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THE LEVI PROBLEM IN STEIN SPACES

JOHN ERIK FORNASS

1. Introduction.

Let X denote a Stein space and let Q be an open set in X. Assume that for
every p € 09 there exists an open neighborhood U (p) such that QN U(p) is
Stein.

THE LEvi PROBLEM. Is Q necessarily Stein?

In case X is a complex manifold this was solved affirmatively by Docquier
and Grauert [4], and in case X has at most isolated singularities it was solved
affirmatively by Andreotti and Narasimhan [1].

THE UNION ProBLEM. If QP XSt gnd 0 Q< ... cUQPn = with
each Q, Stein, is Q Stein?

This was proved to be true if X = C* by Behnke and Stein [2]. The case when
X is a Stein manifold follows from the work of Docquier and Grauert [4] via
the embedding of X as a closed complex submanifold of some C', Remmert
[13], Bishop [3] and Narasimhan [9].

If one drops the:assumption that X is Stein, the result is not true, Forness
[6].

Suppose next that {},.g is a family of Stein open subsets of X and that
U, <@, is a union of connected components of €, and that 2, is a union of
connected components of int M., Q, for each t € R.

THE RUNGE PROBLEM. Is Q, Runge in Q, whenever r<s.

When X is complex manifold this was answered affirmatively by Docquier
and Grauert [4].

In this short note we will solve affirmatively the above problems in the Stein
space

X =ZxC,  Z={(2,23,23,2,) € C*; 212;=1232,} .
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The reason that we find the space Z interesting is the following observation
by Grauert and Remmert [7]. The map @: C x (C2— (0)) - Z by

D(t,w,n) = (w,tn,n,tw)

is biholomorphic onto the open set Q=Z—{z,=z,=0}. For every p € 0Q, p
+0, there exists an open neighborhood U(p) in Z such that U(p) is Stein.
However Q is obviously not Stein. This can be compared to the following
theorem by Grauert and Remmert [7].

THEOREM. If QP C" and for every p € 0Q, p+0, there exists an open
neighborhood U (p) such that U(p) N Q is Stein, then Q is Stein, unless QU (0) is
open (in which case QU (0) is Stein).

A function f: X — RU{—o00} where X is a (reduced) complex space will be
said to be Pplurisubharmonic if for every x € X there is an open neighborhood
U(x) Wthh can be realized as a closed complex subvariety Yc VP C”,
@: U(x) => Y such that fo® ™! is the restriction to Y of a plurisubharmonic
function on V. The function f is continuous (smooth) and plurisubharmonic if
in addition fo® ™! can be chosen to be continuous (smooth). Also [ is said to
be (continuous/smooth) strongly plurisubharmonic if fo® l4er is (con-
tinuous/smooth) plurisubharmonic for all £=0 sufficiently small whenever
Tte6y(V), 1: V— R ‘

It is a theorem by Richberg [14] that strongly plurisubharmonic functions
which are continuous are continuous strongly plurisubharmonic.

The results and proofs in this paper are equally valid in Stein spaces X' =

Z’' x M where M is any Stein manifold and

Z' = {(zy5e . s ZpWyse . ,w,) € C 5 zwi=2zw, for all i, j} .

2. Preliminary remarks.
We would like here to briefly recall a few results which we will need.

THeoreMm 1. (Narasimhan [10, 11]). Let X be a complex space. Then X is
Stein if and only if there exists a continuous strongly plurisubharmonic function
@: X — R such that X,={x € X ; p(x)<a} is relatively compact in X for all
aeR.

THeoreM 2. (Narasimhan [10, 11]). Let X be a Stein space and let ¢: X >R
be a continuous plurisubharmonic function. Then X =1x € X ; p(x)<a} is Stein
and Runge in X for all o € R.-
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A particularly useful consequence of the two above theorems is the following
well known result:

CoroLLARY 3. If X is a Stein space and K =K is a compact set in X, then K
has a neighborhood basis of Stein open sets which are Runge in X.

We also need the following theorem due to Richberg [14].

THEOREM 4. If @ is a continuous strongly plurisubharmonic function on a
countably compact complex manifold M and 1: M — R* is g strictly positive
continuous function, then there exists a smooth strongly plurisubharmonic
Junction @* on M such that ¢<o*<g+1. If ¢ is a continuous nonnegative
plurisubharmonic function on a countably compact complex space X, 6=0 in a
neighborhood of the singular locus of X and there exists a bounded continuous
strongly plurisubharmonic function on X, then for every £>0 there exists a
smooth plurisubharmonic function ¢* on X with 6 <a* <o +e.

