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HYPERFINITE STOCHASTIC INTEGRATION II:
COMPARISON WITH THE STANDARD THEORY

TOM L. LINDSTROM

Introduction.

This is the second of three papers on the nonstandard theory for stochastic
integration. In the first paper we studied the nonstandard theory in its own
right, and we shall now compare that theory with the standard one.

In the first section we define the SL2-martingales, which constitute the class
of hyperfinite martingales we shall work with in this paper. This class is a little
smaller than the class of A>-martingales which we studied in the first paper, and
the SL2-martingales behave more regularly under standard parts. In the
second section we use the fact that an SL>-martingale M has S-right limits to
introduce what we call its right standard part °M™*; and we prove that this is
an L?-martingale. Given a process X which is integrable (standard sense) with
respect to °M *, we show how to construct a hyperfinite process Y (called a 2-
lifting of X) such that °(f{YdM)*=[Xd°M™*; and we see that standard
stochastic integration with respect to °M* may be obtained from the
nonstandard theory with respect to M. This is a generalization of Anderson’s
work in [1], and since the argument is rather similar to his, we have left some
of the more technical lemmas to the reader. In the last section we introduce
what we have called the “well-behaved” martingales; that is martingales which
on a set of measure one have only one noninfinitesimal jump in each monad.
These martingales are particularly easy to work with, and we obtain their basic
properties and show that any SL?-martingale M has a restriction M® to a
subline S which is well-behaved. Well-behaved martingales will be useful in the
next paper.

To prove that the standard theory for stochastic integration can be obtained
from the nonstandard theory, it still remains to show that all L2-martingales
can in a suitable sense be represented as the right standard parts of SL*-
martingales. This is the problem we shall study in the third paper [6].

We shall use the same symbols and terminology as in the first paper [5], and
the reader is referred to the introduction of that paper for some remarks on the
literature. We only mention that we still work with polysaturated models for
nonstandard analysis (see [11]).
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Most of this paper has earlier appeared in the Preprint Series of the Institute
of Mathematics, University of Oslo.

1. SL2-martingales.

In [5] we studied the class of A2-martingales, and we now define an
important subclass. The reader should recall the definitions of S-integrability
and SLP-spaces (see [5, section 4]).

DEeFINITION 1. A hyperfinite martingale M: Tx Q — *R adapted to an
internal basis <Q,{G,},P) will be called an SL2-martingale if M, e SL*
(2, G,, P) for each finite t € T. M is called a local SL?-martingale if there exists
an increasing sequence {,},.n Of stopping times adapted to (€, {G,}, P) such
that °z, — oo a.e. and M, is an SL?-martingale for each n € N. The sequence
{t,} is then called a localizing sequence for M.

Due to the S-integrability, the SL2-martingales behave more regularly under
standard-parts than the A>-martingales. However, S-integrability is difficult to
check and consequently some properties of SL2-martingales are harder to
prove than the corresponding properties of A2-martingales. It was, for example,
an easy consequence of [5, Lemma 3] that a hyperfinite martingale M is a %-
martingale if and only if E(M3+[M](t) is finite for all finite t € T. The
corresponding result for SL2-martingales would be that M is an SL2-
martingale if and only if M3+ [M](t) is S-integrable for each finite t € T. But
this is not obvious, and the reason is that we must now consider {, (M3
+[M](t))dP for A € 4,, P(A)=~0. Since A4 need not be in %,, we cannot use [5,
Lemma 3] as above, and we seem to be stuck. Using another characterization
of S-integrability, we may, however, prove the assertion:

THEOREM 2. Let M be a hyperfinite martingale adapted to the internal basis
(92,{%,),P). Then M is an SL*-martingale if and only if M3+[M](t)
€ SL'(2,%,, P) for each finite t € T.

ProoF. Since in either case M is a A2-martingale, it is enough to prove the
theorem for such martingales.

We shall use the following characterization due to Anderson [1]: If f:
Q — *R is an internal, *non-negative, %,measurable function, then
fe SLY(2,%,P) if and only if °f fdP=[°fdL(P).

By [S, Proposition 17]

4
M24+[M](t) = M*-2 J MaM
0
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and taking *-expectations we get:
(1) E(M3+[M]() = E(M?)

since { M dM is a martingale. Define a sequence {,},.n of internal stopping
times by

T,(w) = min{se T: |[M(s,w|2n} .

Then jM,"dM,n is a A%-martingale for each n e N, and it follows from [5,
Lemma 12] that [, M, dM, is S-integrable for each finite t € T. By the result
of Anderson quoted above

o [t t
E( j M,ndM,"> = E(j M,"dM,,> =0.
0 0

Since
°M, (0> +°[M ](1) = °M, (1)*-2 of M, dM, ae.,
0
we get
(2) E(°M, (0 +°[M ]1(t) = E(°M_ (1)) .

For almost all w there exists an n € N such that 7, (w)>t for m=n, and thus
°[M. () - °[M](t) and M, (t) > M(1) ae. The sequence °[M, ](t) is
increasing and bounded by °[M](f) which is integrable since E(°[M](t))
S°E([M](1))<oo. We also have °(M, (1)*)<°(max,<,M?) and by Doob’s
inequality

E<°max Msz) < °E<max Mf) < ®EM?) < o0

ssSt sSt

and thus °(max,c, M?) is integrable. Applying Lebesgue’s Convergence
Theorem to both sides of (2), we obtain

G) E(°CM(0)*+°[M](1) = ECM}).
Combining (1) and (3) we see that

*E(M3+[M](t) = EC(M2+[M](1)) ifand onlyif °E(M?) = ECM?).

