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POSITIVE C,-SEMIGROUPS ON C*-ALGEBRAS

OLA BRATTELI and DEREK W. ROBINSON
Abstract.

We derive various characterizations of the generators of C,-semigroups of
positive operators acting on a C*-algebra /. Subsequently we characterize the
generators for which the semigroup t has the property

1,(A*4) = 1,(A)*1,(4), Aed, t>0,

and then we show that this property is also shared by the subordinate
semigroups 1/

0. Introduction.

In this note we derive various characterizations of generators of C,-
semigroups, i.e., strongly continuous semigroups, acting on a C*-algebra «/. In
particular we examine positive semigroups, i.e., semigroups which leave the
cone &, of positive elements of «/ invariant. Many examples of such
semigroups exist on abelian algebras of continuous functions. For example the
heat equation on R" gives rise to the semigroup

€N = @7NE = @)~? Jd“ye“"‘”z"’"f(y)

on C,(R"). This semigroups is not only positive but also contractive.

A large class of positive contraction semigroups can be constructed by
functional analysis of groups of *-automorphisms. If ¢ is a C,-group of *-
automorphisms of o/ with generator 9, then

- 00

tz0—r = (4nt)‘*-[ die™ ¥,

defines a C,-semigroup of positive contractions with generator 6. The heat
equation semigroup on C,(R") arises by this construction from the group of
translations. In fact semigroups constructed in this manner are strongly
positive in the sense that

* 1,(A*4) 2 1,(4)*7,(4), Aed, teR.
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To see this we note thar

1,(A*A)—1,(A)*1,(A) = (8nt)~* f d,lf dpe™ ¥+,

o{6,(A*A)+0,(A*A)—0,(A)*a,(A)
—0,(4)*0,(4)}

= (8n)~! j dlf dpe™ 3> +uat,

- - 00

°(0,(4)—0,(A)*(0;(4)—0,(4))
=0.

Note also that the domain of the densely defined generator 8% of 7 is
automatically a *-subalgebra of .. This follows from the derivation property
of 6. It should, however, be emphasized that the strong positivity and the
algebraic property of the domain of the generator are not general features
shared by all positive contraction semigroups.

We consider three situations.

First we characterize generators of contraction semigroups. Our result is a
slight algebraic reformulation of the Lumer—Phillips theorem [10] on
dissipative operators. We have included it for comparison with the second
result, a characterization of the generators of positive contraction semigroups.

This second characterization is based on Phillips’ notion [13] of a dispersive
operator. Phillips examined the generator question on a Banach lattice and we
present an analogous disucssion in the algebraic setting. It should be
emphasized that the order structure in the two cases is quite distinct; the
positive elements of a C*-algebra o/ form a lattice if and only if &/ is abelian.

Third we examine semigroups which are strongly positive in the sense that
they satisfy the inequalities (*). Kadison [7] showed that these inequalities are
valid for a positive map of norm one whenever A4 is normal. Nevertheless there
are positive semigroups and non-normal A for which the inequality fails. (An
example is quoted by Evans and Hanche-Olsen in [6].)

Finally we note that if t,=exp {té} is strongly positive the same thing is true
for the subordinate semigroup t{ =exp {tf ()} where x € [0,00) » —f(—x)is
a Bernstein function.

1. Contraction semigroups.

Let X denote a Banach space and X* its dual. A normalized tangent
functional at the point x € X is defined as an element f, € X* satisfying

Il =1 and  fi(x) = |x]l.
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The Hahn-Banach theorem establishes the existence of at least one such
functional for each x € X.

We will need the following well known special property for tangent
functionals of C*-algebras.

LEMMA 1. Let A=0 be a positive element of the C*-algebra </ and let w4 be a
normalized tangent functional at the point A.
It follows that w, is a state over .

Proor. Let E, be an approximate identity of /. (If &/ has a identity 1 one
can take E,=1 and the following proof simplifies accordingly.) It suffices to
prove that for some subnet

limw,(E?) = 1

(see, for example, [3, Proposition 2.3.11]). Now assume
w4(EY) = a,+ib, .
Since ||E,| =1 one has
a2+b2 1.

