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LOCAL STRUCTURE OF THE ZERO-SETS
OF DIFFERENTIABLE MAPPINGS AND
APPLICATION TO BIFURCATION THEORY

ANDRZEJ SZULKIN

1. Introduction.

Let f be a real C? function defined in a neighbourhood of the origin in R",
n=2. By the Taylor formula, f (x) =f (0)+ £, (0)x + 1 £... (0)(x, x) + o (|| x||?), where
f,.(0) denotes grad f(0) (interpreted as a linear form), £, (0) is the bilinear form
whose matrix consists of the second order partial derivatives of f at the origin,
and f,,(0)(y,y) means evaluation of f.,(0) at (y,y). Suppose that f(0)=0 and
f+(0)=0. Suppose also that f,,(0) is nondegenerate (this means that the matrix
of f..(0) is nonsingular). It is known that under those assumptions there exists
a local coordinate change y(x) such that f(x)=3f.,(0)(y(x),y(x)). This is a
special case of the Morse Lemma (see e.g. [6, p. 71] or [2, p. 145]). An easy
consequence of this lemma is the following

(1.1) CoroLLARY. If f..(0) is nondegenerate, then, in a neighbourhood of the
origin, the zero-set of f is homeomorphic to the zero-set of f,,(0).

The development of local differential analysis has led to much more general
results than Corollary (1.1). Let p: R — R™ be an m-tuple of polynomials of
degree k=1 such that p(0)=0. In [3, Theorem 1], T. C. Kuo gives necessary
and sufficient conditions that the zero-set of p be locally homeomorphic at the
origin to the zero-set of any C**! mapping whose Taylor expansion of order k
is identical with p. A similar result for C* mappings is indicated in [3, Appendix
1].

In the present paper we give another generalization of Corollary (1.1) (see
Theorem (1.2) below). Also, in order to illustrate possible applications of this
theorem, we discuss some problems in bifurcation theory.

For a C' mapping f: R" — R™ let J(x) denote the Jacobi matrix of f at x.
Furthermore, let

Z,={xeR": f(x)=0} and B(ar)={xeR": |x—a|=r}.
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The mapping f is said to be homogeneous of degree k if f(tx) =1t (x) for all x
and all t>0.

Now we state the main result:

(1.2) THEOREM. Let f be a C* mapping of an open neighbourhood of the origin
in R" into R™, n>m=1. Suppose that:

Q) f=p+g=P1--»Pm)+ &1>---»8&m), Where all p, are homogeneous
functions of (not necessarily integral) degree k; =1 and g; are o(||x]|*) as
x — 0;
(i) All first partial derivatives of g; are o(||x{*~*) as x — 0;
(i) J,(x) has rank m for all x € Z,—{0}.

Then Z,NB(0,r) and Z;N B(0,r) are homeomorphic for all sufficiently small
positive r.

Note that we do not assume any higher order differentiability of f. Also, the
homogeneous functions p, even when of integral degree, need not be
polynomials. However, if all k; are integers and f; € C%, then the p; are
polynomials (by the Taylor formula). In this case the condition (ii) of the
theorem must necessarily be satisfied. Thus, for a sufficiently smooth mapping f
=(f1,- - -» f), Theorem (1.2) states that if p; is the first nonzero term in the
Taylor expansion of f; (i=1,...,m) and if (iii) holds for p=(py,. . ., Pm), then
the sets Z,NB(0,r) and Z,N B(Q,r) are homeomorphic for small r.

If k,=k for all i and f; € C¥, it follows from Theorem 1 of [3] that Z, and Z;
are locally homeomorphic at the origin. In this special case Theorem (1.2)
provides a slightly stronger result, that Z, and Z are homeomorphic on any
sufficiently small ball B(0,r).

This work has been done without knowledge of Kuo’s results and the proof
of Theorem (1.2) is effected by different methods than those of [3].

I wish to express my gratitude to prof. H. S. Shapiro for valuable comments
and suggestions, and to prof. M. M. Cohen who brought to my attention
recent results in singularity theory, which in turn led me to the work of Kuo.