Anderson’s characterization now tells us that M2 + [ M](¢) is S-integrable if M?
is, and the theorem is proved.

We just mention one other result of the same type which was proved in [4]:
If M is an SL2-martingale, then max, ., M? is S-integrable for each finite t € T.
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Also notice the combination of Doob’s inequality and Lebesgue’s
Convergence Theorem in the proof above, it will reappear several times in the
sequel.

Our next result shows that the class of SL2-martingales is reasonably closed
under stochastic integration. Recall [5, Definition 18]:

PRrOPOSITION 3. If M is an SL*-martingale and X € SL*(M), then | X dM is an
SL*-martingale. If M is a local SL*-martingale and X € SL(M), then { X dM is a
local SL*-martingale.

Proor. The second assertion follows from the first by definition of SL(M).
Assume that M is an SL*-martingale, and let us first consider the case where
X € SL*(M) is finite, i.e. there is an n € N such that |X|<n. Then -

t t
0= [IXdM](t) =Y X?4AM?* £ n? ) AM? = n*[M]()
0 0
and it follows from Theorem 2 that | X dM is an SL*-martingale.

Let us now consider the general case X € SL?(M). Then there exists a
sequence {X,},.n Of finite elements in SL?(M) such that

o
J |X?—X2dvy -0 as n— 00,
T, xQ

and X2 < X2 (cf. the comments leading up to [5, Theorem 21], or see Anderson
[1]). We have

0< E([ f XdM](r)-UX,,dM](z)) = E(z‘: XZAMZ—i X:AM2>
0 0
= j (X2=X2)dvy — 0,
T, xQ

as n — oo. Since each [[ X,dM](t) is S-integrable it follows that [ X dM](t) is
S-integrable, and hence by Theorem 2 that | X dM is an SL*-martingale.

2. The right standard part of /2-martingales.

According to [5, Theorem 9], local A2-martingales have S-right- and S-left-
limits a.e., and thus the following definition makes sense.

DEFINITION 4. Let M: Tx Q — *R be a local A*-martingale. Define a process
°M*:R,xQ— R by letting °M*(r,w) be equal to the S-right-limit of
t — M(t,w) at the monad of r. The process °M* is called the right standard
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part of M. In a similar way we define the left standard part of M to be the S-left-
limit °M~ of M.

We want to make a martingale of °M*, and we first construct the stochastic
basis:

If (Q,{%,}, P) is the internal basis of M, define 5, =6(U {L(%,) : t finite});
i.e. the completion with respect to L(P) of the o-algebra generated by all the
Loeb-algebras L(%,) for finite t € T. Let A" be the set of all null-sets of 5# .. We
define a family {#},.r, of c-algebras on Q by:

H,=od(N¥UUI{LE&#): seT sxt}).
A family {5#}},.g, of smaller algebras is defined by
H,=0(U{L%): seT, sxt}).
LeMMA S. For each t € R,

H,=U{c(L@)U AN): seT, s=t}
and

H,=U{L%): seT, s=t}.

Proor. Obviously

U {o(L@)UAN): seT, st} =« #, < o(U {a(LE)UAN) : 5€T,s~t})

and it is enough to prove that U {¢(L(%)U A" : se T, sxt} is a o-algebra.
Let {A4,} be a countable family of sets from U {a(L(¥)UN) :s€e T, s~t}.
Assume A, € o(L(%,)U A). The family S,=*[s, t+1/n]JNT is a countable
family of internal sets with the finite intersection property, and by saturation
NyenS,*+F. Let 5e€NS,, then s~T and §=s, for all n. Consequently
A,ea(L(@)UAN) for each ne N and hence UA, e a(L(%)UAN)=U,
~6(L(%)U A). Since Ua(L(%,)U A) clearly has got the other properties of
o-algebras, the s -part of the lemma is proved. The J;-part is similar.

Using Lemma 5 and basic properties of the Loeb-measure we have

LEMMA 6. Let the family {# },.r, be either {3} or {#}. Then
(@) If A€ #,, there exist an s € T, s~t, and a set B € 4, such that L(P)(A4B)
=0,
b) F=F' =N, F,forallteR,.
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If {&,} is {#,} we also have
() For all null-sets N in &, Ne #, forall teR,.

The properties (b) and (c) above are usually called “Meyer’s usual
conditions” and are assumed in most standard theory for stochastic integration
(see Métivier [8]).

The following nonstandard version of Egoroff’s Theorem is often useful:

ProPOSION 7. Let (2,9, P) be a hyperfinite probability space and let {X}, <,
be an internal sequence of 4-measurable functions X,: Q — *R with £ € *N\
N. Let Y,=°X, and assume that the sequence {Y,} converges a.e. to a random
variable Y on {Q, L(%), L(P)). Then there exist a set Q' of Loeb-measure one and
av € *N\ N such that for alln e *N\ N, n<v, and all w € Q' we have °X ,(w)
=Y (w).

Proor. Let X be an internal random variable on (2,4, P) such that °X =Y
L(P)-a.e.; such an X exists by Proposition 2 of Loeb [7]. By Egoroff’s
Theorem, (see e.g. Royden [10, page 72]), there exists for each m € N a set 4,
with L(P)(A4,)>1—1/m such that Y, — Y uniformly on A4,. We may find a
B, € 4 with P(B,)>1-2/m such that B,= A4, and °X=Y on B,, For each
k € N let n, ,, be such that for all w € B,, and all n € N, n=n, ,, implies

1
(@)= Y() < 2.

