each $t\in\mathbb{R}$.

The Runge Problem. Is Ω_r Runge in Ω_s whenever r < s.

When X is complex manifold this was answered affirmatively by Docquier and Grauert [4].

In this short note we will solve affirmatively the above problems in the Stein space

$$X = Z \times C$$
, $Z = \{(z_1, z_2, z_3, z_4) \in C^4 ; z_1 z_2 = z_3 z_4\}$.

Received April 4, 1978.

The reason that we find the space Z interesting is the following observation by Grauert and Remmert [7]. The map $\Phi: C \times (C^2 - (0)) \to Z$ by

$$\Phi(t, w, \eta) = (w, t\eta, \eta, tw)$$

is biholomorphic onto the open set $\Omega = Z - \{z_1 = z_3 = 0\}$. For every $p \in \partial \Omega$, $p \neq 0$, there exists an open neighborhood U(p) in Z such that U(p) is Stein. However Ω is obviously not Stein. This can be compared to the following theorem by Grauert and Remmert [7].

THEOREM. If $\Omega^{\text{open}} \subset \mathbb{C}^n$ and for every $p \in \partial \Omega$, $p \neq 0$, there exists an open neighborhood U(p) such that $U(p) \cap \Omega$ is Stein, then Ω is Stein, unless $\Omega \cup (0)$ is open (in which case $\Omega \cup (0)$ is Stein).

A function $f\colon X\to \mathbf{R}\cup\{-\infty\}$ where X is a (reduced) complex space will be said to be plurisubharmonic if for every $x\in X$ there is an open neighborhood U(x) which can be realized as a closed complex subvariety $Y\subset V^{\mathrm{open}}\subset \mathbb{C}^n$, $\Phi\colon U(x)\stackrel{\cong}{\longrightarrow} Y$ such that $f\circ\Phi^{-1}$ is the restriction to Y of a plurisubharmonic function on V. The function f is continuous (smooth) and plurisubharmonic if in addition $f\circ\Phi^{-1}$ can be chosen to be continuous (smooth). Also f is said to be (continuous/smooth) strongly plurisubharmonic if $f\circ\Phi^{-1}+\varepsilon\tau$ is (continuous/smooth) plurisubharmonic for all $\varepsilon\geq 0$ sufficiently small whenever $\tau\in\mathscr{C}_0^\infty(V),\ \tau\colon V\to \mathbb{R}$.

It is a theorem by Richberg [14] that strongly plurisubharmonic functions which are continuous are continuous strongly plurisubharmonic.

The results and proofs in this paper are equally valid in Stein spaces $X' = Z' \times M$ where M is any Stein manifold and

$$Z' = \{(z_1, \dots, z_n, w_1, \dots, w_n) \in \mathbb{C}^{2n} ; z_i w_j = z_j w_i \text{ for all } i, j\}$$
.

2. Preliminary remarks.

We would like here to briefly recall a few results which we will need.

THEOREM 1. (Narasimhan [10, 11]). Let X be a complex space. Then X is Stein if and only if there exists a continuous strongly plurisubharmonic function $\varphi \colon X \to \mathbb{R}$ such that $X_{\alpha} = \{x \in X : \varphi(x) < \alpha\}$ is relatively compact in X for all $\alpha \in \mathbb{R}$.

THEOREM 2. (Narasimhan [10, 11]). Let X be a Stein space and let $\varphi: X \to \mathbb{R}$ be a continuous plurisubharmonic function. Then $X_{\alpha} = \{x \in X : \varphi(x) < \alpha\}$ is Stein and Runge in X for all $\alpha \in \mathbb{R}$.

A particularly useful consequence of the two above theorems is the following well known result:

COROLLARY 3. If X is a Stein space and $K = \hat{K}$ is a compact set in X, then K has a neighborhood basis of Stein open sets which are Runge in X.

We also need the following theorem due to Richberg [14].

Theorem 4. If ϱ is a continuous strongly plurisubharmonic function on a countably compact complex manifold M and $\tau\colon M\to R^+$ is a strictly positive continuous function, then there exists a smooth strongly plurisubharmonic function ϱ^* on M such that $\varrho < \varrho^* < \varrho + \tau$. If σ is a continuous nonnegative plurisubharmonic function on a countably compact complex space X, $\sigma\equiv 0$ in a neighborhood of the singular locus of X and there exists a bounded continuous strongly plurisubharmonic function on X, then for every $\varepsilon>0$ there exists a smooth plurisubharmonic function σ^* on X with $\sigma<\sigma^*<\sigma+\varepsilon$.

Let us consider the Stein space $Z \times C$ where $Z = \{z \in C^4 ; z_1z_2 = z_3z_4\}$. If $\Omega^{\text{open}} \subset Z \times C$, we can define a distance function $\delta \colon \Omega \to R \cup \{\infty\}$ as follows. For any $q = (p,c) \in \Omega$, we let

$$\delta(q) = \sup\{r : (p, c+z) \in \Omega \text{ for all } z \in \mathbb{C}, |z| < r\}$$
.

PROPOSITION 5. The function $-\log \delta \colon \Omega \to \mathsf{R} \cup \{-\infty\}$ is plurisubharmonic if Ω is Stein, except on those connected components of Ω where $-\log \delta \equiv -\infty$.

PROOF. By the theorem of Siu [15] there exists a domain of holomorphy, $\hat{\Omega}$, in C^4 such that $\hat{\Omega} \cap (Z \times C) = \Omega$. If we define $\hat{\delta} \colon \hat{\Omega} \to R \cup \{\infty\}$ in the same way as δ , we obtain a plurisubharmonic function $-\log \delta \colon \hat{\Omega} \to R \cup \{-\infty\}$ such that $-\log \delta \mid \Omega = -\log \delta$.

3. Z as a branched Riemann domain.

In the paper of Andreotti and Narasimhan [1] they make fundamental use of the fact that a pure n-dimensional Stein space X may be realized as a branched Riemann domain over \mathbb{C}^n in many different ways. Although the singular points of X necessarily are branch points, one can always make the branch locus avoid any given regular point.

Let $Z = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 : z_1 z_2 = z_3 z_4\}$. We consider two holomorphic maps $\Phi_1, \Phi_2: \mathbb{C}^3 \to Z$, by

$$\Phi_1(t, w, \eta) = (w, t\eta, \eta, tw)$$
 and $\Phi_2(t, w, \eta) = (tw, \eta, t\eta, w)$.