Let us consider the Stein space Z xC where Z={z e C*; 2y2y=232,}. If
QP = Z x C, we can define a distance function é: Q — R U {oo} as follows.
For any g=(p,c) € Q, we let

o(q) = sup{r; (p,c+z) e Q for all zeC, lzl<r} .

ProposiTION 5. The function —logd: Q — RU{— oo} is plurisubharmonic if
Q is Stein, except on those connected components of Q where —logd= — oo.

PrOOF. By the theorem of Siu [15] there exists a domain of holomorphy, Q,
in C* such that QN (Z x C)=Q. If we define §: @ — RU {oo} in the same way
as 0, we obtain a plurisubharmonic function —logd: Q — RU{—o00} such
that —logd|Q= —logd.

3. Z as a branched Riemann domain.

In the paper of Andreotti and Narasimhan [1] they make fundamental use
of the fact that a pure n-dimensional Stein space X may be realized as a
branched Riemann domain over C" in many different ways. Although the
singular points of X necessarily are branch points, one can always make the
branch locus avoid any given regular point. ~

Let Z={(zy,25,23,24) € C* ; z;2,=1232,}. We consider two holomorphic
maps @,,®,: C3 — Z, by

D, (t,w,n) = (w,tn,n,tw) and  D,(t,w,n) = (tw,n,tn, w) .

The following lemma is easily verified.
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LEmMMA 6. ®, (1,0,0)=,(1,0,0)=0 and if

= {(t,w,n) € C*; (w,m*(0,0)}

then @;| U is biholomorphic onto the open set ,(U), i=1,2. Moreover Z — (0)
=9, (U)Ud,(V).

We will now define four holomorphic maps n;: Z — C3, i=1,2,3,4. More
precisely  m(zy,25,23,24) = (24,22, 23+ 22,),  Wy(2)=(2},25,22342,), T4(2)=
(zy+225,25,2,) and mu(x)= (22, +23,23,2,). Also define the holomorphic
functions f;: Z — C by f,(z)=23—2z,, jz(z) 223 —24, [3(2)=2; — 2z, and f,(2)
—221 —22

Lemma 7. The holomorphic map n;: Z — C* makes Z into a doubly sheeted
branched covering of C3. The set of branch points is precisely S i ={f;=0}. If
p € S;—{0} one can find local holomorphic coordinates w= (w,, w,,w;), p=0 on
Z and local holomorphic coordinates 5= (1,,1,,13), n;(p)=0 on C* such that

(Wi, Wy, w3) = (Wy,wy, wl) = (M1sM2.1m3) -

The proof of this is a straightforward computation and will be omitted. We
should also point out that in the coordinatesystem of the lemma, f;/w; is a
nonzero holomorphic function.

Following the argument of Andreotti and Narasimhan [1] we obtain
plurisubharmonic functions on open subsets Q of Z x C which are locally Stein
away from (0)xC. First we define #;: ZxC — C*=C3*xC by #;(p,c)
= (n;(p), ¢). Clearly this defines Z x C as a branched Riemann domain over C*
with branch locus §,={7;=0} where J;(p,c)=f(p).

For any je {1,2,3,4}, #;: Q—8, — C* realizes this as an unbranched
Riemann domain. From the classical theory on the Levi problem one now has
that —logd;: Q— S — R is continuous and plurisubharmonic. Here d,(q) is
the radius of the largest ball centered at 7;(q) onto which 7; maps a
neighborhood of g biholomorphically. Let us deﬁne @;: Q2 — R U{ —o0} by

¢; = —logd;+3log|fj on Q-8, ;= —oc0on QNS;.

ProrosiTiON 8. The function ¢ j=max {9,,0} is continuous and plurisubhar-
monic on Q. Moreover, if q € 6Q— Sj, @;(p) — o0 when pe Q and p — q.

ProoF. It is clear that if g € 02— 3§, then ¢;(p) — 0o when p € Qand p — g.
In fact ¢;(p) grows like —logdist (p, 0Q2) measured in any smooth Hermitian
metric defined on Z x C near q.