Let
Mom = max{ne *N : |X (0)—X(w) < 2/kfor all w € B,, and

all g € *N such that n, ,<q=<n}.

By definition of n, ,, we must have y, , € *N\ N. Using saturation we may
find a ve *N\N less than y, , for all k,m e N. It follows that for all
weUB, and all ne *N\N, n<v, we have °X,(w)=Y(w). Putting
Q' =U,,.nB,, we have proved the proposition.

LEMMA 8. Let M: TxQ — *R be a local A*-martingale adapted to the
internal basis {,{%,},P). Then the right standard part °M* is a right
continuous process adapted to the stochastic basis {Q,{#,}, L(P)). Moreover,
for each t € R and each s € T, s~t, there exists t € T, t~t, t>s such that
°(M(t,w))=°"M"* (t,w)L(P)-a.e.
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Proor. The right continuity of °M * follows immediately from the definition.
The rest of the lemma follows by applying Proposition 7 to the sequence
{M(t+1/n,w)},c«n, Where t+1/n denotes the least element of T larger than
t+1/n, and using A < #,.

Recall from Meétivier [8] that if (Z,{Z }, u) is a stochastic basis, a process
M: R, xZ — Ris called an L2-martingale if M is a martingale with respect to
the basis and if for all t € R, the random variable ® — M (t, w) is an element
of LX(Z,F , ).

We may now conclude:

PROPOSITION 9. Let M: Tx Q — *R be a A*-martingale with respect to the
internal basis (Q,{%,},P). Then °M™* is a right continuous L*-martingale with
respect to the stochastic basis {Q,{#,}, L(P)).

Proor. We already know that °M* is a right continuous process adapted to
(2,{s#},L(P)), by Lemma 8. Also, given a t € R, we may find af € T, t~t,
such that °M* (t) =°M (f) a.e. But then ECM* (t)*)= ECM ()*) S°E(M(£)*) < 00
since M is a A%-martingale, and hence °M ™ (t) € L*(, #,, L(P)).

Let A€ #, and let s,teR,, s<t. We shall show that {,(°M™*(t)
—°M™* (s))dL(P)=0. By Lemma 6 (a) and Lemma 8 we may find5,7 € T such
that °M (§)=°M* (s), °M(f)=°M ™ () and such that there exists a B € ¥; with
L(P)(BAA)=0. We have:

L CM*()—°M*(s))dL(P) = J.B (CM*()—°M™ (s))dL(P)

= j CM@®—°M@E)dL(P) = f (M@®-ME)dP = 0
B B

since M is a martingale and B € %; To get the standard part outside the
integral we have used [5, Lemma 12] which implies that M () and M (3) are S-
integrable. This proves the proposition.

A process M: R, x Z — R is called a local L?-martingale if there exists a
sequence {a,} of stopping times such that °g, — oo a.e. and each M, is an L2-
martingale. In view of Proposition 9 it is natural to guess that the right
standard part of a local A2-martingale is a local L?-martingale. But this is false
as the following example shows:

ExampLE 10. Choose y € *N\ N and let Q consist of 2y elements: @, ,,®, _;
W4, Wy ...y Wyy, @, . Let e=31_4 1/n%, then e~ n?/6. The internal measure
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P on Q is defined by P{w,,}=P{w,_}=1/2en*. We shall use the time-line T
={k/n : k€ *N, k<n?} for some n e *N\N. The family {%,} of internal
algebras is defined by: 4,={, Q} for t<1—1/n; 9, _,,, is the internal algebra
generated by the sets {w, ., w,_}; and %, is the internal power set of Q for t > 1.
The martingale M is defined as follows:

v

1
M(t,w) =0 forall wif t £ 1——5; M(tw,,) = —M(t,w,_) = nif t

M is obviously a hyperfinite martingale adapted to the internal basis
{2,{9,}, P), and using the sequence {t,}, where

Ta(@x+) = Tal@y-) = 1=1/n if k>n
Tw(@i4) = Tal0) = 1+ (n—k) if k=n,

we see that M is a local SL2-martingale. Let us show that °M ™ is not a local
L?-martingale. Let {,} be an increasing sequence of stopping times such that
o, — oo a.e. For t <1, the g-algebra J#, consists only of sets of Loeb-measure 0
and 1. Since g, — 00 a.e. there must be an n € N such that L(P){w : ¢,(w)<1}
<1, and consequently this set must have measure zero. But then o,(w; )21
for all k € N. Consequently E(°M, (1)*)=c0 and {c,} is not a localizing
sequence for °M™*. This proves that °M* is not a local L?-martingale.

We can get more out of this example: Let S=T\ {1 —1/n} be a subline of T.
Then the restriction of M to S is not a local A2-martingale. Thus a restriction of
a local SL2-martingale is not necessarily a local A2-martingale.

3. Stochastic integration with respect to °M ™.

In this section we compare the nonstandard theory for stochastic integration
with respect to M with the standard theory for integration with respect to
°M*.

Let us briefly review the standard definition of a stochastic integral.
(Meétivier [8]):

Let N: R, x Z — R be a right-continuous L2-martingale with respect to the
stochastic basis (Z, {#,}, u). The o-algebra 2 of predictable sets with respect
to (Z,{#},u) is the g-algebra of subsets of R, x Z generated by the sets {s, ]
x Fyand {0} x F, for s,t € R,,s<t, F, e #,and F, € #,,. A process is called
predictable if it is measurable with respect to 2.