The following lemma is easily verified.

LEMMA 6. $\Phi_1(t, 0, 0) \equiv \Phi_2(t, 0, 0) \equiv 0$ and if

$$U = \{(t, w, \eta) \in \mathbb{C}^3 ; (w, \eta) \neq (0, 0)\}$$

then $\Phi_i | U$ is biholomorphic onto the open set $\Phi_i(U)$, i = 1, 2. Moreover $Z - (0) = \Phi_1(U) \cup \Phi_2(U)$.

We will now define four holomorphic maps π_i : $Z \to C^3$, i=1,2,3,4. More precisely $\pi_1(z_1,z_2,z_3,z_4)=(z_1,z_2,z_3+2z_4)$, $\pi_2(z)=(z_1,z_2,2z_3+z_4)$, $\pi_3(z)=(z_1+2z_2,z_3,z_4)$ and $\pi_4(x)=(2z_1+z_3,z_3,z_4)$. Also define the holomorphic functions f_j : $Z \to C$ by $f_1(z)=z_3-2z_4$, $f_2(z)=2z_3-z_4$, $f_3(z)=z_1-2z_2$ and $f_4(z)=2z_1-z_2$.

LEMMA 7. The holomorphic map $\pi_j: Z \to \mathbb{C}^3$ makes Z into a doubly sheeted branched covering of \mathbb{C}^3 . The set of branch points is precisely $S_j = \{f_j = 0\}$. If $p \in S_j - \{0\}$ one can find local holomorphic coordinates $w = (w_1, w_2, w_3), p = 0$ on Z and local holomorphic coordinates $\eta = (\eta_1, \eta_2, \eta_3), \pi_j(p) = 0$ on \mathbb{C}^3 such that

$$\pi_j(w_1, w_2, w_3) \; = \; (w_1, w_2, w_3^2) \; = \; (\eta_1, \eta_2, \eta_3) \; .$$

The proof of this is a straightforward computation and will be omitted. We should also point out that in the coordinatesystem of the lemma, f_j/w_3 is a nonzero holomorphic function.

Following the argument of Andreotti and Narasimhan [1] we obtain plurisubharmonic functions on open subsets Ω of $Z \times C$ which are locally Stein away from $(0) \times C$. First we define $\hat{\pi}_j: Z \times C \to C^4 = C^3 \times C$ by $\hat{\pi}_j(p,c) = (\pi_j(p),c)$. Clearly this defines $Z \times C$ as a branched Riemann domain over C^4 with branch locus $\tilde{S}_i = \{\tilde{f}_i = 0\}$ where $\tilde{f}_i(p,c) = f_i(p)$.

For any $j \in \{1,2,3,4\}$, $\hat{\pi}_j \colon \Omega - \hat{S}_j \to \mathbb{C}^4$ realizes this as an unbranched Riemann domain. From the classical theory on the Levi problem one now has that $-\log d_j \colon \Omega - \hat{S}_j \to \mathbb{R}$ is continuous and plurisubharmonic. Here $d_j(q)$ is the radius of the largest ball centered at $\hat{\pi}_j(q)$ onto which $\hat{\pi}_j$ maps a neighborhood of q biholomorphically. Let us define $\varphi_j \colon \Omega \to \mathbb{R} \cup \{-\infty\}$ by

$$\hat{\varphi}_j = -\log d_j + 3\log |\hat{f}_j| \text{ on } \Omega - \hat{S}_j, \quad \hat{\varphi}_j \equiv -\infty \text{ on } \Omega \cap \hat{S}_j.$$

Proposition 8. The function $\varphi_j = \max{\{\hat{\varphi}_j, 0\}}$ is continuous and plurisubharmonic on Ω . Moreover, if $q \in \partial \Omega - \hat{S}_j$, $\varphi_j(p) \to \infty$ when $p \in \Omega$ and $p \to q$.

PROOF. It is clear that if $q \in \partial \Omega - \tilde{S}_j$, then $\varphi_j(p) \to \infty$ when $p \in \Omega$ and $p \to q$. In fact $\varphi_j(p)$ grows like $-\log \operatorname{dist}(p, \partial \Omega)$ measured in any smooth Hermitian metric defined on $Z \times \mathbb{C}$ near q.

Near a point $q \in \Omega \cap \hat{S}_j$, $q \neq 0$, $-\log d_j$ grows like $2\log |\hat{f}_j|$. Hence φ_j is

plurisubharmonic across \tilde{S}_j away from $(0) \times C$. To complete the proof it suffices to show that if $q = (0, c) \in \Omega$, then $\varphi_j \equiv 0$ in a neighborhood of q, because then φ_j is locally on Ω the restriction to Ω of a plurisubharmonic function defined on an open set in C^4 .

Let us consider j = 1. Then one computes that the image of the branch locus is

$$\{\tau = (\tau_1, \tau_2, \tau_3, \tau_4) ; \tau_1 \tau_2 = \tau_3^2 / 8\} = S_1'$$
.

Moreover $|\hat{f}_1|^2(\hat{q}) = |\tau_3^2 - 8\tau_1\tau_2|$ if $\hat{\pi}_1(\hat{q}) = \tau$. Hence already $-\log d_1 + 2\log |\hat{f}_1|$ approaches $-\infty$ when $\hat{q} \to q$. The same argument applies to j = 2, 3, 4.

We remark that we could have defined $\varphi_j = \max\{-\log d_j + 2\log |\mathcal{F}_j|, 0\}$ without altering the conclusion of Proposition 8.

4. Another distance function.

We have in the preceding sections described two sorts of plurisubharmonic functions on a Stein open set Ω of $Z \times C$. One is the φ_j 's which blow up at nonsingular boundary points and the other measures boundary distance in the C-direction. In this section we want to construct plurisubharmonic functions which blow up the Z-direction when we approach a point $(0,c) \in \partial \Omega$.