Near a point g € NS, g+0, —logd; grows like 2log|f;l. Hence ¢, is
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plurisubharmonic across 5 away from (0) x C. To complete the proof it suffices
to show that if g = (0, c)e Q then ¢;=0 in a neighborhood of g, because then

@; is locally on Q the restriction to Q of a plurisubharmonic function defined
on an open set in C*

Let us consider j=1. Then one computes that the image of the branch locus
is
{t=(t1,73,13,74) ; 7172=T§/8} =5,

Moreover |f,|*(§)=|t3—87,1,| if #,(§)=1. Hence already —logd, +2log|f|
approaches —oo when § — ¢. The same argument applies to j=2,3,4.

We remark that we could have defined ¢;= max { —logd;+2log|f;, 0}
without altering the conclusion of Proposition 8.

4. Another distance function.

We have in the preceding sections described two sorts of plurisubharmonic
functions on a Stein open set Q of Z x C. One is the ¢;’s which blow up at
nonsingular boundary points and the other measures boundary distance in the
C-direction. In this section we want to construct plurisubharmonic functions
which blow up the Z-direction when we approach a point (0,c) € 9.

Let us first define a holomorphic map I': C* — Z by

F(w) = (Wywy, waw,, wiws, wow,)

LEMMA 9. The holomorphic map I': C* — Z is onto. Furthermore
r~'0) = {w,=w,=0} U {w,=wy=0}
while for every w e C*—TI~1(0), we have
THEW) = {(WiT,wa/t, w3/t w47) 5 e C—(0)) .
The proof is straightforward and may be omitted. Let us now consider the
map I': C> » ZxC by ['(p,¢)= (F(p) c) For any open set 2<Z x C we can

define the distance functions 4,,4,: Q=7"1(Q) - RU{oo} as follows:
Let

A;(w,c) = sup{r; (Wi 41, wyws,ws+1,c) e R
for all (t,,1,) € C%, |t,|* +|1,)* <r?}
and let
dy(w,c) = sup{r; (wy,w,+1;,W3+1T,wsc) €D

for all (1,,7,) € C%, |2+ 1,2 <r?} .
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Lemma 10. 4, - 4, is constant on each fibre of I'. Moreover, if I'(q)= (p, ¢) and
if (0,¢) ¢ Q, then 4,-4,(q)<2]ip|.

Proor. We easily check that 4,(w;t, w,/t, wy/t, w,t,c)=]1|4, (W, ) and

1
Ay (WyT, Wy /T, W3/T, Wyt,0) = H 4,(w,c)

from which the first statement follows.

Next assume that g= (w,c) € Q and that (0,c¢) ¢ Q. Let (z,¢)=1"(w,c), and
assume |z;|=max;-,  41{lz]}. The argument is similar for the other
possibilities. By the first statement, we may suppose that we have chosen w,
=)/z,. Thus w,=|/z,, wy=2z,/)/z, and w,=z,/}/z, as one deduces from the
definition of I'. In partlcular this implies that |w,, |w4|<|wl|—|w2[——]/lzll
Since I""1(0,¢)=C®—Q, one obtains that

A10w,0) S (Wi + 1wy < J2)/ )]
and similarly 4, (w, f)él/?l/hl- Hence 4,-4,(w,c)<2|z,|£2|z|| as desired.

DerFINiTION 11, Assume QcZxC is an open subset. Then 4(q): Q
— RU{oo} is defined as A(q)=4,(4§)-4,(g) for any § € ['"1(q).

LeMMA 12. Assume Q< Z x C is Stein or an increasing union of Stein open sets
or is locally Stein. Then A*=max {—log4,0}: Q@ — R is plurisubharmonic.
Moreover 4* =0 in an open neighborhood of (0, ¢) if (0,¢) € Q. Also if (0,c) ¢ Q,

4*(p,c) 2 ~logd =z —log|p| —log2

whenever (p,c) € Q.

ProoF. The set Q=1"1(Q) is a domain of holomorphy. This implies that
~log 4, and —log 4, are plurisubharmonic on Q. Therefore —log 4,4, is also
plurisubharmonic. Clearly —log4,4,=—00 on ' 1(0,¢) if (0,¢) € Q. The
Lemma now follows from Lemma 10 and the observation that for every
(z%¢) € (Z—(0)) x C there exists a holomorphic map T defined in an open
nelghborhood of (z%¢) in ZxC to C* such that ['oT=1d. For example, if
27+0, we can define

T(z,¢) = (L,24,23,24/2y,0) .