Hence by passing to a subnet we can assume that a, and b, converge to a and b
respectively and then

(* ad+b? 1.
Now since A is positive
I|EZ-2EZA/IAll = t.
(This can be deduced by addition of an identity 1 and then noting that 1
—2A/||A|| has spectrum in [ —1,17].) But since w, is a tangent functional at A

limw ((E2 —2E2A/|A]) = a+ib—2.

Consequently
(**) (@a=2*+b* £ 1.

But (*) and (**) imply that a=1 and b=0.

Throughout the sequel we use |4| to denote the modulus of an element A of
a C*-algebra o, that is |A|=(A*A)}, and if A=A4* we use 4, to denote its
positive and negative parts, that is A, = (4]t A)/2. Furthermore wg will
denote some normalized tangent functional at the point B € «/.
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The following theorem is a version of a well known result of Lumer and
Phillips [10].

THEOREM 2. Let & be an operator on a C*-algebra o/. The following conditions
are equivalent

1. & is the generator of a C,-semigroup t of contractions.
2. 0 is densely defined,
R(1—ad) = o, a>0,
and either

2a. w4(6(A)*A+A*5(4)) <0, AeD(d),
or
2b. Rew,(6(4) =0, AeD().

Proor. The equivalence 1 <> 2b is the Lumer—Phillips theorem. We
concentrate on proving 1 < 2a.

1 = 2a. The first statements follow as in the Hille-Yosida theorem. The last
statement follows by noting that w,, is a state, and t is contractive. Hence

o(t (A)*1,(4) < |l (A))* £ 14)1% .
But using the Cauchy-Schwarz inequality one finds
1417 = AP = 04D £ 0,(4P) = o (4*4) < 4]
Therefore w4(A*A4)=|A4|*> and
o4 (1(A)*7,(A) — 0 4(4*4) £ 0.
Dividing by ¢ and taking the limit ¢t — O gives the desired result.

2= 1; Given A4 € o there is a B € D(d) such that A= (1—¢d)(B). This
follows from the assumption R(1—e&d)= /. But then

IBI? = wp(Bl)?

wg(B*B)
w,p(B*B—¢d(B)*B—¢eB*5(B))
wp(A*A) = |4]*.

A A1

A

Consequently (1—ed)~! is a bounded operator with || (1—ed)| < 1. But since

t(4) = lim (;—%5>‘"(A) ,

n—00

one concludes that l‘t,(A)" <L
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2. Positive contraction semigroups.

In the previous section we characterized generators of Co-semigrbups of
contractions and in this section we examine the similar problem for
semigroups of positive operators, i.e. opeators which map the positive
elements & , into &/ .. The conditions of Theorem 2 reexpressed the notion of
dissipativity introduced by Lumer and Phillips [10]. In the following theorem
the analogous conditions are related to Phillips’ notion [13] of a dispersive
operator on a Banach lattice.

THEOREM 3. Let 6 be a densely defined operator on a C*-algebra whose domain
D(9) is closed under the star operation and which is symmetric, i.e. 5(A)* =06(A*)
for all A € D(5). The following conditions are equivalent

1. 6 is the generator of a C,-semigroup t of positive contractions.

2. (1—ad)" ! is a positive contraction operator for all a>0.

3. 0 is densely defined,

R(i—ad) = A, a>0,
and either

3a. w4, (B(A)A+AS(A) =0, A

A*eD(S), A,+0,

or
3b. wy,(0(4) £0, A= A*eD(9), A4,%0,
or
3c. B*3(A)B =0, A = A*e D(J)
whenever B € o/ ** satisfies AB=||A,|B
or
3d. P6(A)P, =0, A=A*eD()),

where P, € o/ ** is the maximal projection such that AP =|A,||P4.