Let us first define a holomorphic map $\Gamma: \mathbb{C}^4 \to \mathbb{Z}$ by

$$\Gamma(w) = (w_1 w_2, w_3 w_4, w_1 w_3, w_2 w_4)$$

Lemma 9. The holomorphic map $\Gamma \colon \mathbb{C}^4 \to \mathbb{Z}$ is onto. Furthermore

$$\Gamma^{-1}(0) = \{w_1 = w_4 = 0\} \cup \{w_2 = w_3 = 0\}$$

while for every $w \in \mathbb{C}^4 \neg \Gamma^{-1}(0)$, we have

$$\Gamma^{-1}(\Gamma(w)) = \{(w_1\tau, w_2/\tau, w_3/\tau, w_4\tau) ; \tau \in \mathsf{C} - (0)\}.$$

The proof is straightforward and may be omitted. Let us now consider the map $\tilde{\Gamma}: C^5 \to Z \times C$ by $\tilde{\Gamma}(p,c) = (\Gamma(p),c)$. For any open set $\Omega \subset Z \times C$ we can define the distance functions $\Delta_1, \Delta_2: \tilde{\Omega} = \tilde{\Gamma}^{-1}(\Omega) \to \mathbb{R} \cup \{\infty\}$ as follows:

Let

$$\Delta_1(w,c) = \sup \{ r ; (w_1 + \tau_1, w_2, w_3, w_4 + \tau_2, c) \in \widetilde{\Omega}$$
 for all $(\tau_1, \tau_2) \in \mathbb{C}^2, |\tau_1|^2 + |\tau_2|^2 < r^2 \}$

and let

$$\begin{split} \varDelta_2(w,c) \, = \, \sup \big\{ r \; ; \; \; (w_1,w_2+\tau_1,w_3+\tau_2,w_4,c) \in \tilde{\Omega} \\ \\ & \quad \text{for all } (\tau_1,\tau_2) \in \mathbb{C}^2, \; |\tau_1|^2 + |\tau_2|^2 < r^2 \big\} \; . \end{split}$$

LEMMA 10. $\Delta_1 \cdot \Delta_2$ is constant on each fibre of $\tilde{\Gamma}$. Moreover, if $\tilde{\Gamma}(q) = (p, c)$ and if $(0, c) \notin \Omega$, then $\Delta_1 \cdot \Delta_2(q) \leq 2\|p\|$.

PROOF. We easily check that $\Delta_1(w_1\tau, w_2/\tau, w_3/\tau, w_4\tau, c) = |\tau|\Delta_1(w, c)$ and

$$\Delta_2(w_1\tau, w_2/\tau, w_3/\tau, w_4\tau, c) = \frac{1}{|\tau|} \Delta_2(w, c)$$

from which the first statement follows.

Next assume that $q = (w, c) \in \tilde{\Omega}$ and that $(0, c) \notin \Omega$. Let $(z, c) = \tilde{\Gamma}(w, c)$, and assume $|z_1| = \max_{j=1,\dots,4} \{|z_j|\}$. The argument is similar for the other possibilities. By the first statement, we may suppose that we have chosen $w_1 = \sqrt{z_1}$. Thus $w_2 = \sqrt{z_1}$, $w_3 = z_3/\sqrt{z_1}$ and $w_4 = z_4/\sqrt{z_1}$ as one deduces from the definition of Γ . In particular, this implies that $|w_3|, |w_4| \le |w_1| = |w_2| = \sqrt{|z_1|}$. Since $\tilde{\Gamma}^{-1}(0, c) \subset \mathbb{C}^5 - \tilde{\Omega}$, one obtains that

$$\Delta_1(w,c) \le (|w_1|^2 + |w_4|^2)^{\frac{1}{2}} \le \sqrt{2}\sqrt{|z_1|}$$

and similarly $\Delta_2(w,c) \le \sqrt{2}\sqrt{|z_1|}$. Hence $\Delta_1 \cdot \Delta_2(w,c) \le 2|z_1| \le 2||z||$ as desired.

DEFINITION 11. Assume $\Omega \subset Z \times C$ is an open subset. Then $\Delta(q) \colon \Omega \to R \cup \{\infty\}$ is defined as $\Delta(q) = \Delta_1(\hat{q}) \cdot \Delta_2(\hat{q})$ for any $\hat{q} \in \tilde{\Gamma}^{-1}(q)$.

LEMMA 12. Assume $\Omega \subset Z \times C$ is Stein or an increasing union of Stein open sets or is locally Stein. Then $\Delta^* = \max\{-\log \Delta, 0\}: \Omega \to R$ is plurisubharmonic. Moreover $\Delta^* \equiv 0$ in an open neighborhood of (0, c) if $(0, c) \in \Omega$. Also if $(0, c) \notin \Omega$,

$$\Delta^*(p,c) \ge -\log \Delta \ge -\log \|p\| - \log 2$$

whenever $(p, c) \in \Omega$.

PROOF. The set $\hat{\Omega} = \hat{\Gamma}^{-1}(\Omega)$ is a domain of holomorphy. This implies that $-\log \Delta_1$ and $-\log \Delta_2$ are plurisubharmonic on $\hat{\Omega}$. Therefore $-\log \Delta_1 \Delta_2$ is also plurisubharmonic. Clearly $-\log \Delta_1 \Delta_2 \equiv -\infty$ on $\hat{\Gamma}^{-1}(0,c)$ if $(0,c) \in \Omega$. The Lemma now follows from Lemma 10 and the observation that for every $(z^0,c) \in (Z-(0)) \times \mathbb{C}$ there exists a holomorphic map T defined in an open neighborhood of (z^0,c) in $Z \times \mathbb{C}$ to \mathbb{C}^5 such that $\hat{\Gamma} \circ T = \mathrm{Id}$. For example, if $z_1^0 \neq 0$, we can define

$$T(z,c) = (1, z_1, z_3, z_4/z_1, c)$$
.

LEMMA 13. If $\Omega \subset Z \times C$ is locally Stein or an increasing union of Stein open sets and if $\partial \Omega$ is smooth away from $0 \times C$, then Δ^* is continuous.

This is proved using the result by Kerzman [8] that smoothly bounded domains of holomorphy are taut. Let us just point out that if $(w^0, c) \in \mathbb{C}^5$, $\widehat{\Gamma}(w^0, c) = (z^0, c) + (0, c)$, and if say

$$\varDelta_1(w^0,c) \,=\, \sqrt{w_1^0\bar{w}_1^0+w_4^0\bar{w}_4^0} \,=\, \delta \;,$$

then we can show that Δ_1 is upper semicontinuous at (w^0,c) by contradiction as follows. Assume for some $\delta'>0$ that there exists a sequence $\{(w^n,c_n)\}_{n=1}^{\infty}\in\tilde{\Gamma}^{-1}(\Omega)=\tilde{\Omega}$ such that $(w^n,c_n)\to(w^0,c)$ and

$$\left\{ (w_1, w_2^n, w_3^n, w_4, c_n) \; ; \; \sqrt{|w_1 - w_1^n|^2 + |w_4 - w_4^n|^2} < \delta + \delta' \right\}$$

is contained in $\tilde{\Omega}$ for all n. By tautness away from $\tilde{\Gamma}^{-1}(0 \times \mathbb{C})$ it follows that $\tilde{\Omega}$ contains

$$\{(w_1, w_2^0, w_3^0, w_4, c) ; \sqrt{|w_1 - w_1^0|^2 + |w_4 - w_4^0|^2} < \delta + \delta'$$

and $(w_1, w_4) \neq (0, 0)\}$.