LemMa 13. If Q< Z x C is locally Stein or an increasing union of Stein open
sets and if 082 is smooth away from 0x C, then A* is continuous.
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This is proved using the result by Kerzman [8] that smoothly bounded
domains of holomorphy are taut. Let us just point out that if (w°c) e C3,
T e)=(z %,¢)%(0,¢), and if say

4, (0% ¢) = VY wiwd +wiwd = ¢,
then we can show that 4, is upper semicontinuous at (w°, ¢) by contradiction

as follows. Assume for some & >0 that there exists a sequence
(W el € I 1 (Q)=Q such that (w",¢c,) > (w°,¢) and

{0 Wh W wa,c,) 5 11wy — Wi+ |wy — wi2 <6+ 8')

is contained in Q for all n. By tautness away from I"~1(0 x C) it follows that O
contains

{(WJ»Wgsw'gsW4,C)§ I/IW —wil? +lw,—wi? <6 +6
and (wy,w,)+ (0,0} .

Since Q is a domain of holomorphy, (0,w?, w3,0,c) € @ as well and hence
4,(w% )26+ 6 which gives a contradiction.

S. The Levi problem.

Assume Q is an open subset of X=ZxC, Z={ze C*; 20Zy=232,}.

THEOREM 14. If Q is locally Stein, i.e. for every point p € 6Q there is an open
neighborhood U (p) such that U(p) N Q is Stein, then Q is Stein.

Proor. The function |z||2+¢é z€ Z, ¢ € C is a continuous plurisubhar-
monic function on X. Hence it follows from Theorem 2 that we may assume
that Q= Z x C. The maps #;: Q—Sj — C* realize Q-—Sj as a locally Stein
unbranched Riemann domain over C*, j=1,2,3,4. By Oka’s [12] solution of
the Levi Problem it follows that Q— S is Stein. Therefore the functions Q;
constructed in Proposition 8 are continuous plurisubharmonic functions on
which are identically zero in a neighborhood of QN {0 x C].

Hence by Theorem 4 there is a smooth plurisubharmonic function ¢: Q
— R such that |p—supgpj<1 on Q. In particular @(p) — 0o if pe Q
approaches any point g € Q- (0 x C).

This implies, by Sard’s theorem, that there exists arbitrarily large « € R such
that Q,={¢ <a} has smooth boundary away from (0)x C.

By Theorem 2 it suffices to prove that any such €, is Stein. So we fix an Q,
with the above boundary property in the rest of the proof.

From Lemma 13, applied to Q,, it follows that A* is a continuous
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nonnegative plurisubharmonic function on Q, which is identically zero in an
open set containing Q,MN (0 x C). Hence using Theorem 4 again, we find a
smooth plurisubharmonic function 4: Q, — R such that |4 —4* /<1 on Q,.

Let @*={q € Q, ; A(q)<pB} for B € R. From Sard’s theorem it follows that
0Q* is smooth away from 0Q, and ©,N (0 x C) for arbitrarily large . We fix
such an Q* in the rest of the proof and observe that by Theorem 2 it suffices to
show that Qf is Stein.

We will construct a continuous strongly plurisubharmonic exhaustion
function on Q. Since, if @;: 2® — R is as in Proposition 8, max;_; , 5 4 {¢;}
+ ||z||* +¢¢ is a nonnegative strongly plurisubharmonic function which blows
up at every boundary point of Q¥ except along (0) x C, it suffices to find a
continuous nonnegative plurisubharmonic function on Qf which blows up at
every boundary point of ©* on (0)xC. In fact, we will prove that max {
—logd,y} =0* is such a function if é is as in Proposition 5, and if y is
sufficiently large.

The local Stein-ness of QF follows from Theorem 2 and implies via
Proposition 5 that é* is plurisubharmonic if y is sufficiently large. It remains to
prove that J is continuous and that 6 — 0 when we approach 0Q°N (0 x C).

Let U=0Q#N (0x C) and consider a point (0,¢) ¢ U. First of all, we observe
that (0,¢) ¢ Q, since we may assume S>> 1. If (p,c) € QF, then 4 (p,c)<p and
hence 4*(p,c)<f+1. From Lemma 12 it now follows that —log ||p|| —log2
<B+1, and so ||p|>e~#72 Therefore, if (p,c) € Q and ||p|| <e 2, we must
necessarily have (0,c) € U. This implies that 6 — 0 when we approach dQ N (0
x C). Also, this implies that ¢ is continuous at every point in U.