Proor. 1 <> 2; This is a standard result which follows from

0

(1—ad)"1(A) = r dte'1,(A), Ae st

and

n—o00

t(4) = lim <z—£5>_n(A), ded.
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1 = 3; The fact that the generator of a contraction semigroup is densely
defined and satisfies R(1 —ad)=.«/ is part of the Hille-Yosida theorem.

1 = 3b; If A= A* € D(5) and w,, is a normalized tangent functional at 4,
it follows that the restriction of w,, to the C*-algebra generated by A4 is a
point measure on sup (Sp 4)=sup (Sp A), and hence w,, (4_)=0. Thus

Wy, (A) = w4, (4,) = [A4]

But then

IIA

Wy, (t,(4) Wy, (t.(4)

1440 = w4, (4).

A

Hence

wy,(0(A4) = limwy, (1,(A)—A4)/t £ 0.

t-0
3b = 2; For A € &/, choose B=B* € D(d) such that (1—ad)(B)=A and let

o(_p), be a normalized tangent functional at (— B),. Once again

w(-p),(=B) = o_p), ((-B);) = IB_|,
and

w-p,(6(-B) =0

by assumption. Thus

IB_I

—w(-p),(B)
—w(_p,((t—ad)(B))
= —wp, (4 =0,

IIA

because w(_p), is a state by Lemma 1. Consequently B_ =0 and B=0. Next let
wp be a normalized tangent functional at B. Since B=0, we have

wg(0(B)) = 0
by assumption. Therefore

Bl

wg(B)

wg((1—ad)(B))
wg(4) = 4] .

A

We have thus shown that if 4 >0 and B=B* is an element such that (1 —ad)(B)
(1—ad)(B)=A4, then B=0 and | B|| £ ||A||. Thus if B, B, € &/, (the self adjoint
elements in &) are elements with
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(1—ad)(B;) = (1—ad)(B,),
then
(1—ad)(B,—B,) = (1—ad)(B,—B,) = 0,

and hence B, - B, 20, B,—B, 20, that is B, =B,, and (1 —ad) is injective on
o 5. It is surjective since o , < (1 —ad)(D(d)s,), and hence (1 —ad) ! exists as an
operator on &f,. But as (1 —ad) commutes with the involution it follows that
(1—ad)™! exists on o/, and from the positivity of (1—ad)~! we find

[(—ad)~ | = sup ||(1—ad)A4]/| Al
Aed

A

sup [ (1—ad) " 1 AllI/114]]
Aed

A

1.

The first inequality above follows from the fact that the norm |l¢| of a
positive linear map ¢ equals

loll = sup{lle(4)]; 420, [Al=1}.

This is known if & has an identity 1 and ¢(1)=1, see [3, Corollary 3.2.6] or
[14], but the next lemma implies it is true in more general cases. We are
indepted to T. Digernes, C. F. Skau, and R. Wong for a discussion of this point.

LEMMA. Let ¢ be a linear positive map from a C*-algebra < into a C*-algebra
B.
It follows that @ is bounded, and if {E,} is an approximate identity for o, then

lell = lim |@(E,)|

Proor: If ¢ had been unbounded, there would exist a sequence A4, of positive
elements in .« such that |4, <1 and |@(A4,)|| 2n. Define
1

1"2

A=

18

A,.

Then A= (n*)~'4,20, hence ¢(4)=(n*) '¢(4,)20 and so
1
le(A)ll 2 n—zll¢(An)I| zn, foralln.
But this contradicts [¢(4)] < +00.

Let &/** and #** be the von Neumann enveloping algebras of & and #
and let ¢ also denote the normal extension of ¢ to &/**. It follows from
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Kaplansky’s density theorem, [3], that the extension has the same norm as the
original ¢. Furthermore, by [14] we have |¢| =lo1)|.

If {E,} is an approximate identity for </, then E, — 1 in the w*-topology in
& **, and hence ¢(E,) — ¢(1) in the w*-topology.

As ¢(E,) is increasing it follows that

le(El — lloMI = lef .

