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A DUAL PROOF OF THE UPPER BOUND
CONJECTURE FOR CONVEX POLYTOPES

AAGE BONDESEN and ARNE BRONDSTED

1. Introduction.
In the paper [2], P. McMullen proved the following celebrated result:

THEOREM (P. McMullen). There exist numbers f,(v,d) such that
fi(P) £ filv,d), k=1,...,d-1,
for any simplicial d-polytope P with v vertices, and
fL(P) = filv,d), k=1,...,d-1,

for any simplicial neighbourly d-polytope P with v vertices.

(We use standard terminology, cf. [1], [3]. In particular, f,(P) denotes the
number of k-faces of P.)

In this note we shall present a dual proof of the theorem. It was already
pointed out by P. McMullen in [2] that his proof may be given a dual
formulation. Our proof, however, is not just a straightforward dualization of
the proof in [2], it also contains substantial simplifications. When comparing
the two proofs one should note that at several points details have been omitted
from the proof in [2].

In section 2 we shall review some basic facts about duality of convex
polytopes. In particular, we shall give a dual formulation of the theorem to be
proved. The proof follows in section 3.

2. Duality of convex polytopes.

Two d-polytopes P and Q are said to be dual, if there exists a one-to-one
inclusion-reversing correspondence between the faces of P and the faces of Q.
Then

dimF+dimG = d—1
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for corresponding faces F of P and G of Q; in particular, vertices of Q
correspond to facets of P. Also,

Ji(P) = fa—i-1(Q)

when P and Q are dual d-polytopes.

A d-polytope P is called simplicial, if all its proper faces are simplices; in fact,
it suffices that all facets are simplices. Now, k-simplices can be characterized
as k-polytopes with k+1 vertices, and therefore the duals of simplicial
d-polytopes are characterized by the property that each (d—k—1)-face is
contained in (and hence is the intersection of) exactly k+1 facets, k=0,.. .,
d—1;in fact, this holds if it holds for k =d — 1. Such polytopes are called simple.

From what has been said above it is clear that the theorem of P. McMullen
may be given the following equivalent formulation:

THEOREM (P. McMullen). There exist numbers f,(v,d) such that

.ﬁ((Q) éﬂ—k—l(v9d)’ k=0,--',d_2,
for any simple d-polytope Q with v facets, and

ﬁc(Q) =j;i—k-l(v,d)’ k=0,...,d—2,

for any simple d-polytope Q with v facets which is the dual of a neighbourly
polytope.

In the proof of the theorem we shall need some elementary facts about
simple polytopes which we shall formulate here as propositions 1-4. It is
understood that P and Q are dual d-polytopes, P simplicial and Q simple.

If Fis a (d—k—1)-face of a (d — 1)-simplex S, then F is contained in exactly k
(d —2)-faces of S. Dually:

ProposITION 1. Let G be a k-face of Q, k=0,. . .,d, and let x be a vertex of G.
Then there are exactly k edges in G containing x.

If Fy,...,F, are (d—2)-faces of a (d—1)-simplex S, then F,N...NF, is a
(d—k—1)-face of S, and F,,...,F, are the only (d—2)-faces of S containing
F,N...NF,. Dually:

ProrosiTiON 2. Let E,,. . ., E, be edges in Q, k=0,. . .,d, containing a common
vertex x. Then the smallest face G of Q containing E,,. . .,E, has dimension k,
and E,,.. ., E, are the only edges in G which contain x.
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If x is a vertex of a (d—1)-simplex S, then the number of edges in §
containing x is d — 1. Dually:

PROPOSITION 3. Let G be a facet of Q. Then G is also a simple polytope.

Consider the statement: Any k vertices of P are contained in a proper face of
P. The dual of this is the following: Any k facets of Q have a non-empty
intersection. Since P is simplicial, the statement about P is equivalent to the
following: Any k vertices of P are the vertices of a proper face of P. By
definition, this holds for all k < [d/2], if and only if P is neighbourly. Therefore,
we have:

PRrOPOSITION 4. The polytope P is neighbourly, if and only if any [d/2] or fewer
facets of Q have a non-empty intersection.

3. Proof of the theorem.

We shall divide the proof into three sections. In section A we shall introduce
certain numbers 7y,, k=0,...,d, associated with a simple d-polytope Q,
and we shall express the number of k-faces of Q by the numbers 7y,
j=0,...,[d/2],—cf. (7). In section B we shall obtain relations between the
numbers y, for Q, and the corresponding numbers yi for facets X of Q,—cf. (9)

and (10). Finally, in section C we shall combine the results of section A and B
to obtain the desired conclusion.