Fix a point (p,c) € Q#, p+0. We will show that 6 is continuous at this point.
- Since ©* is open, § is lower semicontinuous. Assume & is not upper
semicontinuous. Let (p,¢’) be a point on dQ* with |¢' —c|=4(p, c). There exists
an ¢>0 and a sequence {p"}3%, such that p" — p and

am = {(p"c"); " —cl<d(p,c)+e} = QF

for all n. Let 4={(p,c"); |c"—c|<d(p,c)+¢}, and observe that since 4"<=Q,
and Q, is taut at smooth boundary points, Kerzman [8], it follows that 4= Q,.
This implies that (p,c’) e 62N Q, which contradicts the same result of
Kerzman since 0Q° is smooth away from 0Q, and (0) x C. Hence & is upper
semicontinuous at (p,c) as well.

6. The union problem.
Let {Q,} be a sequence of Stein open subsets of

X =2ZxC, Z={zeC*; z;z,=242,}.
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THEOREM 15. If Q, =Q, < ... and Q=U%, Q,, then Q is Stein.

We will first prove a standard Lemma which reduces the proof to an
estimate of the hulls of compact subsets of Q.

LeEmMA 16. If for every compact set K = Q there exists a compact set F<Q
such that Ko <F for all Q,5K, then Q is Stein.

PrOOF OF THE LEMMA. Choose compact sets {K,}2, such that K,
cintK,,, for all n and Q=UK,. Let {F,}3, be the corresponding compact
sets given by the hypothesis of the Lemma. We may assume that F W Foyq for
all n. To show that Q is Stein, it suffices to prove that for every sequence {p,}
< without cluster point in Q there exists a holomorphic function [i-C
such that sup, |f (p,|= .

Taking suitable subsequences, we may assume that p, € K, , cF,.,cQ,
and that p, ¢ F,. Choose inductively a sequence { f,} of holomorphic functions,
fo: €, — C with the property that

@) | fos1—ful<1/2"  on K,,,
Gi) f,(p)=k, k=1,....n

This clearly is possible. If f=lim,_, . f,, then f has the desired properties.

ProOF OF THE THEOREM. Let us fix a compact set K = Q and show that there
exists a compact set F =@ such that K,:=K, <F for all n. By Lemma 16 this
will complete the proof.

Let o=max;., , 3, 4 ®; be the function constructed in Proposition 8. Since
the Union Problem has been solved on unbranched Riemann domains, the
function ¢ is plurisubharmonic on Q.

By Theorem 2 we may assume that  is bounded. Using Theorem 4, we find
a smooth plurisubharmonic function ¢* on Q such that | —p*|<1.

If m=maxy ¢*, it follows that K,c{g € 2 ; o*(q)<m+1}=Q"*! for all n
such that Q,> K. This is clear because {¢* <a} N Q, is Runge in Q, for all a by
Theorem 2.

We fix an a>m+1 such that 0Q* is smooth away from (0)x C. Next we
consider the function 4*: Q* — R constructed in Lemma 12. By Lemma 13,
4* is continuous and plurisubharmonic on Q*.

Let m’ be the maximum value of 4* on K. We fix a #>m'. Let us denote by
€2, the set Q*NQ, and by Q, , the set {g € Q% ; 4*<p}. Then Q, ;oK and is
Runge in Q,. Therefore IA(Q,I:IA(Q_JC:Q,,' g In particular

K,c{qge@; A*<p} = Qp  for all large n .
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The sets U=QN (0 x C) and Q*N (0 x C) and Q5N (0 x C) are all equal since ¢
and A4* are 0 in an open set containing U.

We obtain froinn Lemma 12 that if (p,c) € Qf and (0,c) ¢ U, then |p||
>e #~1 Now the sets Q ,=Q5NQ, are Stein and

00
B, ... c U1 Q. = Q.
ns

Let n, be some index such that K< Qj , . If n=n, and fis a holomorphic
function on Q5 ,, then ¢'f/0c" is also holomorphic on Q5 ,. Moreover, choose a
positive number &> 0 such that (p,c) € K and ¢’ € C, |¢'| <& implies that (p,c
+¢) e Q. It follows that if (p,c) € Kg, , n2n, then (p,c+c') € 25, for all
¢ € C,|c'| <& In particular, if |p| £e #~!, then (0,¢) € U and (0,c+c¢’) € U for
all ¢ € C, |c|<e.