We now resume the proof of Theorem 3:
3a < 3b; Since

Wy, (A) = w4,(A4) = (A4,
it follows that
n(A)Q = |A,]Q,
where (J#,7,Q) is the cyclic representation associated with w, . Therefore
w4, (0(A)A+A5(A) = 2|4, ]lw(5(4)),

and the equivalence is immediate.

3b = 3c; Let w be a state on &7 and let w also denote its normal extension to
the bidual &/**. Assume A=A* € D(0) and let B € &/** be such that

AB = |A,|B.
Define a positive linear functional w® on ¢ by
0B(C) = w(B*CB), Ce .
Then

wB(A) = w(B*AB)

I4+lw(B*B) = |4+ e®)

I

Hence
w?(6(4)) £ 0
by 3b. But this means that
w(B*3(4)B) £ 0,
for all normal states w on &/**, and hence
B*5(A)B £ 0.
3c = 3d; This follows by choosing B=P,.
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3d = 3b; If A=A4* € D(J) and w,, is a normalized tangent functional at
A, then
wq,(Py) =1

and hence w, (1—-P4)=0. It follows that
wy, (C) = COAJPACPA) ’
for all C € o by the Cauchy-Schwarz inequality. Consequently
w4, (6(4) = wy, (P0(A)P,) = 0.

Next we derive a set of characterizations of generators of positive
semigroups which are similar to the results obtained for uniformly continuous
semigroups by Evans and Hanche-Olsen [6]. Their conditions were either

(A + Ad(NA = S(A)A+ Ad(A),
for all A=A* ¢ &, or
)+ U*s(MU = s(UMU+U*6(U),

for all unitaries U in /. These can be viewed as the first order terms in our
conditions 3-6.

THEOREM 4. Let of be a C*-algebra with identity 1, and © a C,-semigroup on
& with generator 6 such that t,(A)*=1,(A*) for all Ae o and t=0. The
following conditions are equivalent

1. The semigroup =, is positive for all t=0.

2. The resolvent (1—ed)~! is positive for all small ¢>0.

3. (1-e0) 1 (AH+A(—ed) ')A = (1—ed) N (A)A+A(1—ed) "1 (A4)
for all A=A* € o, and all small ¢>0.

4, 1—ed) ')+ U*(1—ed) (U 2 (1—ed) " (UMU+U*(1—ed) (V)
for all unitaries U € o, and all small ¢>0.

5. 1,(A) + A1,(1)A 2 1,(A)A + A1, (A)
for all A=A* € o, and all small ¢>0.

6. 1,(1)+ U*t,(HU 2 1t (U¥U +U*1 (V)
for all unitaries U € o, and all small ¢>0.

Proor. The equivalence 1 <> 2 is proved as in Theorem 3.
If § is bounded it is known, [6], that t,=¢" is positive if, and only if, one of
the following two equivalent conditions is fulfilled

a. 6(A%)+ AS(1)A 2 5(A)A+A5(A), forall A=A* e o.

b. d()+U*(1)U = 6(U*)U+U*6(U), for all unitaries U in .
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Hence, to establish the theorem, it is enough to show that 1 or 2 is equivalent
to each of the following two conditions

7. &= > 0 for all t=0 and all small ¢>0.
8. ¢ =0 for all t=0 and all small £>0.

We have to show four implications.

2 = 7. This is evident from the expansion

( 6)_1 oo tn
L(1— & —_ — -n
e =Y ——n!(l &) ".

n=0

7 = 1. We have
eté(x—-s&)" —_ et(—(:/e)+(l/e)(l—eé)") — e——t/se(t/s)(l—sé)" ,

t6(1—ed) ! t(i—ed)!

and hence e is positive whenever e

€*(4) = lime"t-=7"(4) |

£-0

is positive. But

for all A € o by [3, Theorem 3.1.10]. Hence 1,=e" is positive.