2. Preliminaries.

Let M and N be two differentiable manifolds without boundary and
consider a C! mapping f of an open subset of M into N. Penote the tangent
space of M at x by TM, and let df,: TM, — TN f, be the derivative of f at x.
If df, is surjective, x is called a regular point of f. If df, is surjective for all
x € f1(y), or if f "' (y)=(, then y is called a regular value of f. Nonregular
values are called singular. It is known (see e.g. [2, Chap. 1, Theorem 3.2]) that
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when y is regular, f ' (y), if nonempty, is a differentiable manifold of dimension
dim M —dim N.

Now let M and N be two oriented m-dimensional differentiable manifolds
without boundary and let Q be an open subset of M with compact closure Q.
Suppose that fis a continuous mapping of {2 into N and that f is C! in Q. If
Yo € N—£(09)is a regular value of f, we define the topological degree of fat y,
by setting

deg (,Q.y0) = Y sgndf,,
xef 71y
where sgndf, =1 if df, preserves and — 1 if it reverses orientation. In the proof
of Theorem (1.2) we shall need some basic properties of degree, which may be
found e.g. in [6], Section 1.3.
~ Let M and N be two differentiable manifolds without boundary and let N be
a compact submanifold of M of codimension p (i.e. dim M —dim N =p). For
each x € N, denote the orthogonal complement of TN, in TM_ by TN+ If
there exists a C' mapping # which assigns to each x e N a basis n(x)
= (1,(x),. . .,n,(x)) for TNy, then y is called a framing of N in M and the pair
(N,n) is a framed submanifold of M (see [5, p. 42]).

(2.1) ProbucT NEIGHBOURHOOD THEOREM ([5, p. 46]). Under the above
assumptions there exists a neighbourhood of N in M which is diffeomorphic to
N x RP. Moreover, the diffeomorphism may be chosen so that

(i) each point x e N ‘corresponds to (x,0) e N xR?;

(ii) each basis n(x) for TN} corresponds to the standard basis for RP,

Let fbe a C' mapping of an open neighbourhood of the origin in R" into R™,
n>mz1, and let H;(x) be the linear subspace of R" spanned by the rows of
J;(x). In the proof of Theorem (1.2) it will be the convenient to use the
following two lemmas:

(2.2) LEMMA. Suppose that J ; has rank m at x. Then df.| H/(x): H;(x) - R™
is an isomorphism.

Proof. H(x)* is the null space of df, and dim H ;(x)=m.

(2:3) LEMMA. Let A: R" — R™ be a surjective linear mapping and let L, and L,
be two m-dimensional lincar subspaces of R" satisfying the Jollowing conditions: .

(i) Ly is the null space of A:;
(i) LENL,={0).

Then A|L,: L, — R™ is an isomorphism.
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Proof. It suffices to show that A|L, is a monomorphism. Let a=
d+ad" €L, where a € L, and a” € Ly. Suppose that Aa=0. Then Aa=
Ad + Ad’ = Aa=0. By (i), A|L, is an isomorphism and hence a'=0. So we
find that a € Li, and by (ii), a=0.

3. Proof of Theorem (1.2).

First let us introduce some notation. Denote ¢B(0, 1), the unit sphere in R",
by S and let A=Z,NS. For a subset F of § and a real number ¢ let

oF = {x e R": x=gs for some s € F} .

The proof of the theorem will proceed in five steps. Suppose that 4 + . In
step 1 we construct a small open neighbourhood B of A4 in S such that
B=U, 4B, all the sets B, being diffeomorphic to open bounded subsets of R™
and B,N B, = & for a+a'. We show that for a suitably chosen positive number
r, and all a € A and 0<g<r,, f|¢B, has no singular values. In step IT we
consider f,=p+tg and show that for a small positive number r<ry, fi(ex)£0
for any x ¢ B, 0<g<r and 0<t<1. In step III we use the result of step II to
prove that deg (p,B,,0)=deg (f,0B,,0)=1 or —1 for all a € A and O<g=r.
By the basic existence theorem of topological degree theory there is a point
y € 0B, such that f (y)=0. This point is unique. To show it, we use the fact that
fleB, has no singular values. In step IV we define a homeomorphism
a: Z,NB(0,r) = Z,NB(0,r) by letting a(ga) be the unique point of ¢B,NZ,
determined in step III. Finally, in step V, we consider the case 4=(J.