In conclusion, we have shown that if K is a compact subset of €, then there
exists a compact subset F of Q such that KQ"CF whenever K< Q,. This
completes the proof of the Theorem.

7. The Runge problem.

As always, let X=ZxC with Z={ze C*; z,z,=2,3z,}. Let {Q,},.r be a
family of Stein open subsets of X such that Q, is a union of connected
components of the interior of M ,,Q, and such that U, _,Q, is a union of
connected components of €, for each t € R.

THEOREM 17. If t; <t, are real numbers, then Q, is Runge in Q,,.

Proor. We fix a te R and a compact set K € Q. To arrive at a
contradiction, let us assume that for some t>t the set K,=Kg, is not
contained in Q,. From Corollary 3 it follows that K_ is contained in the union
U, <. Q,. Hence there exists a number t', t <t*< 1 such that K, cQ, when i>t’
and K,¢ Q, when 4 <t'. Let us assume that K, N9, = . It would then follow
from Corollary 3 that K,=Q,. This implies that t' >t since K,¢ Q,. Therefore
K.,cU, . Q, again by Corollary 3. Hence K,cQ, for some i<t
contradicting the choice of ¢

We may assume therefore that K NéQ,. + ¢, and hence we may also assume
that t=t".

*Summarizing, we assume that t <t and that K is a compact subset of Q, such
that K, N éQ,+ & while K, € Q, for all A>1. We denote K, NdQ, by F. Let us
first prove that F< (0)x C.

Pick a point (p,c) € F with p#0. There exists a j € {1,2,3,4} such that
(p,c) ¢ S, Hence the map #;: ZxC — C* is regular at (p,c). Let d? be the
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distance function on Q, -8 ; obtained from viewing this set as an unbranched
Riemann domain over C*.

If A>t, the functions (pj=max{—logdf+3log |f;l,0} are continuous and
plurisubharmonic on Q; as was established in Proposition 8. Moreover they
are uniformly bounded on K. By Corollary 3, K,=K, for all i€ (t,1).
Therefore, by Theorem 2, the functions ¢} are uniformly bounded at (p,c),
4 € (t,7). Hence (p,c) is an interior point of M,,,Q,. This contradicts that
(p,c) € 02, and that Q, consists of connected components of the interior of
N>, Q;. This shows that we must have F < (0)x C.

Let now U=0,N ((0) x C) and let £>0 be a number such that (p,c+¢’) € Q,
whenever (p,c) € K and |c'| < 4e.

We will show that there exists a positive number 6 >0 such that if (p,c) € Q,,
p+0and ||p|| <é and moreover (0,c) ¢ U or has distance from dU, U thought
of as an open set in C, less than ¢, then (p,c) ¢ K..

Let ¢?: Q, — R be the continuous plurisubharmonic function constructed
in Proposition 8, 4 € (t,7). From the inclusions we have the obvious estimate
that ¢} < ¢} on Q.

Using Theorem 4 we find smooth plurisubharmonic functions ¢*: Q, — R
such that
@'~ max {¢}}

=1 4

i=1,...,

<1 on Q,

g

Here we use again the observation that by Theorem 2 we may assume that the
sets Q,cc X for all 4.

We choose a number m such that Q;={q e Q, ; ¢'(g)<m} has smooth
boundary away from 0 x C and such that if (p,c) € K and |¢'| <3¢, then (p,c
+c) e Q. Next we define Q; for i€ (1,7) as {q € Q,; p*(g9)<m,;} where
m; € (m+2,m+3) is chosen such that €, has smooth boundary away from {0}
x C. Then each Q) is Stein and we have the estimates

(i) if (p,c) € K and |c'| <3¢, then (p,c+¢) e Q,
(i) K,=€, and
(iii) For any positive number n>0 there exists a A(n)>t such that if
4 € (t,4(n)) and (p,c) € 8Q,, |pll>n, then (p,c) ¢ Q..

In fact (i) follows since Q) 2, (ii) follows from Corollary 3 and (iii) follows
since (p,c) € 08, cannot be interior points of ,,,Q,.

Now let 4%: Q; — R be the functions constructed in Lemma 12. From
Lemma 13 it follows that 4} is continuous and plurisubharmonic. We have the
obvious estimate 4*=A4¥ on @, for all 4 € (t,1).