1 = 8. This is evident from the expansion

s oG t” 5
te ne
e = —e .
ngo n!
8 = 1. We have
=0 = o= 0
and hence ¢'®~ %) is positive whenever e’ is positive. But

8(4) = lim <e€a“ ‘) (4),

e—0 €
for A € D(9), and it follows that
e(A4) = lim e~ e)(4) |

e—0

for all A € o by [3, Theorem 3.1.28]. Hence t,=e€" is positive.

3. Strongly positive semigroups.
Next we examine semigroups that are strongly positive in the sense that

1(A*4) = 1,(A)*t,(4), Ae o, t>0.

Such semigroups are automatically contractive. For example if &/ possesses an
identity 1, then it follows from positivity that

AR A
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But by strong positivity

(D) 2 7 (1)*,(1)

[\

0,

and hence

It M =l (D> .
Thus
el =1

Lindblad [9], Evans [5], and Evans and Hanche-Olsen [6] have studied
strongly positive semigroups with bounded generators 6. In particular it is
shown in [6] that strong positivity of 7 is equivalent to the dissipation property

0(A*A) 2 6(A%)A+A%6(A), Ae A,

whenever ¢ is bounded. No direct analogy of this result is generally possible in
the case of unbounded 6 for domain reasons. To formulate the dissipation
property for unbounded J one would require at least A € D(6) implies
A*A € D(d). But by polarization this would mean that D(J) is an algebra. This
is often not the case. Counter examples are easily constructed from the heat
equation on a finite region 4 <R’ with smooth boundary dA. If we consider
the Laplacian V2 with boundary condition df/dn=af on 0A, then this
generates a strongly positive semigroup on C(4) by Kadison’s result which we
mentioned in the introduction. But since df/0n=o6f and dg/0n=0cg imply that
0fg/0n=2afg, the domain of V2 is not an algebra for non-zero o. If, however,
o =0, then the domain has a core which is an algebra. Finally if we consider
Dirichlet boundary conditions f=0 on 04, then the domain is in fact an
algebra. Thus all possibilities occur.

We avoid this domain difficulty by using functional analysis of generators.
Thus we pass from t,=exp {td} to the semigroup t¢=exp {t(e*—1)/e} or the
semigroup t* =exp {t6(1—ad) "'} and then pass back to t by taking the limit ¢
— 0 or a — 0. By this artifice we can exploit the results of [6], [9], and [5].

THEOREM 5. Let of be a C*-algebra, and let © be a Cy-semigroup on o with
generator J such that t,(A*)=1,(A)* for all Ae .
The following conditions are equivalent

1. 1,(A*4A)21,(A)*t,(A) for all Ae o and all t20.
2. (1—80) Y (A*A)= (1—e8) ' (A*)(1—ed) ' (A) for all Ae oA and all
small ¢>0.
3. 1,(A*A)+ A*A21,(A*)A+ A*1,(A) for all A e of and all small t>0.
4 (1—ed) Y(A*A)+ A* A= (1—e8) H(AMA+A*(1—d) 1 (A) for all Ae oA
and all small ¢>0.
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Proor. When § is bounded, condition 1 is equivalent to
5. 6(A*A)=56(A*)A+ A*3(A), see [6, Corollary 3].
It follows immediately that 3 <> 6 and 4 <> 7, where
6. et(e"’——l)/c(A *A)ge!(e"’—x)/e(A t)et(e"’——l)/f:(A)
and
7. eté(l—m?)_‘(A*A)geté(l—e&)“'(A*)eté(t—-s&)"(A).
Since

€4(4) = lim e’ ~Ve(4) = lim "0~9)7"(4)

=0 £—0

for all A € o, it follows that 3 = 1 and 4 = 1.
1 = 3. If 1 holds, we have
T (A*A)+ A*A—1,(A")A - A*1,(A) 2 (1,(4)— A)*(1,(4)—4) =2 0,
and hence 3 holds.
2 = 4. This is proved in the same manner as the previous implication.
1 = 2. Define

