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STRONGLY ANNULAR FUNCTIONS
WITH GIVEN SINGULAR VALUES

AKIO OSADA

0. Introduction.

For a function f holomorphic in the unit disk D={z: |z| <1}, we consider
the closed subset Z'(f,a) of the unit circle C={z: |z|=1} consisting of limit
points of the set {z : f(z)=a} of a-points of fin D. If fis strongly annular, that is,
if there is a sequence of positive numbers r, such that r,11 and

min {|f(2): |d=r,} > %

as n increases, then the set Z'(f,a) cannot be empty for any finite complex
number a, and in fact, as is guaranteed by the Koebe-Gross theorem
concerning meromorphic functions omitting three values, Z'(f,a) must
coincide with the full circle C for every value a, except possibly for at most
countably many a’s. Therefore the set S(f) consisting of those exceptional
values mentioned above may be viewed as being singular for f. We are
interested in the question raised by D. D. Bonar [3]: What cardinalities are
possible for S(f)?

Partial answers to this question has been given by K. Barth, D. D. Bonar
and F. W. Carroll [2], and also the present author [5]. Recently F. W. Carroll
[4] constructed a strongly annular function f whose S(f) is an increasing
sequence 0=a,<da;<...<a,<... on the real line. In connection with this
result one is naturally led to ask whether there exists a strongly annular
function f whose S(f) is an arbitrary prescribed set, for instance, a countable
dense subset of the complex plane. The purpose of this paper is to remark that
the procedure involved in the above construction has much wider applicability
so that the above question can be positively answered. Namely, we shall prove
the following

THEOREM. Let S be any non-empty subset of the complex plane which is at most
countable. Then there exists a strongly annular function f with S(f)=S.

Received July 8, 1980; in revised form December 12, 1980.



74 AKIO OSADA

1. Fundamental lemma.

Let I be an open and proper subarc of C. For any z in D, denote by G(I,z2)
the Jordan domain in D whose boundary consists of I and two segments
connecting z with each of end points of I. When z is a point in G(I,0), the
domain G(I, z) will be referred to as a sectorial neighborhood of I. Now let {;
=1,...,{n+ be distinct points on C such that arg{, <arg{,,, and arg{y4,
<2n (k=1,. .., N). Further denote by I, the open arc on C having {, and (.,
as end points and not containing any other {;, We denote by C; the circle
{z:]z2/=R;} (0<R, <R, <1)such that C, intersects any sectorial G(I,, z,) =G,
where z, is a point in G(I,,0). Then C, also intersects any G,, and hence we can
divide C, into non-overlapping closed subarcs 4,, B,, B, ;, and B, , as follows:
First we denote by A, a subarc whose middle point is the point where C, meets
the radius (0,¢,) if 2<k <N where the argument of the middle point of 4, is
(arg{n+,;—2m)/2. Here we choose A, so small that it does not meet the
boundary of G, U G, _; (G, =Gy). Next removing N arcs 4, (k=1,...,N) from
C,, we obtain N remaining arcs {J,} each of which intersects only one of N
sectorial neighborhoods {G,}. Assume that J, intersects G,. Then J, is also
divided into three subarcs B,, B, ;, and B, ,. Namely B, is the intersection
J, N G,. Observing here that B, protrudes outside G, at each of its end points,
we denote by B, ; the subarc protrudent towards A,, and B, , the subarc
protrudent towards A4, ,,, where Ay, ,=A,. Finally we denote by H (D) the set
of functions holomorphic in D. The following lemma will play a fundamental
role in proving Theorem.

LEMMA. Assume that for any given N complex numbers w, (k=1,. .., N), there
exists a function f in H(D) such that

(1.1) f(z)—wy is bounded away from 0 in G, (k=1,...,N—-1),
(1.2) fis bounded in G, (k=1,...,N—1).

Then, for each pair of positive numbers M and g, there exists a function g in H(D)
such that

(1.1y g(z)—w, is bounded away from 0 in G, (k=1,...,N),
(1.2Y g is bounded in G, (k=1,...,N),

(L.3) |g(z)l> M for every z on C,,

(1.4) lg(2)—f(2)l<q for every z in {z:|z]R,}.

Proor. Let g be a function defined as follows:

(1.5) q(z)=f(z) on {z:|z|<R,} and also for every z in G,,...,Gy_,,
(1.6) q(2)=f(z,) on B, ; (k=1,.,N—1; j=1,2),
(1.6) q(z)=a constant, distinct from wy, on the set GyU By ; UBy ,.
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Here G, denotes the closure of G, with respect to D and {z, ,,z, ,} the end
points of B, with argz, ,<argz, ,. Then, by virtue of the Arakelian

approximation theorem [1], we can find, for any £>0, a function h in H(D)
such that

(L.7) lh(z)—q(2) < ¢.

If we choose a positive number ¢ properly, then h is easily seen to possess
required properties of the lemma except for (1.3). In order to make h satisfy
(1.3) without losing the other requirements of the lemma, we first use the
Runge approximation theorem. Recall here that the union of B,, B, ,, and B, ,
form a single closed arc J, which is off the boundary of the annular sector

Sy = {z: Ry <|7| =1, arg{,<argz<arg{;,,} ,

using (arg{y 4, —2n)/2 in place of arg{, for S, and (arg{y,,+2m)/2 in place
of arg{y,, for Sy, and again consider a function g, defined as follows:

(1.8) gi(z)=a,, a positive number, on the arc J,,
(19) ¢,(z2)=0 on the set {z: |z|<1}-S§,.

For this function ¢, and a positive number ¢,, Runge’s theorem assures the
existence of a polynomial p, such that

(1.10) Pe(2) — q(2)| < & .
Using h and {p,}, we define a function in H(D) by
(1.11) H(z) = (h(z)—wn)exp (pn(2)+ . .. +p,4(2))

+(wWn—wn_)exp(pn-1(2)+. ..
+p,@)+ ...+ (wy—wy)exp (py(2))+w, .