We may define a unique measure my on & by

my((s, ] x F) = L (N?—ND)dp

and my({0} x Fo)=0.
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If X is a predictable process of the form

X(t, (,1)) = Z ai1<sh,‘]x F,.(t, a))
i=1
for a; € R, we define the stochastic integral of X with respect to N to be the
process (X dN defined by

n t
(t, w) > Z al'lp,‘(w)(N!i/\!—Ns,-At) = J‘ XdN .
i=1 0
If X is a predictable process let X be the process defined by X (s, w) = X (s, w)
for s<t, X“(s,w)=0 for s>t. Let A%(N) be the set of all predictable processes
X such that
XYel?2R,xZ,?my) forall teR, .

We extend the stochastic integral to the class A%(N) by noticing that the
processes of the form

n

X = Z ai 1 <Si’ ,l] X F!.

i=0

are dense in L2(R, x Z,#,my), and that the mapping X — [ X dN is an
isometry from this dense subset into L%(Z, % ., u). If we denote the unique
extension of this isometry to the whole of L*(Z, # ., u) also by X — [ X dN,
we define the stochastic integral j'X dN for X € A*(N) to be the process
foXdN=[3 X" dN.

Let us return to our nonstandard settmg Let M: TxQ — *R be a A%-
martingale adapted to the internal basis <, {%,}, P). By Proposition 9,°M ™ is
a right-continuous L2-martingale with respect to <, {s#,}, L(P))>. We write 9’
for the predictable sets with respect to {5#,} and 2’ for the predictable sets
with respect to {#;}. The difference between the two classes is not large:

LemMA 11. For each A € P there exists a B € &' such that my(A4B)=0 for
all L>-martingales N adapted to {Q,{3#,},L(P)).

Proor. Follows from the fact that for C € s, there is a D € #, with
L (P)(CAD)=0.

Let T, denote the set of finite elements of the time-line 7. We define a
mapping = from the power set of R, x Q into the power set of T, x Q by:
n(A) = {(t,w)e TxQ: (°t,w)€ A} .

Since = is really an inverse image operation, it is easy to see that 7 commutes
with all countable Boolean operations.
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A set AcTx Q is called adapted (to the basis (Q,{%,}, P)) if each section 4,
is in the corresponding %,, t € T. Let &/ be the internal algebra of adapted sets,
and let L(&) be its Loeb-algebra with respect to the internal measure vy,
(remember the definition of v), preceding [5, Definition 18]).

Our task is to compare stochastic integration with respect to M with
stochastic integration with respect to °M™*; since °M* (t, w) = S-lim,, M (s, w),
°M* cannot register what happens to M in the monad of 0. To make sure
nothing significant happens there, we define: A local A2-martingale M is said to
be S-right-continuous at 0 if °M(0,w)=°"M* (0, w) a.e.

We may prove:

LEMMA 12, Let M be an SL?-martingale which is S-right-continuous at 0. Then
the image under = of the predictable sets 2’ with respect to 3, is contained in the
Loeb-algebra L(f) of the adapted sets (with respect to L(vyy)).

Proor. By the definition of the predictable sets, it is enough to prove that
any set of the form n(<s,t] x F,) or n({0} x F,) is in L(&#), F, € #,. We leave
the details to the reader, and only remark that the conditions that M is an SL2-
martingale and that M is S-right-continuous at 0 both are needed in the proof.

LEMMA 13. Let M be an SL*-martingale which is S-right-continuous at 0. Then
the mapping © from &' to L () is measure-preserving, i.e. for all A € P', mop,+(A)
=L(vp)(n(4)).

Proor. The measure m-y+ is uniquely determined by its values on the sets of
the form ¢s,t] x F,, {0} x F,, and since = commutes with countable Boolean
operations, it is enough to prove moy+(A)=L(vp)(n(A)) for A of this form.
Again we leave the details to the reader, but remark that we make vital use of
the two conditions on M.

Let M be as in Lemma 13. We define a measure i+ on the image n(%) of
the predictable sets under n by miopg+ (RA) =nopp+ (A). From Lemmas 11 and 12
we see that for each set B € n(#) there is a set C € n(P)N L(&) such that
fitepg+ (BAC)=0. It follows from this that if f: T, x Q — R is n(%)-measurable,
then the conditional expectation E(f|n(£)N L(#)) of f with respect to the
sub-c-algebra n(#)N L(«/) and the measure -y + equals fa.e. By Lemma 13
we see that riy,+ and L(vy) agree on n(2)N L ().

If XeA*°M?*), we define X': T, xQ - R by X'(t,0)=X(°t,w). The
process X' will obviously be n(#)-measurable, and if X" is the conditional
expectation of X’ with respect to n(#) N L(<¥), the random variables X’ and X"
are equal i +-a.e.
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DEFINITION 14. An adapted process Y: Tx Q — *R is called a 2-lifting of X if
Ye SL?>(M) and Y and X" are infinitesimally close L(v,)-a.e. on T, xQ.

Our purpose is to show that [ X d°M* =°(f YAM)* when Y is a 2-lifting of
X, and hence to derive the standard theory for stochastic integration with
respect to °M * from the nonstandard theory for integration with respect to M.

The notion of lifting is central in the theory of Loeb-spaces; liftings of
random variables were first studied by Loeb in [7] and further developed by
Anderson in [1] and [2]. Liftings of processes were introduced by Anderson in
[1] to treat stochastic integration with respect to Brownian motions. The
importance of the concept is perhaps most easily seen from Keisler [3] where
different classes of processes are characterized by what kind of liftings they
allow, and this again is used to prove properties of the solutions of stochastic
differential equations.

But let us return to our problem. We first prove that there are enough 2-
liftings.