-1

for >0. From the implication 1 = 3 it follows that
0,(A*A) 2 9,(A")A+ A*5,(A4),

for all 4 € o, and (1—¢d,)~! is positivity preserving by Theorem 4.
If A e o is arbitrary, define B=(1—e¢d,) ' 4. It follows that

(1—28,) 1 (A*A) = (1—28,)" ' (B*B—¢(5,(B*)B + B*5,(B))
+¢20,(B*)d,(B))

2 (1—ed,) " (B*B—e(6,(B*)B+ B*5,(B))

z (1—&d,)” ! (B*B—ed,(B*B)

= B*B = (1—¢6,) 1 (A*)(1—¢b,) "1 (A) .
But

lim (1—-£8)™*(C) = (1—-26)"*(C)

by [3, Theorems 3.1.28 and 3.1.26].
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It follows that
(1—ed) "1 (A*A4) Z (1—2d)” 1 (A% (1—ed) "' (A),
for all A € o and all small ¢>0.

2 = 1. By iteration of 2 it follows that

(z—£5>—"(A*A) 2 <1—55>_"(A*)(1—55>_"(A)’
n n h

and in the limit n — 00 one obtains
7,(A*A4) 2 1,(4%),(4) .

The equivalence of conditions 1 and 2 in Theorem 5 is at first sight not
surprising. It is a general rule of semigroup theory that the semigroup t and its
resolvent (1—ed)~! have analogous properties and one usually demonstrates
this by using Laplace transforms to pass from the semigroup to the resolvent.
This technique can also be used to prove that 1 = 2 by a calculation similar to
that given in the introduction:
roo Poo

b ds | dremttO(n,(A%A)+1,,(A%4)

J O JO

il

(1—ad) 1 (A*A)

oo (oo

ds dt €™ (1,,(A)* T (A) + 1,5(A)*1,5(A4))

JO JO

v
(S

(*oo (*oo

ds dt et (1,,(A)*145(A) + To5(A) * 14, (4))

JO J O

(1—ad) " H(A)*(@—ad) 1 (A).

v
o=

This implication can be extended in this manner to fractional powers of the
resolvent. In fact it is a simple corollary of the theory of subordinate
semigroups which we consider in the next section.

4. Subordinate semigroups.

In this section we demonstrate that if a C,-semigroup t,=exp {¢t6} of maps
of a C*-algebra is strongly positive then the subordinate semigroups t/
=exp {tf ()} are also strongly positive.

The theory of subordinate semigroups has been developed for Bernstein
functions, [2], [12]. In these papers the semigroup generator ¢ is defined by
the convention 7,=exp { —td} and the Bernstein functions f are defined as C*-
functions from (0, 00) to [0, 0o) with the property that (—1)"*1f® >0, for all n
2>1. Since we are using the convention 1,=exp {td}=exp{—t(—9J)}, it is
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necessary to replace f(x) by —f(—x) and hence we consider Bernstein
functions as C*-functions from (—00,0) to (— 00,0] such that f® >0 for all n
=1.

The class of Bernstein functions occurs naturally in the Laplace transform
theory of convolution semigroups supported by the half line [1]. It is also the
largest class of functions for which the replacement of t by t/ respects order
properties [4]. Following Phillips [12] one can use the Laplace transform
theory to define the subordinate semigroup . The basic result is a one-to-one
correspondence between vaguely continuous convolution semigroups of
positive measures pu supported by the half line [0, c0) and Bernstein functions f;
this correspondence is such that

¢ = f du' (e’ .
0o

One can then use this relation to define 1/ from t by setting

tf = J du' (AT, .
0

It is readily checked that ¢/ is a C,-semigroup but it remains to identify its
generator. But using Bernsteins theorem one can argue that each Bernstein
function [1] has a representation

*) f(x) = —a+ﬁX+fj du(r)(e™—-1),

where a, f=0 and u is a positive measure satisfying

®© t
J‘O dﬂ(t)m < +.

