THE *n*-BALL PROPERTIES IN REAL AND COMPLEX BANACH SPACES

DAVID YOST

Subspaces of Banach spaces which possess the n-ball property, for some $n \in \mathbb{N}$, have been the subject of considerable attention. Unfortunately, the literature contains a plethora of definitions of the n-ball property. Here we attempt to clarify the relationships that exist between all these properties. Let us begin with the relevant definitions.

Throughout, M will be a closed subspace of a Banach space E. Fix $n \in \mathbb{N}$. We will say that M has the n-ball property in E, if, given n closed balls $B(a_i, r_i)$ such that $M \cap B(a_i, r_i) \neq \emptyset$, for all $i \leq n$, and $\bigcap_{i=1}^n B(a_i, r_i)$ has non-empty interior, then $M \cap \bigcap_{i=1}^n B(a_i, r_i) \neq \emptyset$. If the conditions $M \cap B(a_i, r_i) \neq \emptyset$ for each i, and $\bigcap_{i=1}^n B(a_i, r_i) \neq \emptyset$ imply that $M \cap \bigcap_{i=1}^n B(a_i, r_i + \varepsilon) \neq \emptyset$ for all $\varepsilon > 0$, then we say that M has the weak n-ball property in E. It is straightforward to show that the n-ball property implies the weak n-ball property, and that the weak n-ball property is equivalent to the "n-ball property for open balls" considered in [1] and [2]. If we may take $\varepsilon = 0$ in the definition of the weak n-ball property, then M is said to have the strong n-ball property in E. Obviously the strong n-ball property implies the n-ball property.

In [10] we declared M to have the $1\frac{1}{2}$ -ball property in E if the conditions $a_1 \in M$, $M \cap B(a_2, r_2) \neq \emptyset$ and $\|a_1 - a_2\| < r_1 + r_2$ implied that $M \cap B(a_1, r_1) \cap B(a_2, r_2) \neq \emptyset$. Similarly we say that M has the weak $1\frac{1}{2}$ -ball property in E if the conditions $a_1 \in M$, $M \cap B(a_2, r_2) \neq \emptyset$ and $\|a_1 - a_2\| \le r_1 + r_2$ imply that $M \cap B(a_1, r_1 + \varepsilon) \cap B(a_2, r_2 + \varepsilon) \neq \emptyset$ for all $\varepsilon > 0$. If we can take $\varepsilon = 0$ in the latter definition, M is said to have the strong $1\frac{1}{2}$ -ball property in E. After translating and scaling, we see that M has the $1\frac{1}{2}$ -ball property in E iff $M \cap B(0,1) \cap B(a,r) \neq \emptyset$ whenever $M \cap B(a,r) \neq \emptyset$ and $\|a\| < r + 1$. Similar remarks apply to the weak and strong $1\frac{1}{2}$ -ball properties.

We wish to know which of the trivial implications so far mentioned can be reversed. One easy result is available to us now. Suppose M has the weak n-ball property in E, for some $n \in \mathbb{N} \cup \{1\frac{1}{2}\}$. If M is reflexive, or if E is a dual space and M a weak* closed subspace, an easy compactness argument shows that M actually has the strong n-ball property.

Received August 25, 1980. In revised form December 12, 1980.

If there is a projection P from E onto M satisfying ||x|| = ||Px|| + ||x - Px|| (respectively, $||x|| = \max\{||Px||, ||x - Px||\}$), then M is said to be an L-summand (respectively, an M-summand) in E. It is routine to show that an M-summand has the strong n-ball property, for all $n \in \mathbb{N} \cup \{1\frac{1}{2}\}$. If M° , the polar of M, is an L-summand in E^* , then M is said to be an M-ideal in E. Every M-summand is an M-ideal, but numerous examples show that the converse is false. However, a reflexive M-ideal is easily shown to be an M-summand.

Alfsen and Effros [1, Theorems 5.8 and 5.9] showed that an M-ideal has the n-ball property for every n and, conversely, that a subspace with the weak 3-ball property is already an M-ideal. This paper is devoted to proving that, and related duality results. Some of the results are not new. However, new proofs should be of interest. The $1\frac{1}{2}$ -ball property features prominently in our arguments, which use the language of approximation theory rather than the complementary cones considered by other authors [1, 2, 7]. We will also show that the weak n-ball property is equivalent to the n-ball property, for all $n \in \mathbb{N} \cup \{1\frac{1}{2}\}$.