Since $\widehat{\Omega}$ is a domain of holomorphy, $(0, w_2^0, w_3^0, 0, c) \in \widehat{\Omega}$ as well and hence $\Delta_1(w^0, c) \ge \delta + \delta'$ which gives a contradiction.

5. The Levi problem.

Assume Ω is an open subset of $X = Z \times C$, $Z = \{z \in C^4 ; z_1z_2 = z_3z_4\}$.

THEOREM 14. If Ω is locally Stein, i.e. for every point $p \in \partial \Omega$ there is an open neighborhood U(p) such that $U(p) \cap \Omega$ is Stein, then Ω is Stein.

PROOF. The function $||z||^2 + c\bar{c}$, $z \in Z$, $c \in C$ is a continuous plurisubharmonic function on X. Hence it follows from Theorem 2 that we may assume that $\Omega \subset Z \times C$. The maps $\hat{\pi}_j \colon \Omega - \hat{S}_j \to C^4$ realize $\Omega - \hat{S}_j$ as a locally Stein unbranched Riemann domain over C^4 , j = 1, 2, 3, 4. By Oka's [12] solution of the Levi Problem it follows that $\Omega - \hat{S}_j$ is Stein. Therefore the functions φ_j constructed in Proposition 8 are continuous plurisubharmonic functions on Ω which are identically zero in a neighborhood of $\Omega \cap \{0 \times C\}$.

Hence by Theorem 4 there is a smooth plurisubharmonic function $\varphi \colon \Omega \to \mathbb{R}$ such that $|\varphi - \sup \varphi_j| < 1$ on Ω . In particular $\varphi(p) \to \infty$ if $p \in \Omega$ approaches any point $q \in \partial \Omega - (0 \times \mathbb{C})$.

This implies, by Sard's theorem, that there exists arbitrarily large $\alpha \in R$ such that $\Omega_{\alpha} = \{ \varphi < \alpha \}$ has smooth boundary away from $(0) \times C$.

By Theorem 2 it suffices to prove that any such Ω_{α} is Stein. So we fix an Ω_{α} with the above boundary property in the rest of the proof.

From Lemma 13, applied to Ω_{α} , it follows that Δ^* is a continuous

nonnegative plurisubharmonic function on Ω_{α} which is identically zero in an open set containing $\Omega_{\alpha} \cap (0 \times C)$. Hence using Theorem 4 again, we find a smooth plurisubharmonic function $\hat{\Omega}: \Omega_{\alpha} \to R$ such that $|\hat{\Delta} - \Delta^*| < 1$ on Ω_{α} .

Let $\Omega^{\beta} = \{q \in \Omega_{\alpha} ; \hat{A}(q) < \beta\}$ for $\beta \in \mathbb{R}$. From Sard's theorem it follows that $\partial \Omega^{\beta}$ is smooth away from $\partial \Omega_{\alpha}$ and $\Omega_{\alpha} \cap (0 \times \mathbb{C})$ for arbitrarily large β . We fix such an Ω^{β} in the rest of the proof and observe that by Theorem 2 it suffices to show that Ω^{β} is Stein.

We will construct a continuous strongly plurisubharmonic exhaustion function on Ω^{β} . Since, if $\varphi_j \colon \Omega^{\beta} \to \mathbb{R}$ is as in Proposition 8, $\max_{j=1,2,3,4} \{\varphi_j\} + \|z\|^2 + c\bar{c}$ is a nonnegative strongly plurisubharmonic function which blows up at every boundary point of Ω^{β} , except along $(0) \times \mathbb{C}$, it suffices to find a continuous nonnegative plurisubharmonic function on Ω^{β} which blows up at every boundary point of Ω^{β} on $(0) \times \mathbb{C}$. In fact, we will prove that $\max \{-\log \delta, \gamma\} = \delta^*$ is such a function if δ is as in Proposition 5, and if γ is sufficiently large.

The local Stein-ness of Ω^{β} follows from Theorem 2 and implies via Proposition 5 that δ^* is plurisubharmonic if γ is sufficiently large. It remains to prove that δ is continuous and that $\delta \to 0$ when we approach $\partial \Omega^{\beta} \cap (0 \times C)$.

Let $U=\Omega^{\beta}\cap(0\times\mathbb{C})$ and consider a point $(0,c)\notin U$. First of all, we observe that $(0,c)\notin\Omega_{\alpha}$ since we may assume $\beta\gg1$. If $(p,c)\in\Omega^{\beta}$, then $\hat{\Delta}$ $(p,c)<\beta$ and hence $\Delta^*(p,c)<\beta+1$. From Lemma 12 it now follows that $-\log\|p\|-\log 2<\beta+1$, and so $\|p\|>e^{-\beta-2}$. Therefore, if $(p,c)\in\Omega^{\beta}$ and $\|p\|<e^{-\beta-2}$, we must necessarily have $(0,c)\in U$. This implies that $\delta\to 0$ when we approach $\partial\Omega^{\beta}\cap(0\times\mathbb{C})$. Also, this implies that δ is continuous at every point in U.

Fix a point $(p,c) \in \Omega^{\beta}$, $p \neq 0$. We will show that δ is continuous at this point. Since Ω^{β} is open, δ is lower semicontinuous. Assume δ is not upper semicontinuous. Let (p,c') be a point on $\partial \Omega^{\beta}$ with $|c'-c| = \delta(p,c)$. There exists an $\varepsilon > 0$ and a sequence $\{p^n\}_{n=1}^{\infty}$ such that $p^n \to p$ and

$$\Delta^n = \{(p^n, c'') ; |c'' - c| < \delta(p, c) + \varepsilon\} \subset \Omega^{\beta}$$

for all n. Let $\Delta = \{(p,c'') \; ; \; |c''-c| < \delta(p,c) + \varepsilon\}$, and observe that since $\Delta^n \subset \Omega_\alpha$ and Ω_α is taut at smooth boundary points, Kerzman [8], it follows that $\Delta \subset \Omega_\alpha$. This implies that $(p,c') \in \partial \Omega^\beta \cap \Omega_\alpha$, which contradicts the same result of Kerzman since $\partial \Omega^\beta$ is smooth away from $\partial \Omega_\alpha$ and $(0) \times C$. Hence δ is upper semicontinuous at (p,c) as well.