LEMMA 15. Let M be an SL?-martingale S-right-continuous at 0, and let
X € A2(°M™*). Then X has a 2-lifting with respect to M.

Proor. Let {t,} be an increasing sequence of finite elements of T such that
°t, = 00. Let X™ be the restriction of X" to A4,=(*[0,¢,]NT)x Q. Then
X®™ e L*(A,, L(«,),L(vy)), where o, and vy, are the restrictions of </ and
v respectively to A,. By Theorem 11 (ii) of Anderson [1] there exists for each
na Y™ e SL*(A,, o, vy) such that °Y™ =X L(v), )-a.e. We may choose the
Y™s such that Y™!'4,=Y® for m>n. By saturation we may extend the
sequence {Y™} _\ to an internal sequence {Y™},., with the same property.
Choosing Y= Y™ we prove the lemma.

The next lemma tells us that which lifting we choose does not matter:

LEMMA 16. Let M be an SL>-martingale which is S-right continuous a.e. at 0,
and let X € A*(CM ™). If Y and Y' are 2-liftings of X, there exists a set & = Q of
Loeb-measure one such that

O(J‘ Y (s,w)dM s, w)) = o(f Y'(s,w)dM (s, w)) forall teT, we Q.
0

0
Proor. Applying Doob’s inequality to the positive *-sub-martingale

(t, w) —

J‘t Y(s,w)dM(s,w)——f Y'(s,w)dM (s, w)
0

0o
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we get:
E(s;g f R w)—ﬂ Y'(r, )M (r, ) )
< 4E<(ﬂ (Y— Y’)dM>2) .
But

oo

°E<i (Y=Y AMZ) = °J (Y=Y')dvy
0 T, xQ

j (Y= Y')*dL(vy) = 0
T,xQ

for all finite t € T. It follows that °E(sup,<, ([ YdM — |3 Y’ dM)*)=0 for all
finite t € T and the lemma is immediate.

We may now obtain the main result of this section, the comparison between
standard and nonstandard stochastic integration:

THEOREM 17. Let M be an SL*-martingale which is S-right-continuous at 0,
and let X € A>(M). Let Y be a 2-lifting of X with respect to M. Then

frewe - Jroe)

ProoF. We first remark that since the process | X d°M* is only defined up to
equivalence, the equality in the theorem must be interpreted as equivalence; by
Lemma 16 the equivalence class of °(_[ YdM)™ is independent of the choice of
Y. It is therefore enough to prove the theorem for some lifting Y.

Let us first assume that X is of the form X =1 1., where s,t € R, s<t¢,
and F, € o, By Lemma 6 (a) there are an § € T, §~s and a G, € %; such that
L(P)(F,4G)=0. By Lemma 8 we may choose § such that °M (3, w)=°"M* (s, w)
L(P)-a.e., and by the same lemma we find a e T, f~t, such that °M(f, w)
=°M"™ (t,w). Define

Y = legannxe, -

We shall prove Y is a 2-lifting of X ; since Y obviously is an element of SL2(M)
it is enough to prove that Y is infinitesimally close to X" L(vy)-a.c. Let

- 4 [(Gorera]on)al]
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then the process 1, is a version of X", and by the choice of § and 7 it follows

that Y~ 1, a.e. and hence that Y is a 2-lifting of X.
For each r e R, we have

f XdM* = lF,(OM:’/\l_OM:-/\S ’
0

while for each 7 e T

F
f YdM = 15 (M;,i— M; 5
0 .

and by the choice of § and f:

o(ijM> (r) lG(O r/\l OM:’/\G)L(P)'a-e-

This proves the theorem for X of the form 1. ,.F, and by linearity the
theorem holds for all X of the form X =37_,a;1¢; 1 xF.-

To prove the theorem it is then enough to show that the mapping
X9 > °(fYdM)* (1) is an L*-isometry for all t € R,. We have

(o) (] o)
-t ([ van )

t+1/n o
= lim °E< Y YZAM2> = lim J‘ Y2dvy
0 Tivynx R

n=00 n—0o

= limj °Y2dL(vM) = f °Y2dL(vM)
T 1im*Q =([0, 1] X Q)

n— oo

= J‘ Xlzdr;lon,p- = j dem0M+
n([0, 1] X Q) [0,1xQ

2
= f X(') dmoM+ s
R, xQ

where we have used the usual combination of Doob’s inequality and
Lebesgue’s Convergence Theorem to introduce the limit; the fact that | Y dM is
an SL2-martingale (Proposition 3) to get the standard part outside the
expectation; and that Ye SL2(M) to move it inside again. The rest of the
equalities follows from the assumption that Y is a 2-lifting of X, and the basic
relations between the measures L(vy), fop+ and mopge+.

Math. Scand. 46 — 20
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As we have already noticed, the equality

o + 2
E( (IYdM) () ) = J X9 dmopg+
R, xQ

establishes the theorem.

So far we have only dealt with integrals of the form [ X dN where N is an L2-
martingale and X € A%(N). If N is a local L2-martingale and X is predictable,
we define X to be in A(N) if there exists a localizing sequence {s,} for N such
that X € A*(N, ) for each n € N. The stochastic integral | X dN is then defined
as the limit lim, ., { X dN, . The theory developed above can be extended to
the case where M is an SL2-martingale and X € ACM*). We sketch the
construction: For ¢ach n we may find an internal stopping time 1, adapted to
the internal basis <Q,{%,}, P) such that °t,=ga, L(P)-a.e. We can then prove
that X € A*(°(M,)*) for each n € N, and we can find an adapted process Y:
TxQ — *R such that Y is a 2-lifting of X with respect to each M, . Such a
Y is called a local 2-lifting of X. The result follows from Theorem 17:

COROLLARY 18. Let M be an SL?-martingale which is S-right-continuous at 0.
Let X € ACM™). Then X has a local 2-lifting Ye SL(M) and

(oo - e

The statements above were proved in [4]. The problem for M a local SL2-
martingale is more troublesome since by Example 10 °M* need not be a local
A%-martingale, but by using a localizing sequence of stopping times, we should
usually be able to reduce the problem to the SL?-martingale case.