To see that H satisfies all the requirements (1.1)—(1.4) in the lemma, except for

that H is large on 4, (k=1,. .., N) in modulus, we have only to note, as well as
(1.5-(1.11), the equality

(1.12) H(2)—w, = {u(2)+ (h(z)—w)exp (py-,(2)+ ...
+p1(2))} exp (pi(2) +v,(2) ,

where

u(2) = {(h(2)—wn)lexp (on(2) + . .. + P41 (D) =11+ ...
+ (Wis 2= Wi )[EXP (Phs+1(2) — 11} exp (pi—1 () + . . . + P4 (2))

(1SkEN-2)
uy_;(z) = (h(z)—wy)(exp (pn(2) —1)exp (Pn-2(2)+ . .. +p,(2)) ,



76 AKIO OSADA

and
uy(z) =0 forall z
(2) = We—w_Jlexp (px- (D) + ... +p(2)—1]1+. ..
+(wy—wy)lexp (py(z)) - 17 .

In fact, by virtue of (1.1), (1.5), (1.6), and (1.7), we can find a positive number K,
independent of ¢ and N numbers ¢ (k=1,...,N), such that

(1.13) inf{lh(z)-w| : z€ G UB, ;UB, ,} > 4K for any k.

Therefore, if we make each of ¢’s sufficiently small, it follows from (1.9) and
(1.10) together with (1.2), (1.5), and (1.7) that

inf{|(h(z)—wy)exp (pr-,(2)+ ... +p, (@) : ze G,UB, ,UB, ,} > 2K
and
sup {lu,(2)l : ze GyUB, ;UB, ,} < K
for any k. Consequently we obtain
(1.14) |H(z)—wi > Klexp (pi(2))| - lvi(2)|

for every z in G, U B, , U B, , and for each k (k=1,...,N). On the other hand,
since v, does not involve p; (j2 k), we can make v, arbitrarily and uniformly
small in G; (j2k) if we choose k—1 positive numbers ¢,_,,. .., suitably.
Therefore, first, using N as a value of k in each of the conditions (1.14), (1.10),
(1.9), and (1.8), we can make H possess the required properties in the lemma,
except for that H(z)—w, is bounded away from 0 in G, (k=1,...,N—1) and
that H is large on A, (k=1,...,N) in modulus. Here we put emphasis on the
fact that H(z)—wy is really bounded away from 0 in Gy. Subsequently letting
¢y be fixed and keeping in mind that vy_, does not involve py and py_,, we
shall next use N — 1 as a value of k in each of (1.14), (1.10), (1.9), and (1.8). We
continue this procedure until we use 1 as a value of k in each of the four
conditions just mentioned above. Then, as a consequence of this process, we
can conclude that H satisfies the requirements of the lemma, except for that
|H(2)| is large for every z on A4, (k=1,..., N). Moreover, adding a small vector
if necessary, we may assume that H does not vanish on C,. Thus the remaining
task is to make |H(z)| large on A, (k=1,...,N). To this end, we need some
more geometric definitions. Namely, let 4, ; and A, , denote small arcs
encroaching on B, _, ; and B, , at the end points of A,, and further T, a small
“triangular” region including A4,, 4, ;, and 4, , in its interior, and pointing at
{, if 2k <N where T, is pointing at the point exp {(arg{y ., —2n)/2}i and
By,, =By, ,. Now let H, be a function “closing the gaps” [4, Lemma A], that is,
a function in H(D) such that
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(1.15) |H(2)] > a for every z on 4, ,
(1.16) ReH,(z) > —o for every z on A, |, Ay, ,
(1.17) |H,(2)] < 20 for every zin D—T, .

Using H defined by (1.11) and {H,}, we consider
g = H@){1+H,(2)} ... {1+ Hy(2)} .

Then choosing a pair of positive numbers a and ¢ suitably, and making use of
(1.15), (1.16), and (1.17), we can easily show that g satisfies all the requirements
of the lemma. Thus the proof is complete.

2. Proof of Theorem.

Let {r,} and {o,} be two sequences of positive numbers with r,11 and Y o,
< 00. Let {G,} T be sectorial neighborhoods defined as in Section 1 such that the
circle C,={z : |z| =r,} intersects all sectorials {G,};*!,n=1,2,... To prove the
theorem, we have only to construct inductively a sequence {f,} in H(D) such
that, for any n,

(2.1) f,(z)—w, is bounded away from 0 in G, (k=1,...,n),
(2.2) f, is bounded in G, (k=1,...,n),

(23) |fu(2)|>] for every z on C; (j=1,...,n),

24) f,2)—fo-1(2)\<0,_, for every z on {z:|z|<r,_,}.

In fact, suppose that we have constructed {f,} satisfying (2.1)-(2.4). Then, by
virtue of (2.4), {f,} converges to a function fin H(D). Further, it follows from
(2.3) that fis strongly annular. Moreover, the Hurwitz theorem together with
(2.1) assures that f(z)+w, for every z in G, k=1,2,... To prove the existence
of the sequence {f,}, let f; be a constant, distinct from each of the w,’s, whose
modulus is greater than 1, and suppose that we have obtained {f,,.. ., fo-1}
satisfying (2.1)-(2.4). To construct f,, we use the lemma, taking r,_, =Ry, r,
=R,, f,_; =/, and n+ 1= M. Consequently, we get a function g in H(D) which
is denoted by f,. Here, in order that the inequality

1@ >

holds for every z on C; (j=1,2,... n—1), a sufficiently small number o, (<a,)
must be used as a value of g. Thus, the proof of the theorem is complete.
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