ADDENDUM TO "HYPERFINITE STOCHASTIC INTEGRATION III"

TOM L. LINDSTRÖM

One could think of other ways to represent standard martingales as nonstandard martingales than the method described in [3]. Hoover and Perkins [2] have suggested to use the *-version of the original martingale; a detailed discussion of this representation is announced to appear in Hoover and Keisler [1]. Restricting time to a hyperfinite time-line, and using the weak Loeb-space representation constructed in Theorem 3 of [3], on easily verifies that the *-version is a hyperfinite representation of the original martingale, except that it does not live on a hyperfinite probability space. Changing the *-martingale a little, and passing to a quotient space, this is easily remedied. This gives a much simpler proof of [3, Theorem 3], and also shows that the Hoover-Perkins representation is equivalent to our much more cumbersome construction.

But the more complicated proof given in [3] has its advantages; it contains more information and can be used to obtain more general results: If our nonstandard model is K-saturated, an inspection of the proof of [3, Theorem 7] gives us the following result:

THEOREM 1. Let $\langle \Omega, \mathcal{G}, P \rangle$ be a hyperfinite probability space, and let $\{\mathcal{F}_t\}$ be a family of sub- σ -algebras of $L(\mathcal{G})$ such that \mathcal{F}_{∞} has cardinality less than K. Let M be an L^2 -martingale adapted to this family. Then there exists a family $\{\mathcal{G}_t\}$ of internal subalgebras of \mathcal{G} such that M is a martingale adapted to $\{L(\mathcal{G}_t)\}$. Moreover, we may take $\mathcal{F}_t \subset \sigma(L(\mathcal{G}_t) \cup \mathcal{N})$, where \mathcal{N} is the null-sets of L(P).

If we replace the condition that $\mathscr{F}_t' \subset L(\mathscr{G}_t)$ in Definition 4 of [3] by the slightly weaker condition that $\mathscr{F}_t' \subset \sigma(L(\mathscr{G}_t) \cup \mathscr{N})$ we obtain as a corollary the following stronger version of [3, Theorem 7]:

Theorem 2. Let $\{\langle \Omega, \mathcal{G}, P \rangle, \mathcal{F}', \theta\}$ be a weak Loeb-space representation of the probability space $\langle Z, \mathcal{F}, \mu \rangle$, and let M be an L^2 -martingale adapted to a family $\{\mathcal{F}_i\}$ of sub- σ -algebras of \mathcal{F} . Then there exists a weak Loeb-space representation $\{\langle \Omega, \{\mathcal{G}_i\}, P \rangle, \mathcal{F}'_i, \theta, M^{\theta}\}$ of M.

Thus as long as we can represent the probability space by a mapping θ , we can represent the martingale by the same mapping. If e.g. Ω has reasonable

topological structure and can be represented by a standard part map, so can M. (However, the last example can also be obtained by the Hoover-Perkins approach using the representation theorems for Radon-spaces proved by R. M. Anderson.) We also get corresponding stronger versions of [3, Theorems 13 and 14].

REFERENCES

- 1. D. N. Hoover and H. J. Keisler, Forthcoming paper.
- 2. D. N. Hoover and E. Perkins, A nonstandard approach to the stochastic integral and applications to stochastic differential equations, Preprint, 1980.
- 3. T. L. Lindström, Hyperfinite stochastic integration III: Hyperfinite representation of standard martingales, Math. Scand. 46 (1980), 315-331.

MATEMATISK INSTITUTT UNIVERSITETET I OSLO BLINDERN, OSLO 3 NORGE