6. The union problem.

Let $\{\Omega_n\}$ be a sequence of Stein open subsets of

$$X = Z \times C$$
, $Z = \{z \in C^4 ; z_1 z_2 = z_3 z_4\}$.

THEOREM 15. If $\Omega_1 \subset \Omega_2 \subset \ldots$ and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$, then Ω is Stein.

We will first prove a standard Lemma which reduces the proof to an estimate of the hulls of compact subsets of Ω .

Lemma 16. If for every compact set $K \subset \Omega$ there exists a compact set $F \subset \Omega$ such that $\hat{K}_{\Omega} \subset F$ for all $\Omega_n \supset K$, then Ω is Stein.

PROOF OF THE LEMMA. Choose compact sets $\{K_n\}_{n=1}^{\infty}$ such that K_n \subset int K_{n+1} for all n and $\Omega = \bigcup K_n$. Let $\{F_n\}_{n=1}^{\infty}$ be the corresponding compact sets given by the hypothesis of the Lemma. We may assume that $F_n \subset F_{n+1}$ for all n. To show that Ω is Stein, it suffices to prove that for every sequence $\{p_n\}$ $\subset \Omega$ without cluster point in Ω there exists a holomorphic function $f: \Omega \to C$ such that $\sup_{n} |f(p_n)| = \infty$.

Taking suitable subsequences, we may assume that $p_n \in K_{n+1} \subset F_{n+1} \subset \Omega_n$ and that $p_n \notin F_n$. Choose inductively a sequence $\{f_n\}$ of holomorphic functions, $f_n: \Omega_n \to \mathbb{C}$ with the property that

- (i) $|f_{n+1} f_n| < 1/2^n$ on K_{n+1} (ii) $f_n(p_k) = k$, k = 1, ..., n.

This clearly is possible. If $f = \lim_{n \to \infty} f_n$, then f has the desired properties.

PROOF OF THE THEOREM. Let us fix a compact set $K \subset \Omega$ and show that there exists a compact set $F \subset \Omega$ such that $\hat{K}_n := \hat{K}_{\Omega_n} \subset F$ for all n. By Lemma 16 this will complete the proof.

Let $\varphi = \max_{j=1,2,3,4} \varphi_j$ be the function constructed in Proposition 8. Since the Union Problem has been solved on unbranched Riemann domains, the function φ is plurisubharmonic on Ω .

By Theorem 2 we may assume that Ω is bounded. Using Theorem 4, we find a smooth plurisubharmonic function φ^* on Ω such that $|\varphi - \varphi^*| < 1$.

If $m = \max_K \varphi^*$, it follows that $\hat{K}_n \subset \{q \in \Omega : \varphi^*(q) < m+1\} = \Omega^{m+1}$ for all $n \in \mathbb{N}$ such that $\Omega_n \supset K$. This is clear because $\{\varphi^* < \alpha\} \cap \Omega_n$ is Runge in Ω_n for all α by Theorem 2.

We fix an $\alpha > m+1$ such that $\partial \Omega^{\alpha}$ is smooth away from $(0) \times C$. Next we consider the function Δ^* : $\Omega^z \to R$ constructed in Lemma 12. By Lemma 13, Δ^* is continuous and plurisubharmonic on Ω^{α} .

Let m' be the maximum value of Δ^* on K. We fix a $\beta > m'$. Let us denote by Ω_n^{α} the set $\Omega^{\alpha} \cap \Omega_n$ and by $\Omega_{n,\beta}$ the set $\{q \in \Omega_n^{\alpha} ; \Delta^* < \beta\}$. Then $\Omega_{n,\beta} \supset K$ and is Runge in Ω_n . Therefore $\hat{K}_{\Omega_n} = \hat{K}_{\Omega_{n,\beta}} \subset \Omega_{n,\beta}$. In particular

$$\hat{K}_n \subset \{q \in \Omega^{\alpha} ; \Delta^* < \beta\} = \Omega^{\alpha}_{\beta}$$
 for all large n .

The sets $U = \Omega \cap (0 \times \mathbb{C})$ and $\Omega^{\alpha} \cap (0 \times \mathbb{C})$ and $\Omega^{\alpha}_{\beta} \cap (0 \times \mathbb{C})$ are all equal since φ and Δ^* are 0 in an open set containing U.

We obtain from Lemma 12 that if $(p,c) \in \Omega_{\beta}^{\alpha}$ and $(0,c) \notin U$, then $||p|| > e^{-\beta-1}$. Now the sets $\Omega_{\beta,n}^{\alpha} = \Omega_{\beta}^{\alpha} \cap \Omega_{n}$ are Stein and

$$\Omega_{\beta,1}^{\alpha} \subset \Omega_{\beta,2}^{\alpha} \subset \ldots \subset \bigcup_{n=1}^{\infty} \Omega_{\beta,n}^{\alpha} = \Omega_{\beta}^{\alpha}.$$

Let n_0 be some index such that $K \subset \Omega^{\alpha}_{\beta, n_0}$. If $n \ge n_0$ and f is a holomorphic function on $\Omega^{\alpha}_{\beta, n}$, then $\partial^r f/\partial c^r$ is also holomorphic on $\Omega^{\alpha}_{\beta, n}$. Moreover, choose a positive number $\varepsilon > 0$ such that $(p, c) \in K$ and $c' \in C$, $|c'| < \varepsilon$ implies that $(p, c) \in K_{\Omega^{\alpha}_{\beta, n}}$. It follows that if $(p, c) \in \hat{K}_{\Omega^{\alpha}_{\beta, n}}$, $n \ge n_0$ then $(p, c + c') \in \Omega^{\alpha}_{\beta, n}$ for all $c' \in C$, $|c'| < \varepsilon$. In particular, if $||p|| \le e^{-\beta - 1}$, then $(0, c) \in U$ and $(0, c + c') \in U$ for all $c' \in C$, $|c'| < \varepsilon$.