Step I. Denote the ith row of J,(x) by n;(x). By the Euler identities for

homogeneous functions, if a=(a,. . .,a,) € 4, then
n op.
> 029 k@ =0 (sism).
j=1 0x;

It follows that 5;(a) € TS, for all i and hence H,(a)=TS,. Since by Lemma
22) ‘

(1) dp,|H,(a): H,(a) > R™ is an isomorphism for all ae 4,

0 is a regular value of p|S and it follows that 4 is an (n—1—m)-dimensional
submanifold of S. Furthermore, for each a € 4, n(a)=(n,(a),. . .,n.(a) is a
basis for the orthogonal complement of TA, in TS, and therefore, if n € C Y
(A,n) is a framed submanifold of S (we return to the case 1 ¢ C! later). By the
Product Neighbourhood Theorem (2.1), there is a neighbourhood B’ of 4 in §
and a diffeomorphism h: A x R™ — B’ such that h(a,0)=a. Let ﬁ(O, ¢) denote
the interior of B(0,¢) in R™ and let B=h(A x §(0, ¢)) for some positive number &.
If ¢ is small enough, J, has rank m for all b € B. Denote
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B, = h({a} xR™, B, = h({a} x B(0,¢)) .

Using the statement (i) of (2.1) we may assert that H (a)=T(B,),

We claim that for sufficiently small ¢ there is a positive number r, such that
no vector of T(gB,),, is orthogonal to H ;(gh) for any a € 4, b € B, and 0<p
=r,. For otherwise we could find sequences {a,}, {b;} and {g,} such that
b, € B,, the distance d(a,, b,) — 0, g, — 0, and for each k there is a unit vector

Uk € T(QkBak)qkbk = T(Bak)b,. 3

which is orthogonal to H,(g,b,). By compactness of A, assume that
a, — a € A. Then also b, — a. It follows that

le T(Bak)bk = T(Ba)a

(Lim denotes the topological limit of a sequence of sets). The sequence {v,} has
a convergent subsequence whose limit v € T(B,),. Recall that the rows of J pare
homogeneous functions of degree k;— 1 and the corresponding rows of J, are
o(llx|*~") as x — 0. Since H, is spanned by the rows of Jy=J,+J,

Lim H ;(¢4by) = H,(a) .

It follows that v is orthogonal to H (a). This is a contradiction because v is
nonzero and v € T(B,),=H ,(a). The claim is proven.

So, H(¢b)* N T(¢B,),,={0} for all ae A, b e B, and 0<g=r,. We may
obviously choose r; so small that J (¢b) have rank m. Then df,, is surjective
and it follows from Lemma (2.3) (with 4 =df,, Ly =H ;(¢b) and L, =T (¢B,),)
that

(2) dfabl T(QBa)eb: T(QBa)gb - Rm

is an isomorphism for all a € 4, b e B, and 0<g<r, .

Hence f|¢B, has no singular values for any a € 4 apd 0<g=<r,.

If n ¢ C' (which corresponds to the case p ¢ C 2), we may approximate 1 by
some 1’ € C' such that for any a € A, 1'(a) is a basis for a complement of TA,
in TS,. The pair (4,7') need not be a framed submanifold according to our
definition but it is easily seen from the ,rfrdof in [5] that the conclusions of
Theorem (2.1) remain true for (4,n) (indeed, the proof does not use the
orthogonality property of n but the fact that # is a basis for a complementary
space). Therefore, though now H,(a)#T(B,), we may repeat the above
argument to obtain a unit vector v € T(B,), which is orthogonal to H (a).
However, if 1’ is sufficiently close to #, this is still a contradiction. Hence (2)
is not violated.
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Step II. Let D=S—B. Since B is open in S, D is compact and we may
therefore find a constant K >0 such that ||p(x)|| =K for all x € D. It follows
that given x € D, |p,-(x)|gK/[/rZ for some index i. Since g;=o(r) as r — 0,
there is a positive number r <r, such that |g;(ox)| <Q""K/W forall x e §,0<yg
<rand 1Zi<m. Set

fiulex) = pi(ex)+1g;(ex) .

For each x € D, 0<p<r, 0<t<1 and some index i,

K K
|fi@X)l = Ipi(ex)+1gi(ex)| = @“lp;(x)|—tlgi(ex)l > Q""—‘/=—t0“"-—— 20.
m ' Ym
Hence
3) I f,(@x)| > 0 forall xeD,0<g=<rand 0=t=s1.