Math. Scand. 45 — §
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We choose a k € R such that if (p,¢) € K and || < 2¢, then (p, ¢ +¢') € Q) and
AX(p,c)<k. If we let

Q) ={qeQ, . A¥<k}, ire[t,7),

then if (p,¢) € K and |¢'| < 2¢, then (p, ¢+ ¢') € Q}. Furthermore, by Corollary 3,
K.cQ for all / € (t,7).

We let d=4e¢~* and choose a point (p,c) € Q, with p%0 and ||p] <d. To
arrive at a contradiction, let us assume that (p,c) € K, and that (0,c) ¢ U or
has distance from 0U less than &. Since each €27 is Stein it follows that if |¢'| < 2,
then (p.c+¢’) e Q). 7 € (t,1). Hence we may find a possibly different point
(p.¢) € Q, with p£0 and |p] < such that (0,c) ¢ U and (p,c) € Q; for all
/ € (t,7). We consider a point (w° c) € C* such that I'(w° c)=(p,c) in the
notation of section 4. Let X, be the two dimensional complex plane

AR — w0 —
Iy = {w,0) 5 wy=wl, wy=wg]
and similarly let
v Y s owe — w0 — 0
Z, = {(w,0); Wy =Wy, Wy=w3} .

It is possible to choose w® so that max|w{|<]/5, as is seen from the
definition of I". Let B, be the open ball in X, centered at (w° ¢) with radius
}/2)/é. Then the point g= (w9,0,0,wS,c) € B,. We let Q, be the pull back to C3
of @, Since (0,c) ¢ Q, it follows that g ¢ Q,. Since @, is a domain of
holomorphy, it follows that QN X, is also a domain of holomorphy in X, ~C2.
This implies that there must exist a point ¢'+¢ in B, such that ¢’ € Q, and
hence p’=1'(q') = 0Q,. Therefore, (iii) gives that p’ ¢ @, for all sufficiently small
#>t. In particular we get that ¢’ ¢ I'~'(;) for all such . Let 47, 43 be the
distance functions on I ~'(£;) used in Lemma 10. We have now the estimate

5(w°%,¢)<|/2)/3, and by the same argument applied to Z,, 4(w° c)<)/2}/s
also. Since

4% (p,c) = max {—log 4743(w°,c),0}
we get
4¥(p,c) > —log2—logd = log2+k > k.

This contradicts that (p,c) € Q] because Q;={q € Q, ; A¥<k}.

Let us fix a number >0 such that if (p,c) € 2, p+0 and |pj <é and
moreover (0,c) ¢ U or has distance from 0U less than ¢, then (p,c) ¢ K..

Denote by F,, the set K, N 6U. We know now that if F, is empty, then K,c U
by Corollary 3. So we assume that there exists at least one point
(0,¢') € K,NdU. Let H be those points in U N K, with distance from oU in
[¢/3,¢/2]. Then H is a compact set, and we consider this as a subset of C= {0}
x C. Hence ¢’ is in a connected component V of C— H.
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Let us first show that V¢ Q, if 4>t is small enough. The set (V< H<Q, and
so there exists a v>0 such that if (¢,¢) € Z, lgll<vand c € ¢V, then (¢,¢) € Q,.
If Ve Q,, it therefore follows that

{@0); lgl=vand ceV} c Q,.

If this holds for all 2>t, (0,¢") must be an interior point of M., Q, which
contradicts that (p,0) € 6Q,. Hence there exists a point (0,¢") ¢ Q, whenever /.
>t is small enough, ¢" € V.

By the well known Runge theorem in oné complex variable there exists a
rational function P(c): C — C with poles at ¢” only such that [P()>1
>maxy |P|. Since Q,N (0x C) is a closed subvariety of a Stein space, we may
find a holomorphic extension P: Q » — C. Since F, is compact, we may find a

40>t and a finite collection of holomorphic function P,,. . ., P Q,, — Csuch
that

max |P|(0,c) > 1 forall ceF,
i=1,...,1

and each |P|<1 on H.

Let W be a Stein open set in Q,, containing K, which is Runge in Q; . We
can by Corollary 3 assume that W is contained in any given neighborhood of
K.. In what follows we will assume W is sufficiently small.

Let y: R — R be a continuous convex function such that (x)>0 when x>0,
x(x)=0 when x 0. We define a continuous plurisubharmonic function, g, on
W by

(i) =0 for those points in W which lie near points in K.NQ, except near
those in (0) x U whose distance to dU is less than g/2.
(ii) @=yomax;|P; otherwise.