A. Let Q be a simple d-polytope in R% Let w be a non-zero vector in R? such
that

(1) no hyperplane in R? with w as a normal contains more than one of the
vertices of Q.

(The existence of w is clear.) The vector w induces an orientation of each edge
of Q according to the following rule: An edge with endpoints x and y is
oriented towards x (and away from y) when

xow) > Lpw)

where -, -> denotes the inner product. Calling the direction of w the “down
direction”, this amounts to orienting the edges “downwards”. The condition (1)
ensures that all edges will be oriented.

For a vertex x of Q we next define the in-degree of x as the number of edges
in Q which have x as an endpoint and are oriented towards x. Similarly, the
out-degree of x is the number of edges in Q which have x as an endpoint and
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are oriented away from x. Taking G=Q in proposition 1 we see that for each
vertex x of Q,

(2) the sum of the in-degree of x and the out-degree of x equals d.

We shall also need the following definitions. A k-star, k=0,. . .,d, is a vertex
of Q together with a set of k edges in Q having the vertex x in common; this
common vertex is called the centre of the k-star. A k-star whose edges are all
oriented towards the centre is called a k-in-star, and a k-star whose edges are
all oriented away from the centre is called a k-out-star.

We want to establish a one-to-one correspondence between the k-faces of Q
and the k-in-stars in Q. Let G be a k-face of Q. Then each vertex of G is the
centre of a unique k-star contained in G; this follows from proposition 1. The
particular k-star in G whose centre is the “lowest” vertex of G is clearly a k-in-
star. To reach the desired conclusion we shall show that conversely each k-in-
star in Q is contained in a unique k-face G and the centre of the k-in-star is the
“lowest” vertex of G. The first statement of proposition 2 tells that the smallest
face G of Q containing the given k-in-star has dimension k; any other face
containing the k-in-star must therefore have dimension >k. To see that the
centre x of the k-in-star is the “lowest” vertex of G, let [x,y,],...,[x,y,] be the
k edges forming the k-in-star. Then the points y,,. . .,y, are all “above” x, and
therefore there exists a hyperplane H with w as normal which separates x from
Vis- - - Vi Since [x,y,],...,[x, ] are the only edges in G containing x, cf. the
second statement of proposition 2, then H must in fact separate x from any
other vertex of G, and therefore x is the “lowest” vertex of G.— From this we
conclude that

(3) the number of k-faces of Q equals the number of k-in-stars in Q,
k=0,...,d

For k=0,...,d, let y, denote the number of vertices of @ whose in-degree
equals k. Then clearly the total number of k-in-stars in Q is

B

Denoting the number of k-faces of Q by f,, it then follows from (3) that we have

d .
J
4) L= <k>yj, k=0,...,d.
j=0
An important consequence of this is the following. The matrix of coefficients
(), j,k=0,...,d, in the “equations” (4) is a triangular matrix with 1’s in the
diagonal, and therefore one can “solve” the “equations”, and express the y;’s by
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the f’s. This shows that although the definition of the numbers y; apparently
depends on the particular choice of the vector w (satisfying (1)), then actually

(5) the y;’s are independent of w .

Now, if the condition (1) holds for w, it also holds for —w. When one
replaces w by —w, all orientations of the edges in Q are reversed; vertices
having in-degree k with respect to w will have out-degree k, and hence in-
degree d —k, with respect to —w, cf. (2). The number of vertices having in-
degree k with respect to w therefore equals the number of vertices having in-
degree d —k with respect to —w. Bearing in mind (5), we see that

(6) Yk = Yd—1o k=0, . .,d .

Combining now (4) and (6) we obtain

W21 d—j
) ) [(k)+(1—6(d,2j»( ; )]v,» k=0,....d,
j=0

where 4(-, ) denotes the Kronecker-symbol. Note that the coefficient of y; is
non-negative.

B. Let X be a facet of a simple d-polytope Q in R%. Then X is a simple
(d— 1)-polytope by proposition 3, and therefore we have numbers y{, k=0,. . .,
d—1, associated with X in the same way as we have numbers y, associated with
Q, cf. section A. In other words, y{ is the number of vertices of X having in-
degree k (with respect to any vector w satisfying (1) for X).