Step II1. Recall that B, is an oriented m-dimensional manifold and B, is an
open subset of B, with compact closure. Let C, be the boundary of B, in B,
Given a € A, let us compute deg (p,B,0). Since Z,NB,={a} and (TB,),
=H ,(a), we find from (1) that 0 is a regular value of p|B,. Also, 0 ¢ p(C,).
Hence deg (p, B,,0)=sgndp,|H,(a)=1 or —1.

Obviously, deg (p, 0B,, 0)=deg (p, B,,0) for any ¢>0. By virtue of (3), f,(x)
+0 for any x € ¢C, and 0<g<r. It follows therefore from the homotopy
invariance property of degree that deg (f,¢B,0)=1or —1. Consequently, f(y)
=0 for some y € gB,. Moreover, this y is unique. To show this, recall that by
(2), fleB, has no singular values. Since B, (and hence also ¢B,) is
homeomorphic to an open ball, and is therefore connected, sgn df T (¢B,), is
constant on gB,. Thus, since deg (f,¢B,,0)=1 or —1, Z,N¢B, consists of
precisely one point, y.

Step IV. Now we are ready to define a homeomorphism
a: Z, N BO,r)— Z, N B(O,r).

Set «(0)=0. If x=ga for some a € A and 0<@=r, set a(x)=y; where y is the
unique point of B, satisfying f (y)=0. To verify that a is continuous, choose x,
=oa with 0<g=r and a € A. Let y,=a(x,) and suppose that {x,} = {ewai}
<Z,NB(0,r) is a sequence of points converging to x,. Since o(oxay) € 0kBa,s
0. — o and a, — a, we see that every cluster point )’ of {a(x,)} must necessarily
be in ¢B,. By continuity of f, f(y')=0. But since Z,NeB,={yo}, ¥ =)o and
lima(x,)=y,. Now suppose x,=0 and x,=g,a — 0, where a, € A. Then
0, — 0 and since a(g,ay) € B, (@) — 0. This completes the proof of
continuity.

Let x=pa and x'=g'a’ be two distinct points in Z,. Then a(x) € ¢B, and
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a(x’) € ¢'B,. Since the sets ¢B, and ¢'B,, are disjoint unless ¢=¢" and a=a’ (i.e.
x=Xx'), a is one-to-one. By (3) (with t=1), a(Z,NB(0,r)=Z,NB(0,r).

SteP V. Suppose that 4= . Then ||p(x)||= K >0 on S. So, for some positive
number r, f(x)+0 for any x satisfying 0 < ||x|| =r (compare with the proof of
(3)). Hence Z,N B(0,r)=Z ;N B(0,r)={0}.

4. Remarks and examples.

(4.1). One could expect that if all p, are nonhomogeneous polynomials of
degree k;, then the conclusion of Theorem (1.2) still holds. That this is not the
case can be demonstrated by the following example (taken from [4, p. 147]):
Let

p(x,y) = x*=3xy” and r(x,y) = x*=3xy’ + 2?72

Then grad p=(3x*—3y’, —21xy®)% (0,0) if (x,y)#(0,0) and gradr=(3x?
—3y7, = 21xy® +21sgn (y)ly|'*?)=(0,0) if x>*=y” and x = 0. By [3, Theorem 1],
there is a function g(x,y) € C° such that g(x,y)=o((x>+y?)*) at the origin but
the sets Z, and Z,,, are not homeomorphic in any neighbourhood of the
origin.

(4.2). If we replace the assumption that g be a C' mapping by the weaker one,
that g be continuous, the formulas (1) and (3) of Section 3 are still true. So,
deg (f,0B,,0)=1 or —1 and f(y)=0 for some y € ¢B,. But now we have no
reason to expect that this y be unique (see (4.6) below). We may, however,
define a continuous mapping f: Z,NB(0,r) —» Z,N B(0,r) in the following
way: if x=ga,a e A and O<g<r, set f(y)=x forall y e opB,NZ; il y=0, set
B(y)=0. Note that B is one-to-one and a= ! if g satisfies all assumptions of
Theorem (1.2).

(4.3). In Theorem (1.2), assume that rank J,(x)=m for some, instead of for
all xe Z,—{0}. Then rankJ,(a)=m for some ae€ A. Let H(a) be the
hyperplane parallel with H ,(a) and passing through a. Replace B, in the proof
of the theorem by a small neighbourhood F, of a in H),(a). Since Z,N F,={a}
whenever F, is sufficiently small, it is easy to show that for some r>0 (which
may depend on a), the line segment joining ra to the origin and the set
Z;NUy<,<,0F, are homeomorphic. If g is continuous but not necessarily
continuously differentiable, there is a continuous function g from
Z ,ﬂUoéoé,QFa onto this line segment such that (Z,NgF,)=ea. In both
cases the equation f(x)=0 has a nontrivial solution in every neighbourhood of
the origin.