We end this section by a remark on the right standard part. It may seem that
the use of this process has been a little unnatural, and that it would have been
better to work with the standard part process °M: R, x 2 — R defined by
°M(t,w)=°(M(t,w)). The advantage of our procedure is that the right
standard part is always right continuous, and —since the standard theory for
stochastic integration is developed only for right continuous martingales —
this makes comparison with standard treatments easier. Also, our method
leaves the standard martingale invariant under restriction of M to a subline,
and we shall see in the next section that this may be of importance.

4. Well-behaved martingales and the quadratic variation.

A central notion in this paper and in [5] is that of the quadratic variation of
a hyperfinite martingale. We have a similar notion for real-valued L2-
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martingales N: R, x Z — R: If {n,} is an increasing sequence of partitions =,
={0=ty<t;<...<f;<...} of the positive real numbers such that the
diameter d(m,)=sup; cn, (t;+,—t;) tends to zero as n — oo, and supm,=o00,
then the quadratic variation [N] of N is defined by

[NJ() = im (L") Y, (Ny, ac—=Niad®-
n t,em,

For a proof that [N] exists and is well-defined, see Métivier [8, page 234].

If M: TxQ — *R is an SL2-martingale, we form the right standard part
°M* and its quadratic variation [°M*]. We may also form the quadratic
variation [M] of M; since this is an increasing process it must have S-right-
limits, and we can define its right standard part °[LM]™. In the spirit of Section
3 it is natural to ask when the processes [°M *] and °[M]* are equal. That this
question has some real importance may be seen by comparing the
nonstandard version of the Transformation formula ([5, Theorem 22]) with
the standard version on page 265 in Métivier [8] applied to °M™; in the first
case we integrate with respect to [M] in the second with respect to [°M*]. If
we want to deduce the standard form from the nonstandard, we must know the
relationship between [M] and [°M™*].

It is easy to make examples of SL2-martingales where [°M*]+°[M]*. A
closer inspection of such examples makes the following definition natural.

DEerFINITION 19. Let M: TxQ — *R be a hyperfinite martingale. For
(t,w) € R, x Q we say that M is well-behaved at (t,w) if there exists ans € T, s
~t, such that for all r € T, r~t, we have °M(r,w)=S§ —lim;, M (u, w) for r<s
and °M(r,w) =S —lim, |, M (u, w) for r>s.

The martingale M is called well-behaved if there exists a subset €' of Q of
Loeb-measure one, such that for all t € R, and all w € ', M is well-behaved at
(t, w). In particular all S-continuous martingales are well-behaved.

In this section we shall sketch three results about well-behaved martingales;
the first is that if M is a well-behaved martingale which is S-right continuous at
0, then [°M*]=°[M]*. The second is that if M is a A>-martingale, then there
exists a subline S of T'such that the restriction M* of M to S is well-behaved;
and the third is that if M is well-behaved, and X is a 2-lifting of a process
Ye A*(°M™), then [ X dM is well-behaved.

To solve the first problem we first prove the following result which should be
of independent interest:

LeMMA 20. Let M be a well-behaved SL*-martingale, S-right-continuous at 0.
Then the left standard part °M ™ is an element of ACM™), and M is a local 2-
lifting of °M ™ with respect to °M*. In particular:
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(o] e

Proor. We only outline the idea of the proof and leave the details to the
reader. Let f: N — N2 be a bijection and let (f(n)), be the first component of
f(n). Define internal stopping times

T,(w) = min{t;,, € T: |[AM(t, w)|>1/(f(n), and t;,,*7,(w) for k<n}.

As in the proof of [5, Theorem 22], we see by [5, Lemma 10] that outside a set
of measure zero, the sequence {t,} enumerates the non-infinitesimal jumps of
M. It follows that the points where (°M ~) and M differ are the union of a null-
set and the set U, N,,°[t,, 7,+ 1/m). But since M is well-behaved lim,, , ,,°M (x,
+1/m)=°M(z,)=°M* (z,), which implies that M, *[t,,1,+1/m) has Loeb-
measure zero. Thus M ™) =°M L(vy)-a.e.

The last part of the lemma follows from the first by Corollary 18.

THEOREM 21. Let M be a well-behaved SL>-martingale which is S-right
continuous at 0. Then °[M]* =[°M™*].

Proor. Métivier [8] proves (Korollar 1 and 2 on page 267) that if N is an
L?-martingale, right-continuous and with left limits, then:

[N1() = N(@)*—=N(0?-2 j N-dN,

0

where N~ is the left limit of N. Applying this to °M* we have

[°M+](t) = OM+(£)2—OM+(O)2_2 j' oM—doM+
0

°M+(t)2—°M(0)2—2°<j' MdM)+ = O(M’—M%—JMdM)+(t)
0
= °[M]" (1)

where we have used Lemma 20 and [5, Proposition 17].

The proof above is the only place in this paper where we use a result from
the standard theory for stochastic integration beyond the mere definitions.
However, we shall prove the formula [N](t)=N(t)*—~N(0)*—2(, N~ dN by
nonstandard methods in [6] (independently of Theorem 21).