Nelson [11] used this formula to complete the work of Phillips [12] and show
that v/ has generator

00

f©) = —w+ﬁ5+J du@®)(r,—1),
0

where the integral is understood in the strong sense and the strong closure is
taken.

THEOREM 6. Let of be a C*-algebra, T a Cy-semigroup on </, f a Bernstein
function, and 1t/ the corresponding subordinate C,-semigroup.

If
1,(4%4) 2 1,(A)*7,(4),
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for all A € of and t=0, then
tf(A*A) 2 1/ (A*A)e’ @ 2 f(A)*](4),

for all A e o and t=0.

Proor. First since f(0)<0 one has exp {t/(0)} <1 for t=0. Second one has

o (A*4)e IO = } :odu'w :d/»"(Q)(ra(A*A)Hg(A*A))
21| de) | @ () s (A) 1, (A) e, (4)
J o JO
23| e | det @Ay e, (A) +5,(4) (1)
J o J O
= (ATl (A)

One can exploit Theorem 6 to obtain a generalization of part of Theorem 5.

CoROLLARY 7. Under the assumptions of Theorem 5 the following conditions
are equivalent

1. 1,(A*A)=1,(A)*1,(4), forall Ae o and t=0.
2. (1—e8) " HA*A)= (1—ed) (A)*(1—&d) "' (A), for all A e o and g,t=0.

Proor. Condition 2 implies Condition 1 by Theorem 5. But the converse
follows by choosing

f(x) = —log(l—ex), x=0.
Thus
f =e/® = (1—ed)7".

Finally we note that if >0 in the representation (*) of the Bernstein
function f, then f(6) and  have the same domain. But if §=0, then D(§) is only
a core of f(8). Thus if D() is a *-algebra, then f(9) always has a core which is a
*.algebra, but its domain does not necessarily have this property.

AckNoWLEDGEMENT. This work was carried out whilst the second author was
a guest of the Forschungs Institut fiir Mathematik at the Eidgendssische
Technische Hochschule in Ziirich; he is indebted to Professor Konrad
Osterwalder for arranging this visit.

Math. Scand. 49 - 18



274 OLA BRATTELI AND DEREK W. ROBINSON

REFERENCES

1. C. Berg and G. Forst, Potential theory on locally compact Abelian groups (Ergebnisse der
Mathematik und Ihrer Grenzgebiete 87), Springer-Verlag, Berlin - Heidelberg - New York,
1975.
2. S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press,
Berkeley, 1955.
3. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1,
Springer-Verlag, Berlin - Heidelberg - New York, 1979.
4. O. Bratteli, A. Kishimoto and D. W. Robinson, Positivity and monotonicity properties of Cy-
semigroups I, Comm. Math. Phys. 75 (1980), 67-84.
5. D. E. Evans, Irreducible quantum dynamical semigroups, Comm. Math. Phys. 54 (1977), 293-
297.
6. D. E. Evans, and H. Hanche-Olsen, The generators of positive semigroups, J. Funct. Anal. 32
(1979), 207-212.
7. R. V. Kadison, 4 generalized Schwarz inequality and algebraic invariants for operator algebras,
Ann. Math. 56 (1952), 494-503.
8. E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type, Adv. in Math. 12
(1974), 269-273.
9. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48
(1976), 119-130.
10. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961),
679-689.
11. E. Nelson, A functional calculus using singular Laplace integrals, Trans. Amer. Math. Soc. 88
(1958), 400-413.
12. R. S. Phillips, On the generation of semigroups of linear operators, Pacific J. Math. 2 (1952),
343-369.
13. R. S. Phillips, Semi-groups of positive contraction operators, Czechoslovak. Math. J. 12 (1962),
299-312.
14. B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966),
413-416.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TRONDHEIM, NTH
7034 TRONDHEIM

NORWAY

AND

UNIVERSITY OF NEW SOUTH WALES
DEPARTMENT OF MATHEMATICS
KENSINGTON

SYDNEY

AUSTRALIA