(4.4). The assumption that p have maximal rank on Z,—{0} cannot be
dropped. This can be shown by a very simple example: let p(x,y)=x2, g(x,y)
=y* and f(x,y)=p(x,y)+g(x,y). Then Z,={(x,y) € R?: x=0} and Z,={0}.
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Actually, if p does not have maximal rank for some x € Z,— {0} and if all the p;
are polynomials, it follows from Theorem 1 of [3] that we may always find a
map g=(g,,. ..,g.) satisfying assumptions (i) and (ii) of Theorem (1.2) and
such that the conclusion does not hold for p and f=p+g.

(4.5). If m=nand Z,— {0} + &, it follows from the implicit function theorem
that J, cannot have maximal rank for any x € Z,—{0}. For otherwise x would
be an isolated zero of p; but this is impossible because p is homogeneous.

(4.6). Let p(x,y)=x and g(x,y)=—)/|x|(x*+y?). Then g ¢ C', all other
assumptions of Theorem (1.2) being satisfied. An easy computation shows that

Z, = {(x,y) eR*: x=0o0r (x—3)*+y* =4} .

This set is obviously not homeomorphic to Z,={(x,y) € R%; x=0} in any
neighbourhood of the origin.

5. Applications to bifurcation theory.

Let X and Y be two real Banach spaces and let f be a C* mapping, k=1, of a
neighbourhood of the origin in X into Y such that f(0)=0. Assume that the
Fréchet derivative of f at the origin (denoted by f,(0)) is a Fredholm operator,
i.e. the null space Nf,(0) is of finite dimension and the range Rf,(0) is closed in
Y and of finite codimension. Let X=X ,®X, and Y=Y, @Y, (direct sums)
with X, = Nf,(0) and Y, =Rf(0). For y=y, +y, (y; € Y;) write y, =Qy, y,=Py.
It is known ([6, pp. 64-65]) that the equation Qf (x, +x,)=0 has a unique (o
solution x, =u(x,) in a suitably small neighbourhood of the origin in X, and
the equation f(x; +x,)=0 is equivalent to

F(x,)=Pf(x;+u(x,)) = 0.

This is the well-known Lyapunov-Schmidt procedure of reducing an infinite
dimensional problem to a finite dimepsional one. F(x,)=0 is called the
bifurcation equation.

Now we present some possible applications of Theorem (1.2) to bifurcation
theory. They are essentially based upon methods which may be found in [6,
Section 3.2]. For simplicity, we assume throughout that fe C* for some
suitable k =2, although all we really need are weaker regularity conditions of f
which make Theorem (1.2) or Remarks (4.2) and (4.3) applicable.

(5.1) THEOREM. Let U be an open neighbourhood of the origin in X. Suppose
that f: U — Y is a C* mapping, k 22, satisfying the above assumptions and that
(i) f(x)=f.(0)x+ Bi(x,. . .,x)+71,(x), where By is a bounded k-linear form
and ry is o(||x||");
(i) n=dim Nf,(0)>codimRf, (0)=m=1;
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(iii) p denotes the homogeneous term of degree k of Pf|X,NU and J, has
maximal rank for all x, € Z,—{0} (note that p may be considered as a
mapping of R" into R™).

Then, in some neighbourhood of the origin in X, Z, is homeomorphic to
Z,NB(0,1).

If fis a C* mapping, we have by the Taylor formula f(x)=f,(0)x + B,(x, x)
+...4+B(x,...,x)+71(x). So the assumption (i) merely means that
Bj(x,...,x)=0 for 25j<k.

We precede the proof with the following

(5.2) LEMMA. Let F(x,)=Pf(x, +u(x,))=0 be the bifurcation equation. Then
u,, (0)=0.

This lemma is a part of the proof of Theorem 3.2.1 of [6]. For the sake of
completeness we insert the proof (taken from [6] with minor changes).