To prove our second result we need some preliminaries. In [8], Meétivier
proves (Satz 17.5) that if N is a right continuous process with left limits
adapted to a stochastic basis (Z, {#,}, u), then there exists a sequence {0,},cn
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of stopping times adapted to the same basis such that N has no jumps outside
the graphs of the g,’s. If M: Tx Q2 — *R is a A>-martingale, let SM: R, x Q
— R be defined by

OM(t,w) = sup{°M(s,w) : se TAs=t}—inf{°M(s,w): se TAsxt}.

In a way entirely similar to that of Métivier, we may prove that there exist a set
Q' of Loeb-measure one and a sequence {a,},.n Of stopping times adapted to
{Q,{s#},L(P)) such that if w € Q then M (t,w)+0 if and only if there exists
an n € N with o,(w)=t.

Using the lifting-techniques of Loeb [7] and Anderson [2] it is not difficult
to prove the following:

LEMMA 22. Let ¢ be a stopping time from Q to R, adapted to {(Q,{#,}, L(P)).
Then there exists an internal stopping time t: Q — T adapted to {Q,{%,},P)
such that °t=0 L(P)-a.e.

We have already tacitly made use of this lemma in the argument leading up
to Corollary 18.

Combining Lemma 22 with what we have already got, we obtain a sequence
{T.}nen Of internal stopping times enumerating the points where M =0 inside
a set Q, = Q of Loeb-measure one.

THEOREM 23. Let M: TxQ — *R be a A’>-martingale. Then there exists a
subline S of T such that the restriction MS of M to S x Q is a well-behaved A*-
maqrtingale.

Proor. Let {1,},.n and Q, be the sequence and the set constructed above.
Clearly, if w € Q, and M is not well-behaved at (¢, w) then t=°1;(w) for some
I € N. The proof is in two steps. First we prove that there are ay € *N\ N and
a set Q,=Q, of Loeb-measure one such that if w € Q, and t="°1;(w), then

M(s,w) = S—limM(r,w) fors~t s<rt(w-—1/y and
. rit
°M(s,w) = S—limM(r,w) fors=t s> 7(w+1/y.
rit
Secondly, we prove that this is enough to construct the subline S. To do this it
will be enough to construct S such that the set

{weQ: IseSIne N(,(w)—1/y<s<t,(w)+1/y)}

has Loeb-measure zero, since M then is well-behaved at all points (¢, w) where
 is not in the union of this set and the complement of ,. We shall prove by a
combinatorial argument that we can always find such an S.
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(i) Let {B,,} »en be a sequence of internal subsets of 2, with P(B,)>1—1/m.
For each 5-tuple (I,m,n,k, p) € N® define the set

DY, ={weB,: Vrse T[((t(w)—1/kSr,s<1,—1/p)
v (n(@)+1/psr,sSn(w)+1/k) = IM(r,0)— M(s,w)| <1/n]} .
We claim that for all | and m

Bm = n U Dgl).n»kyp :
n k p>k
It is enough to prove that if we B, then for all Imn we have
weUN,. DY, ., But this is immediate since for w € Q,, t > M(t,w)
has S-left and S-right-limits at t="°1,(w).
For each 4-tuple (I, m,nk)eN* we pick an internal set C%, ,
eN,., DY such that

m,n, k, p

L(P)(ﬂ DY) mkp Cf,'.’.,..n) < 27(mrnrhy,
p>k
Since B, =N,U,N,, DY, . , we see that
LA(BaN QY ) < 277
n k
and consequently for each l e N
Le(YN Y ) -1.
m n k

For each (I,m,n, k) € N*, let y), , be the largest element p in *N such that for
all we CY,, and all r,se T if t—1/kSr,s<t—1/p or t+1/pSr,s<t+1/k
then [M(r,w)— M(s,w)| < 1/n. Since by definition C%, ,=N,., DY, this is
true for all finite p and hence for some infinite p since C® , , is internal. Thus
each y® , is infinite and by saturation we may find an infinite y less than all of
them. Putting 2,=N,U,N,U,CY, . we have finished the first part of the
proof.

(ii) We may now construct the new time-line S. Since for w € 2, the only
points (t,w) € R, x Q where M may fail to be well-behaved are the points
(°1;(w), w), it is enough to construct S such that the set

{weQ: IseSIneN(r,(0)-1/y<s<t,(w)+1/7)}

has Loeb-measure zero.
By choosing a smaller y if necessary we may assume that 1/y>min {¢t,,,
—1t; ! tj4q,t; € T}. Define a subline §' < T by putting s, =0 and s;, , =the least
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element of T larger than s+ 2/y. Obviously 2/y<s;,,; —s;<3/y, and for each
w € Q, ne N there can be only one s’ € §’ in *(1,(w)—1/y,1,(w)+ 1/y).