Lastly we show that the strong *n*-ball property is distinct from the *n*-ball property, for every value of *n*. We do this with a single example, an *M*-ideal which fails the strong $1\frac{1}{2}$ -ball property. Throughout, the scalar field K may be either R or C.

We now introduce the required results from elementary approximation theory. Given $a \in E$, let $P(a) = P_M(a)$ be the set of points in M which are as close as possible to a. That is, $P(a) = \{x \in M : ||x-a|| = d(a, M)\}$. If P(a) contains exactly (at least/at most) one element, for every $a \in E$, then M is said to be a Chebyshev (proximinal/unicital) subspace of E. (If M is Chebyshev in E, then the closest point map $P: E \to M$ is called the metric projection.) We define the metric complement of M by

$$M^{\perp} = \{x \in E : \|x\| = d(x, M)\} = \{x \in E : 0 \in P(x)\}.$$

We say that the subspace M has the unique extension property in E if every $f \in M^*$ has a unique norm preserving extension to an element of E^* . Note that, for any $f \in E^*$, we have $g \in P_{M^\circ}(f)$ iff f-g is a norm preserving extension of $f \mid M$. This gives us the following result of Phelps [8, Theorem 1.1]: M has the unique extension property in E iff M° is a Chebyshev subspace of E^* . Dually, if M^0 has the unique extension property in E^* , then M^{00} will be Chebyshev in E^{**} , whence M is unicital in E. Phelps [8, p. 252] showed that the converse of this is false. If $E = c_0$ and M is the one dimensional subspace spanned by the sequence $(1, \frac{1}{2}, \frac{1}{3}, \ldots)$, then M is Chebyshev in E, but M^0 does not have the unique extension property in E^* .

The proof of the Hahn-Banach theorem gives us the following useful result.

102 DAVID YOST

Let $f \in M^*$ with ||f|| = 1 and fix $a \in E$. Then f has a norm preserving extension $g \in E^*$, with re $g(a) = \lambda$ iff

$$\sup \{ \operatorname{re} f(x) - \|x - a\| : x \in M \} \le \lambda \le \inf \{ \operatorname{re} f(x) + \|x - a\| : x \in M \}.$$

Of course, at least one such λ exists.

The following two results are essential for what follows.

LEMMA 1. [7, Theorems 1.1 and 1.2].

(i) Fix $a_1, \ldots a_n \in E$ and $r_1, \ldots r_n > 0$. Then

$$M \cap \bigcap_{i=1}^{n} B(a_i, r_i + \varepsilon) \neq \emptyset$$
 for all $\varepsilon > 0$, iff

$$\left|\sum_{i=1}^{n} f_i(a_i)\right| \leq \sum_{i=1}^{n} r_i ||f_i|| \quad \text{whenever } \sum_{i=1}^{n} f_i \in M^{\circ}.$$

(ii) Fix $f_1, \ldots f_n \in E^*$ and $r_1, \ldots r_n > 0$. Then

$$M^{\circ} \cap \bigcap_{i=1}^{n} B(f_i, r_i) \neq \emptyset, \quad iff$$

$$\left|\sum_{i=1}^n f_i(a_i)\right| \leq \sum_{i=1}^n r_i ||a_i|| \quad \text{whenever } \sum_{i=1}^n a_i \in M \ .$$

COROLLARY 2. [7, Corollary 1.3]. Fix $a_1, \ldots a_n \in E$ and $r_1, \ldots r_n > 0$. Then

$$M \cap \bigcap_{i=1}^{n} B(a_i, r_i + \varepsilon) \neq \emptyset$$
 (in E) for all $\varepsilon > 0$,

iff

$$M^{\circ\circ} \cap \bigcap_{i=1}^n B(a_i, r_i) \neq \emptyset$$
 (in E^{**}).

It follows at once that M has the weak n-ball property in E, if $M^{\circ\circ}$ has the (strong) n-ball property in E^{**} .

Now we give some useful characterizations of the $1\frac{1}{2}$ -ball property.

THEOREM 3. The following are equivalent:

- (i) Suppose $M \cap B(a,r) \neq \emptyset$, $f \in M^*$ and $\operatorname{re} f(x) \geq c$ for all $x \in M \cap B(a,r)$. Then f has a norm preserving extension $g \in E^*$ such that $\operatorname{re} g(x) \geq c$ for all $x \in B(a,r)$.
- (ii) M has the $1\frac{1}{2}$ -ball property in E.

- (iii) M has the weak $1\frac{1}{2}$ -ball property in E.
- (iv) M^0 has the (strong) $1\frac{1}{2}$ -ball property in E^* .