In conclusion, we have shown that if K is a compact subset of Ω , then there exists a compact subset F of Ω such that $\hat{K}_{\Omega_n} \subset F$ whenever $K \subset \Omega_n$. This completes the proof of the Theorem.

7. The Runge problem.

As always, let $X = Z \times C$ with $Z = \{z \in C^4 : z_1 z_2 = z_3 z_4\}$. Let $\{\Omega_t\}_{t \in R}$ be a family of Stein open subsets of X such that Ω_t is a union of connected components of the interior of $\bigcap_{\tau > t} \Omega_{\tau}$ and such that $\bigcup_{\tau < t} \Omega_{\tau}$ is a union of connected components of Ω_t for each $t \in R$.

Theorem 17. If $t_1 < t_2$ are real numbers, then Ω_{t_1} is Runge in Ω_{t_2} .

PROOF. We fix a $t \in \mathbb{R}$ and a compact set $K \in \Omega_t$. To arrive at a contradiction, let us assume that for some $\tau > t$ the set $\hat{K}_{\tau} = \hat{K}_{\Omega_{\tau}}$ is not contained in Ω_t . From Corollary 3 it follows that \hat{K}_{τ} is contained in the union $\bigcup_{\lambda < \tau} \Omega_{\lambda}$. Hence there exists a number t', $t \leq t' < \tau$ such that $\hat{K}_{\tau} \subset \Omega_{\lambda}$ when $\lambda > t'$ and $\hat{K}_{\tau} \notin \Omega_{\lambda}$ when $\lambda < t'$. Let us assume that $\hat{K}_{\tau} \cap \partial \Omega_{t'} = \emptyset$. It would then follow from Corollary 3 that $\hat{K}_{\tau} \subset \Omega_{t'}$. This implies that t' > t since $\hat{K}_{\tau} \notin \Omega_{t}$. Therefore $\hat{K}_{\tau} \subset \bigcup_{\lambda < t'} \Omega_{\lambda}$, again by Corollary 3. Hence $\hat{K}_{\tau} \subset \Omega_{\lambda}$ for some $\lambda < t'$ contradicting the choice of t'.

We may assume therefore that $\hat{K}_{\tau} \cap \partial \Omega_{t'} \neq \emptyset$, and hence we may also assume that t = t'.

Summarizing, we assume that $t < \tau$ and that K is a compact subset of Ω_t such that $\hat{K}_{\tau} \cap \partial \Omega_t \neq \emptyset$ while $\hat{K}_{\tau} \in \Omega_{\lambda}$ for all $\lambda > t$. We denote $\hat{K}_{\tau} \cap \partial \Omega_t$ by F. Let us first prove that $F \subset (0) \times C$.

Pick a point $(p,c) \in F$ with $p \neq 0$. There exists a $j \in \{1,2,3,4\}$ such that $(p,c) \notin \hat{S}_i$. Hence the map $\hat{\pi}_i : Z \times C \to C^4$ is regular at (p,c). Let d_i^{λ} be the

distance function on $\Omega_{\lambda} - \hat{S}_{j}$ obtained from viewing this set as an unbranched Riemann domain over C^{4} .

If $\lambda > t$, the functions $\varphi_j^{\lambda} = \max \{-\log d_j^{\lambda} + 3\log |f_j|, 0\}$ are continuous and plurisubharmonic on Ω_{λ} as was established in Proposition 8. Moreover they are uniformly bounded on K. By Corollary 3, $\hat{K}_{\lambda} = \hat{K}_{\tau}$ for all $\lambda \in (t, \tau)$. Therefore, by Theorem 2, the functions φ_j^{λ} are uniformly bounded at (p, c), $\lambda \in (t, \tau)$. Hence (p, c) is an interior point of $\bigcap_{\lambda > t} \Omega_{\lambda}$. This contradicts that $(p, c) \in \partial \Omega_t$ and that Ω_t consists of connected components of the interior of $\bigcap_{\lambda > t} \Omega_{\lambda}$. This shows that we must have $F \subset (0) \times \mathbb{C}$.

Let now $U = \Omega_t \cap ((0) \times \mathbb{C})$ and let $\varepsilon > 0$ be a number such that $(p, c + c') \in \Omega_t$ whenever $(p, c) \in K$ and $|c'| < 4\varepsilon$.

We will show that there exists a positive number $\delta > 0$ such that if $(p, c) \in \Omega_r$, $p \neq 0$ and $||p|| < \delta$ and moreover $(0, c) \notin U$ or has distance from ∂U , U thought of as an open set in C, less than ε , then $(p, c) \notin \hat{K}_r$.

Let $\varphi_j^{\lambda} \colon \Omega_{\lambda} \to \mathbf{R}$ be the continuous plurisubharmonic function constructed in Proposition 8, $\lambda \in (t, \tau)$. From the inclusions we have the obvious estimate that $\varphi_j^{\lambda} \leq \varphi_j^t$ on Ω_l .

Using Theorem 4 we find smooth plurisubharmonic functions $\varphi^{\lambda} \colon \Omega_{\lambda} \to \mathbb{R}$ such that

$$\left| \varphi^{\lambda} - \max_{j=1,\ldots,4} \left\{ \varphi_{j}^{\lambda} \right\} \right| < 1 \quad \text{on } \Omega_{\lambda}.$$

Here we use again the observation that by Theorem 2 we may assume that the sets $\Omega_{\lambda} \subset\subset X$ for all λ .

We choose a number m such that $\Omega'_t = \{q \in \Omega_t ; \varphi^t(q) < m\}$ has smooth boundary away from $0 \times \mathbb{C}$ and such that if $(p,c) \in K$ and $|c'| < 3\varepsilon$, then $(p,c) \in K'$. Next we define Ω'_λ for $\lambda \in (t,\tau)$ as $\{q \in \Omega_\lambda ; \varphi^\lambda(q) < m_\lambda\}$ where $m_\lambda \in (m+2,m+3)$ is chosen such that Ω'_λ has smooth boundary away from $\{0\}$ $\times \mathbb{C}$. Then each Ω'_λ is Stein and we have the estimates

- (i) if $(p,c) \in K$ and $|c'| < 3\varepsilon$, then $(p,c+c') \in \Omega'_{\lambda}$
- (ii) $\hat{K}_{\lambda} \subset \Omega'_{\lambda}$ and
- (iii) For any positive number $\eta > 0$ there exists a $\lambda(\eta) > t$ such that if $\lambda \in (t, \lambda(\eta))$ and $(p, c) \in \partial \Omega_t$, $||p|| > \eta$, then $(p, c) \notin \Omega_\lambda'$.