Then by Theorem 2 the set F, must be empty since W is Runge in Q, and
2| Fy>0 while ¢| K=0.

8. Some remarks.

We will list a few other problems than the ones mentioned in the
introduction, but which are suggested by the preceding proofs.

PROBLEM 1. Assume ¢: X — R is a continuous function on a complex space X
such that @oy: A — R is subharmonic whenever y: A — X is a holomorphic
map of the open unit disc into X. Is @ necessarily plurisubharmonic?

This problem was posed in Narasimhan [10]. Clearly there are other similar
problems with other regularity conditions on the functions.
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PrOBLEM 2. If {9} ;: X — R is a sequence of continuous plurisubharmonic
Sfunctions on X converging uniformly to ¢: X — R on compact subsets of the
complex space X. Is ¢ plurisubharmonic?

This problem was posed in Richberg [14]. Again similar problems arise with
other regularity conditions on the functions. Theorem 4 of Richberg suggests
the following type of problem:

ProBLEM 3. If ¢: X — R is a plurisubharmonic function on a complex space
X, does there exist a sequence of smooth plurisubharmonic functions {¢,}: X
— R such that @, ¢ when n — oc.

This is of course true if X is a Stein manifold.

PROBLEM 4. Assume ¢: X — R is a strongly plurisubharmonic function on a
complex space X such that {p <a}cc X for all o € R. Is X Stein?

If we assume in addition that ¢ is continuous, this is Theorem 2 by
Narasimhan [10]. Problem 4 is still open if X is a complex manifold. If ¢: X
— R is a plurisubharmonic exhaustion function and there exists a continuous
strongly plurisubharmonic function y: X — R, then X is Stein if it is a
complex manifold, Richberg [14], Suzuki [16] and Elenzwajg [5].

ProOBLEM 5. Assume ¢: X — R is a plurisubharmonic function on a Stein space
X.Is X,={@p<a} Runge in X and/or Stein for any o € R?

This is true if X is a Stein manifold. Also if ¢ is continuous it reduces via
Richberg’s theorem to Theorem 2 by Narasimhan [10].

REFERENCES

1. A. Andreotti and R. Narasimhan, Oka’s Heftungslemma and the Levi problem for complex
spaces, Trans. Amer. Math. Soc. 111 (1964), 345-366.
2. H. Behnke and K. Stein, Konvergente Folgen von Regularititsbereichen und Meromorphie-
konvexitat, Math. Ann. 116 (1938-39), 204-216.
. E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209-242.
. F. Docquier and H. Grauert, Levisches Problem and Rungescher Sat: fiir Teilgebiete Steinscher
Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
5. G. Elencwajg, Pseudoconvexité locale dans les variétés Kdhlériennes, Ann. Inst. Fourier
(Grenoble) 25 (1975), 295-314.
6. 1. E. Fornass, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann,
223 (1976), 275-277.
7. H. Grauert and R. Remmert, Konvexitdt in der komplexen Analysis. Nicht-holomorph-konvexe
Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comment. Math. Helv. 31
(1956), 152-183.

H W



10.
11.
12.
13.

14.
15.
16.

THE LEVI PROBLEM IN STEIN SPACES 69

. N. Kerzman, Personal communication.
. R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82

(1960), 917-934.
R. Narasimhan, The Levi problem for complex spaces. I, Math. Ann. 142 (1961), 355-365.
R. Narasimhan, The Levi problem for complex spaces. 11, Math. Ann. 146 (1962), 195-216.
K. Oka, Domaines finis sans point critique intérieur, Japan J. Math. 23 (1953), 97-155.
R. Remmert, Sur les éspaces analytiques holomorphiquement séparables et holomorphiquement
convexes, C.R. Acad. Sci. Patis Sér. A 243 (1956), 118-121.
R. Richberg, Stetige streng pseudoconvexe F unktionen, Math. Ann. 175 (1968), 257-286.
Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100.
O. Suzuki, Pseudoconvex domains on a Kihler manifold with positive holomorphic bisectional
curvature, Publ. Res. Inst. Math. Sci. 12 (1976-77), 191-214 and 439445,

PRINCETON UNIVERSITY
DEPARTMENT OF MATHEMATICS
PRINCETON, NJ 08544

USA.