Proor. Recall that Qf (x; +u(x,))=0. Differentiating this with respect to x,
we find that Qf,(0)(x, +u,,(0)x,)=0. Since x; € X, =Nf(0), £,(0)x; =0 and
hence Qf,(O)u,, (0)x,=0. Since Q is a projection into Y, =Rf,(0), £ (O)u,, (0)x,
=0. Observe that u, (0)x, € X, and f,(0)| X, is an isomorphism. Hence
u,, (0)x, =0.

Proof oF THEOREM (5.1). We need to show that F(x,)=p(x,)+o(||x,|*) and
that the assumptions of Theorem (1.2) are satisfied. Recall that P is a
projection into the complementary space of Rf,(0). So, Pf,(0)=0 and Pf(x)
=PB,(x,. . .,x)+ Pr,(x). This, together with the fact that F e C*, implies that
F(x,)=q(x,)+g(x,), where q(x,) is homogeneous of degree k, g(x)=o(lx, "
and g, (x;)=0(1x,[*7*).

To complete the proof it remains to show that p=q. For this purpose we
only need observe that

F(x,) = Pf(xl +u(x,y) = PBy(x; +u(x,),. . .,x; +“(x1))+0(“x1"k)

i

PB,(xy,. .., X))+ PB(xy,. . ., X, u(x,))+ ...
+PBk(u(xl)3' . "u(xl))+o("xluk)
= PB,(x,,. . -ax1)+0(||x1"k) .

The last equality follows from Lemma (5.2). Since p(x,)=PB,(xy,...,x;),p=q.
It is easily seen that the above result is a generalization of [6, Theorem
3.2.1]. ‘
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(5.3) REMARK. Suppose that J, has maximal rank at some (not necessarily
all) x, € Z,—{0}, other assumptions being as in Theorem (5.1). Then it follows
from (4.3) and from the proof just given that Z, contains an arc emanating
from the origin.

In bifurcation problems the mapping f'is usually dependent on a parameter
4 € R% Let us assume that 4 € R (i.e. d=1) and that f(x, 4) is a C?> mapping of a
neighbourhood of (0, 4y) € X x R into Y. Suppose that f(0, 4)=0. Then x=0 is
referred to as the trivial solution of f(x, 4)=0. If there are nontrivial solutions
in every neighbourhood of (0, 4,), then (0, 4,) is said to be a bifurcation point
of f (with respect to the trivial solution). It is known ([1, Theorem 1.7];
[6, Theorem 3.2.2]) that the set of nontrivial solutions of f(x,4)=0 near
(0, 49) consists of an arc passing through (0,4,) whenever dim Nf. (0, 4,)
=codim Rf, (0, 4,)=1 and f satisfies some additional conditions (which may
easily be shown to yield applicability of Theorem (5.1) with k=2). Now let us
turn to the case dim Nf, (0, 4,)=codim Rf, (0, 2,)=2.

(5.4) CoroLLARY. Let f(x,4) be a C> mapping of some neighbourhood of
(0,4,) € X xR into Y. Suppose that f(0,4)=0 and that dim Nf,(0,%,)
=codim Rf, (0, 2o) =2. Denote by p the quadratic term of Pf'| X, x R (recall that
X,=Nf,(0,4,) and P is the projection of Y onto Y, associated with the
decomposition Y=Y, @Y,) and suppose that J, has maximal rank for all
(x1,4) € Z,—{(0,40)}. Then (0,4) is a bifurcation point of f and the set of
nontrivial solutions of f(x,2)=0 near (0,4,) consists of one or tree arcs
intersecting only at the origin.

Proor. We may obviously assume that i,=0. Set X =X xR and %= (x, 4).
Then f;(0)=f,(0,0)® f,(0,0). Since (0, 2)=0,

dim Nf;(0) = dim Nf,(0,0)+1 = 3 and
codim Rf¢(0) = co dim Rf,(0,0) = 2.

Hence we may apply Theorem (5.1) to study the set Z near the origin. Note
that p= (p,, p,) maps R? into RZ. Since p(0,4)=0 and J, has maximal rank on
Z,-1{0}, Z,, (and Z,)) is either a (geometric) cone or two intersecting planes.
Furthermore, there exist tangent planes to Z, and Z,, at any point of Z,— {0}
and those planes do not coincide (because Z, has maximal rank). So it follows
from an elementary geometric argument that Z, consists of 2 or 4 lines passing
through the origin. Hence the conclusion.

Math. Scand. 45 16
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