In fact (i) follows since $\Omega'_{\lambda} \supset \Omega'_{t}$, (ii) follows from Corollary 3 and (iii) follows since $(p,c) \in \partial \Omega_{t}$ cannot be interior points of $\bigcap_{\lambda > t} \Omega_{\lambda}$.

Now let $\Delta_{\lambda}^* : \Omega_{\lambda}' \to \mathbb{R}$ be the functions constructed in Lemma 12. From Lemma 13 it follows that Δ_{λ}^* is continuous and plurisubharmonic. We have the obvious estimate $\Delta_{\lambda}^* \geq \Delta_{\lambda}^*$ on Ω_{λ}' for all $\lambda \in (t, \tau)$.

We choose a $k \in \mathbb{R}$ such that if $(p,c) \in K$ and $|c'| < 2\varepsilon$, then $(p,c+c') \in \Omega'_t$ and $\Delta_t^*(p,c) < k$. If we let

$$\Omega_{i}^{"} = \{q \in \Omega_{i}^{'}; \Delta_{i}^{*} < k\}, \quad \lambda \in [t, \tau),$$

then if $(p, c) \in K$ and $|c'| < 2\varepsilon$, then $(p, c + c') \in \Omega''_{\lambda}$. Furthermore, by Corollary 3, $\hat{K}_{\tau} \subset \Omega''_{\lambda}$ for all $\lambda \in (t, \tau)$.

We let $\delta = \frac{1}{4}e^{-k}$ and choose a point $(p,c) \in \Omega_t$ with $p \neq 0$ and $\|p\| < \delta$. To arrive at a contradiction, let us assume that $(p,c) \in \hat{K}_{\tau}$ and that $(0,c) \notin U$ or has distance from ∂U less than ε . Since each Ω''_{λ} is Stein it follows that if $|c'| < 2\varepsilon$, then $(p,c+c') \in \Omega''_{\lambda}$, $\lambda \in (t,\tau)$. Hence we may find a possibly different point $(p,c) \in \Omega_t$ with $p \neq 0$ and $\|p\| < \delta$ such that $(0,c) \notin U$ and $(p,c) \in \Omega''_{\lambda}$ for all $\lambda \in (t,\tau)$. We consider a point $(w^0,c) \in \mathbb{C}^5$ such that $\tilde{\Gamma}(w^0,c) = (p,c)$ in the notation of section 4. Let Σ_1 be the two dimensional complex plane

$$\Sigma_1 = \{(w,c) ; w_1 = w_1^0, w_4 = w_4^0\}$$

and similarly let

$$\Sigma_2 = \{(w,c) ; w_2 = w_2^0, w_3 = w_3^0 \}.$$

It is possible to choose w^0 so that $\max |w_1^0| < \sqrt{\delta}$, as is seen from the definition of $\tilde{\Gamma}$. Let B_1 be the open ball in Σ_1 centered at (w^0,c) with radius $\sqrt{2}\sqrt{\delta}$. Then the point $q=(w_1^0,0,0,w_4^0,c)\in B_1$. We let $\tilde{\Omega}_t$ be the pull back to C^5 of Ω_t . Since $(0,c)\notin\Omega_t$, it follows that $q\notin\tilde{\Omega}_t$. Since $\tilde{\Omega}_t$ is a domain of holomorphy, it follows that $\tilde{\Omega}\cap\Sigma_1$ is also a domain of holomorphy in $\Sigma_1\cong C^2$. This implies that there must exist a point $q'\neq q$ in B_1 such that $q'\in\partial\tilde{\Omega}_t$ and hence $p'=\tilde{\Gamma}(q')\subset\partial\Omega_t$. Therefore, (iii) gives that $p'\notin\Omega'_\lambda$ for all sufficiently small $\lambda>t$. In particular we get that $q'\notin\tilde{\Gamma}^{-1}(\Omega'_\lambda)$ for all such λ . Let $\Delta_1^\lambda,\Delta_2^\lambda$ be the distance functions on $\tilde{\Gamma}^{-1}(\Omega'_\lambda)$ used in Lemma 10. We have now the estimate $\Delta_2^\lambda(w^0,c)<\sqrt{2}\sqrt{\delta}$, and by the same argument applied to Σ_2 , $\Delta_1^\lambda(w^0,c)<\sqrt{2}\sqrt{\delta}$ also. Since

$$\Delta_{\lambda}^{*}(p,c) = \max \left\{ -\log \Delta_{1}^{\lambda} \Delta_{2}^{\lambda}(w^{0},c), 0 \right\}$$

we get

$$\Delta_{\lambda}^{*}(p,c) > -\log 2 - \log \delta = \log 2 + k > k.$$

This contradicts that $(p,c) \in \Omega'_{\lambda}$ because $\Omega''_{\lambda} = \{q \in \Omega'_{\lambda} ; \Delta^*_{\lambda} < k\}$.

Let us fix a number $\delta > 0$ such that if $(p,c) \in \Omega_t$, $p \neq 0$ and $||p|| < \delta$ and moreover $(0,c) \notin U$ or has distance from ∂U less than ε , then $(p,c) \notin \hat{K}_{\varepsilon}$.

Denote by F_0 the set $\hat{K}_{\tau} \cap \partial U$. We know now that if F_0 is empty, then $\hat{K}_{\tau} \subset U$ by Corollary 3. So we assume that there exists at least one point $(0,c') \in \hat{K}_{\tau} \cap \partial U$. Let H be those points in $U \cap \hat{K}_{\tau}$ with distance from ∂U in $[\epsilon/3,\epsilon/2]$. Then H is a compact set, and we consider this as a subset of $C \cong \{0\}$ \times C. Hence c' is in a connected component V of C - H.

Let us first show that $V
otin \Omega_{\lambda}$ if $\lambda > t$ is small enough. The set $\partial V \subset H \subset \Omega_t$, and so there exists a v > 0 such that if $(q, c) \in Z$, $||q|| \le v$ and $c \in \partial V$, then $(q, c) \in \Omega_t$. If $V \in \Omega_{\lambda}$, it therefore follows that

$$\{(q,c) ; \|q\| \le v \text{ and } c \in \bar{V}\} \subset \Omega_{\lambda}$$
.