Let n=y*>. Then n is infinite, n**/y =1, while n/y=1/y'/* is infinitesimal.
Extend the sequence {7,},n to an internal sequence {t,},<)/;- Let

pi = Pl : 3n < /n(si € *(r,(@) = 1/, 5(@)+ 1))} -
Since for each w the sets *{t,(w)—1/y,1,(w)+1/yD, n<1/ﬁ, can only cover less
than |/n of the elements of S', we have ¥ p;<|/n.
We now define S: Let 5,=0 and if s; is chosen consider the elements of S’
between s;+n/y and s;+21/y. There must be n/3 or more such elements. Since

si+2nly

Y pi<Vn

sitnly
there must exist a j in this interval such that p}<3/l/ﬁ. We choose the
corresponding s; as s;. ;.
Let t € T; the number of elements in S less than ¢ is less than t/(n/y)=ty/n. If

pi = P{lo : 3In<)/n(s; € *(t,(@)— /3, 7,(@) + 1/7))}
then

3 0ty 3ty 3t [y 3t
2P5§—‘"—=_§75‘=Wi(;5/_4 = s

This tells us that if we cut off S at t=y'/8, then

P{lw: In<)nIse S(t,(w)—1/y<s<t,(@)+1/7)} < 3/n'® ~ 0
and consequently

LP{weQ: IseSIneN(,(w)—1y<s<t,(@)+1/y)} = 0.

We have already observed that this proves the theorem.

If we replace “A2-martingale” by “local A2-martingale” in the hypothesis and
conclusion of Theorem 23, the resulting statement is false. In fact, by making a
slight change in the martingale of Example 10, we may construct a local SL2-
martingale which does not have any restriction that is a well-behaved local A2-
martingale. The point is that to make the martingale well-behaved we must
remove a point on the time-line that is essential for making it a local A%
martingale.

The well-behaved martingales are “well-behaved” in the sense that they
satisfy Lemma 20 and Theorem 21. These results are necessary to derive the
standard Transformation formula from the non-standard version. Theorem 23
shows that the class of well-behaved martingales is “large enough”. In other
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respects the class is sadly irregular; for instance is the sum of two well-behaved
martingales usually not well-behaved. Furthermore, there are examples of well-
behaved martingales M and processes X € SL*(M) such that | X dM is not
well-behaved even when X is bounded.

We shall now prove that this can not happen if X is a lifting. The proof is a
nice application of Theorem 23:

THEOREM 24. Let M: Tx Q — *R be a well-behaved i*-martingale, and let
X € SL*(M) be a 2-lifting of some predictable process Ye A2(°M™). Then the
martingale | X dM is well-behaved. Moreover, there exists a set & of Loeb-
measure one such that if € @ and °(([ X dM)(t*, w)— ([ X dM)(t, »)) %0, then
°(M(t*,w)— M(t,w)) %0.

Proor. Let X and X’ be two 2-liftings of Y. By Lemma 16, there is a set Q, of
Loeb-measure one such that [§ X (s, w)dM(s, w)zﬂ, X'(s,w)dM (s, w) for all
w € 2, and all finite t € T. Hence | X dM is well-behaved if and only if | X" dM
is.

Assume first that Y is bounded, |Y|<#n. We may then choose |X|<n. The
process | X dM is A*-martingale, and by Theorem 23 it has a well-behaved
restriction ([ X dM)® to a subline S.

Let v}, be the internal measure on *2(Sx Q) defined by v3({s,w))
=P{w}([M](si+,)—[M](s)). Let X' be a 2-lifting of Y with respect to the
internal basis (€,{%,},.s, P> and v}, Define X': TxQ — *R by X'(t,w)
=X'(s;, w) for s;<t <s;, . Then X' is a 2-lifting of Y with respect to v,,, and we
may assume | X'|<n.

Let €' be the set of Loeb-measure one where M is well-behaved, (| X dM)S is
well-behaved, and [, X' dM ~ [, X dM for all finite t € T.

Since X' is constant and less than n in absolute value on each interval
*[si8;410, We see that if ri,r, € *[s;,5,.1), w € Q, and M(r,,0)x M(r,,w),
then (3 X'dM~[3 X'dM. We thus see that [ X'dM can jump in only one
interval *[s;,s;,,) in each monad; and the jump must be in the point where M
itself jumps. The same must hold for { X dM, and we have proved the theorem
for bounded Y.

Let now Y be an arbitrary element of A2(°M *), and let X € SL?(M) be a 2-
lifting of Y. For n € N, define X, by

n if X(t,w)>n
X,(tw) = 1 X(t,w) if |X(to)sn ,
—-n if X(t,w)<—n

and define Y, similarly. Then X, is a 2-lifting of Y,, and we have proved the
theorem for X,. Now
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s 'S 2 s 2
E(°max <I XdM——J‘ X,,dM) ) < °E<max (j (X—X,,)dM) )
sSt 0 0 sst 0
t 2 t
4°E((I (X——X,,)dM) ) = 4°E<Z (X—X,,)ZAM2>
0 0

t t
4°E(Z (X?-2XX,+X})4 M’) < 4°E<Z (X*=2X,X,+ X,Z,)AM2>
Y 0

=
lIA

IIA

t [e]

=4°E(Z (XZ-—X,Z,)AMZ) ='4j (X2—=X?)dvyy >0 as n— oo,
0 T, xQ

since X € SL%(M).

By a result of measure theory, we may find a subsequence {°max,, {[5 X dM
— {5 X,,,dM)*},.n Which converges pointwise to zero a.e.

But it is easy to see that if [i X, dM ~[7 X, dM for all k € N, then (3 X dM
~ {3 X dM on this set of convergence.

This proves the theorem.

The last theorem in combination with Theorems 17, 21 and 23 indicates that
the class of well-behaved martingales is a suitable class to work with, when
using the nonstandard theory in dealing with standard situations. It may
therefore also be a natural class when applying stochastic integration in the
analysis of natural phenomena.

NOTE ADDED IN PROOF. Most of the results in this paper have been
independently rediscovered and extended by D. N. Hoover and E. Perkins:
Nonstandard construction of the stochastic integral and applications to
stochastic differential equations (preprint), 1980.
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