Let w be a vector in R? such that (1) holds for Q, and consider the orientation
of the edges of Q induced by w. For a vertex x of X, let the relative in-degree of
x be the number of edges in X which contain x and are oriented towards x.
Now, when (1) holds for Q, it also holds for X. Therefore, for any vertex x of X,
the in-degree of x in X (with respect to the orientation of the edges in X
induced by w) equals the relative in-degree of x (with respect to the orientation
of the edges in Q induced by w). Hence,

(8) y¥ is the number of vertices of X having relative in-degree k.

Suppose that we choose w such that (1) holds and each vertex of Q not in X
is “below” each vertex of X (which is clearly possible). Then the relative in-
degree of a vertex x of X is simply the in-degree of x. By (8), this implies that

) X <y k=0,...,d—1.

Suppose that we have strict inequality in (9) for some k. Then there is a
vertex x of Q not in X such that the in-degree of x is k. Therefore, the out-
degree of x is d — k, cf. (2), and hence x is a vertex of a (unique) (d — k)-face F of
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Q whose remaining vertices are all “below” x; this follows from proposition 2
as in the argument leading to (3). Since Q is simple, F is the intersection of k
facets X,,..., X, of Q. Since F is disjoint from X, we see that the k+1 facets
X,X,,...,X, have an empty intersection. Therefore, proposition 4 shows that

(10) yX¥=y,, k=0,...,[d/2]—1, when Q is the dual of a neighbourly
d-polytope.

C. Let Q be a simple d-polytope in RY, and let w be a vector in R such that
(1) holds. By a k-incidence we shall mean a pair (X, x), where X is a facet of Q,
and x is a vertex of X whose relative in-degree is k. We denote the total number
of k-incidences in Q by I,.

It follows from (8) that

(11) I =Y v, k=0,..,d-1,
where we sum over all facets X of Q. From (11) and (9) we obtain
(12) I vy, k=0,...,d-1,

where v denotes the number of facets of Q. From (11) and (10) we obtain

(13) I,=v-y,, k=0,...,[d/2]—1, when Q is the dual of a neighbourly
polytope.

We shall next determine I, by summing over the vertices of Q (rather than
over the facets as we did above). Let x be a vertex of Q. By proposition 1 there
are exactly d edges in Q containing x, and since Q is simple, there are also
exactly d facets of Q containing x. Again by proposition 1, each of the d facets
containing x contains d — 1 of the d edges containing x. Hence, for each of the
facets exactly one of the edges is not in the facet; we shall call this edge the
exterior edge of the facet. Note that conversely each of the d edges containing x
is the exterior edge of some facet containing x. Now, for a facet X containing
the vertex x, the pair (X, x) is a k-incidence, if and only if one of the following
two conditions holds:

(i) x has in-degree k in Q, and the exterior edge of X is oriented away from x;
(i) x has in-degree k+ 1 in Q, and the exterior edge of X is oriented towards x.

If x has in-degree k, there are d—k facets X such that (i) holds. If x has in-
degree k+ 1, there are k+1 facets X such that (ii) holds. Therefore,

(14) I, = d=ky+k+Dyesr, k=0,...,d-1.
Combining (12) and (14) we obtain
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v—d+k
(15) Verr S W?k’ k=0,...,d—1.

Since y,=1, cf. the argument leading to (3), it follows from (15) that

—d+k—-1
(16) ykg(” . ) k=0....d.

Similarly, combining (13) and (14) we obtain

v—d+k—1
7)) ye = < K ), k=0,...,[d/2], when Q is the dual of a

neighbourly polytope .

Finally, it follows immediately from (7), (16) and (17) that the theorem holds
with

[d/2] : A .
frmvested = 51 (1) +a-awan(“ )],
j=o k J

k=0,...,d-2.

4. Concluding remarks.

By inspection of the proof in section 3, and in particular noting that the
coefficient of y; in (7) is strictly positive for k=0,...,[d/2], one easily deduces
the following:

If Q is a simple d-polytope with v facets which is not the dual of a neighbourly
polytope, then f,(Q)<fy_r_,(v,d) for k=0,...,[d/2].

This is actually the dual formulation of a supplementary statement of the
theorem in [2]. The theorem in [2] contains two more supplements. In the
dual formulation, they are as follows:

The inequality fi(Q)< fy_4_,(v,d), k=0,...,d—2, holds for any d-polytope Q
with v facets.

If Q is a non-simple d-polytope with v facets, then f,(Q)<f,_,-,(v,d) for
k=0,...,[d/2].

If desired, these two statements can of course also be proved in the dual
setting.
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