If this holds for all $\lambda > t$, (0, c') must be an interior point of $\bigcap_{\lambda > t} \Omega_{\lambda}$ which contradicts that $(p, 0) \in \partial \Omega_t$. Hence there exists a point $(0, c'') \notin \Omega_{\lambda}$ whenever $\lambda > t$ is small enough, $c'' \in V$.

By the well known Runge theorem in one complex variable there exists a rational function $P(c)\colon \mathsf{C}\to \mathsf{C}$ with poles at c'' only such that $|P(c')|>1>\max_H|P|$. Since $\Omega_\lambda\cap(0\times\mathsf{C})$ is a closed subvariety of a Stein space, we may find a holomorphic extension $\hat{P}\colon\Omega_\lambda\to\mathsf{C}$. Since F_0 is compact, we may find a $\hat{\lambda}_0>t$ and a finite collection of holomorphic function $\hat{P}_1,\ldots,\hat{P}_t\colon\Omega_{\lambda_0}\to\mathsf{C}$ such that

$$\max_{j=1,\ldots,l} |\tilde{P}_j|(0,c) > 1 \quad \text{for all } c \in F_0$$

and each $|\tilde{P}_j| < 1$ on H.

Let W be a Stein open set in Ω_{λ_0} containing \hat{K}_{τ} which is Runge in Ω_{λ_0} . We can by Corollary 3 assume that W is contained in any given neighborhood of \hat{K}_{τ} . In what follows we will assume W is sufficiently small.

Let $\chi: \mathbf{R} \to \mathbf{R}$ be a continuous convex function such that $\chi(x) > 0$ when x > 0, $\chi(x) \equiv 0$ when $x \leq 0$. We define a continuous plurisubharmonic function, ϱ , on W by

- (i) $\varrho \equiv 0$ for those points in W which lie near points in $\hat{K}_{\tau} \cap \Omega_{t}$ except near those in $(0) \times U$ whose distance to ∂U is less than $\varepsilon/2$.
 - (ii) $\varrho = \chi \circ \max_{j} |\tilde{P}_{j}|$ otherwise.

Then by Theorem 2 the set F_0 must be empty since W is Runge in Ω_{λ_0} and $\varrho \mid F_0 > 0$ while $\varrho \mid K \equiv 0$.

8. Some remarks.

We will list a few other problems than the ones mentioned in the introduction, but which are suggested by the preceding proofs.

PROBLEM 1. Assume $\varphi: X \to \mathbb{R}$ is a continuous function on a complex space X such that $\varphi \circ \psi: \Delta \to \mathbb{R}$ is subharmonic whenever $\psi: \Delta \to X$ is a holomorphic map of the open unit disc into X. Is φ necessarily plurisubharmonic?

This problem was posed in Narasimhan [10]. Clearly there are other similar problems with other regularity conditions on the functions.

PROBLEM 2. If $\{\varphi_n\}_{n=1}^{\infty} \colon X \to \mathbb{R}$ is a sequence of continuous plurisubharmonic functions on X converging uniformly to $\varphi \colon X \to \mathbb{R}$ on compact subsets of the complex space X. Is φ plurisubharmonic?

This problem was posed in Richberg [14]. Again similar problems arise with other regularity conditions on the functions. Theorem 4 of Richberg suggests the following type of problem:

PROBLEM 3. If $\varphi \colon X \to \mathbb{R}$ is a plurisubharmonic function on a complex space X, does there exist a sequence of smooth plurisubharmonic functions $\{\varphi_n\} \colon X \to \mathbb{R}$ such that $\varphi_n \searrow \varphi$ when $n \to \infty$.

This is of course true if X is a Stein manifold.

PROBLEM 4. Assume $\varphi: X \to \mathbb{R}$ is a strongly plurisubharmonic function on a complex space X such that $\{\varphi < \alpha\} \subset X$ for all $\alpha \in \mathbb{R}$. Is X Stein?

If we assume in addition that φ is continuous, this is Theorem 2 by Narasimhan [10]. Problem 4 is still open if X is a complex manifold. If $\varphi \colon X \to \mathbb{R}$ is a plurisubharmonic exhaustion function and there exists a continuous strongly plurisubharmonic function $\psi \colon X \to \mathbb{R}$, then X is Stein if it is a complex manifold, Richberg [14], Suzuki [16] and Elenzwaig [5].

PROBLEM 5. Assume $\varphi: X \to \mathbb{R}$ is a plurisubharmonic function on a Stein space X. Is $X_{\alpha} = \{ \varphi < \alpha \}$ Runge in X and/or Stein for any $\alpha \in \mathbb{R}$?

This is true if X is a Stein manifold. Also if φ is continuous it reduces via Richberg's theorem to Theorem 2 by Narasimhan [10].

REFERENCES

- 1. A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc. 111 (1964), 345-366.
- 2. H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und Meromorphiekonvexität, Math. Ann. 116 (1938-39), 204-216.
- 3. E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242.
- F. Docquier and H. Grauert, Levisches Problem and Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
- G. Elencwajg, Pseudoconvexité locale dans les variétés Kählériennes, Ann. Inst. Fourier (Grenoble) 25 (1975), 295-314.
- 6. J. E. Fornæss, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann. 223 (1976), 275-277.
- 7. H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorph-konvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helv. 31 (1956), 152-183.

- 8. N. Kerzman, Personal communication.
- 9. R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82 (1960), 917-934.
- 10. R. Narasimhan, The Levi problem for complex spaces. I, Math. Ann. 142 (1961), 355-365.
- 11. R. Narasimhan, The Levi problem for complex spaces. II, Math. Ann. 146 (1962), 195-216.
- 12. K. Oka, Domaines finis sans point critique intérieur, Japan J. Math. 23 (1953), 97-155.
- 13. R. Remmert, Sur les éspaces analytiques holomorphiquement séparables et holomorphiquement convexes, C.R. Acad. Sci. Paris Sér. A 243 (1956), 118-121.
- 14. R. Richberg, Stetige streng pseudoconvexe Funktionen, Math. Ann. 175 (1968), 257-286.
- 15. Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100.
- 16. O. Suzuki, Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Publ. Res. Inst. Math. Sci. 12 (1976-77), 191-214 and 439-445.

PRINCETON UNIVERSITY
DEPARTMENT OF MATHEMATICS
PRINCETON, NJ 08544
U.S.A.