Moreover, any subspace satisfying these conditions is proximinal.

PROOF. (i) \Rightarrow (ii). Suppose $M \cap B(a,r) \neq \emptyset$ but that $M \cap B(0,1) \cap B(a,r) = \emptyset$. We will show that $||a|| \ge r+1$. By the Hahn-Banach theorem, there is $f \in M^*$ with re $f(x) \ge 1$ for all $x \in M \cap B(a,r)$ and re f(x) < 1 for all $x \in M$ with ||x|| < 1. By hypothesis, f has an extension $g \in E^*$ with $||g|| \le 1$ and re $g(x) \ge 1$ for all $x \in B(a,r)$. It follows that $B(0,1) \cap B(a,r)$ has no interior points.

(ii) \Rightarrow (i). Assume without loss of generality that $K = \mathbb{R}$ and ||f|| = 1. We claim that $f(x) \ge c + r - ||x - a||$ for all $x \in M$. First suppose $||x - a|| \le r$. Then

$$y \in M, ||y|| \le 1 \Rightarrow x - (r - ||x - a||)y \in M \cap B(a, r)$$
$$\Rightarrow f(x) \ge c + (r - ||x - a||)f(y).$$

Hence

$$f(x) \ge c + (r - ||x - a||) ||f||$$
.

Now suppose ||x-a|| > r. Then, for all $\varepsilon > 0$, the $1\frac{1}{2}$ -ball property gives us some $y \in M \cap B(a,r) \cap B(x,||x-a||-r+\varepsilon)$.

Hence

$$f(x) = f(y) + f(x - y) \ge c - ||x - y||$$

$$\ge c + r - ||x - a|| - \varepsilon.$$

Letting $\varepsilon \to 0$ establishes the claim.

Now the Hahn-Banach theorem gives us a norm preserving extension $g \in E^*$ with $g(a) \ge r + c$. Then, for any $x \in B(a, r)$, $g(x) \ge g(a) - ||x - a|| \ge c$.

(ii) \Leftrightarrow (iii). Obviously the $1\frac{1}{2}$ -ball property implies the weak $1\frac{1}{2}$ -ball property. Conversely, assume M has the weak $1\frac{1}{2}$ -ball property in E. Given $a \in E$, r > 0 with $d(a, M) \le 1 < ||a|| < r + 1$, we will show that $M \cap B(0, r) \cap B(a, 1) \ne \emptyset$. (If $||a|| \le 1$, $0 \in M \cap B(0, r) \cap B(a, 1)$.)

Let $\varepsilon = \frac{1}{3}(r+1-\|a\|)$. Then $\varepsilon > 0$, $M \cap B(a,1+\frac{1}{2}\varepsilon) \neq \emptyset$ and $\|a\| \leq 1+(r-3\varepsilon)$. The weak $1\frac{1}{2}$ -ball property then gives us some $x_0 \in M \cap B(0,r-2\varepsilon) \cap B(a,1+\varepsilon)$. By induction, we will construct a sequence $(x_n) \subset M$ satisfying

(1)
$$||x_n - x_{n+1}|| \leq 2^{-n} \varepsilon,$$

(2)
$$||x_n - a|| \le 1 + 2^{-n} \varepsilon$$
.

Given x_n satisfying (2), the weak $1\frac{1}{2}$ -ball property gives us a suitable

104 DAVID YOST

$$x_{n+1} \in M \cap B(x_n, \frac{3}{4}2^{-n}\varepsilon + \frac{1}{4}2^{-n}\varepsilon) \cap B(a, 1 + \frac{1}{4}2^{-n}\varepsilon + \frac{1}{4}2^{-n}\varepsilon)$$
.

Now (x_n) is a Cauchy sequence, whose limit $x \in M$ satisfies $||x - x_0|| \le 2\varepsilon$ and $||x - a|| \le 1$. Then $||x|| \le ||x_0|| + 2\varepsilon$, so $x \in M \cap B(0, r) \cap B(a, 1)$.

(iii) \Leftrightarrow (iv). First suppose M° has the strong $1\frac{1}{2}$ -ball property in E^* . Given $M\cap B(a,r)\neq\varnothing$ and $\|a\|\leq r+1$, we must show that $M\cap B(0,1+\varepsilon)\cap B(a,r+\varepsilon)$ $+\varnothing$ for all $\varepsilon>0$. By lemma 1 (i), we need only show that $|f_2(a)|\leq ||f_1||+r||f_2||$, whenever $|f_1,f_2|\in E^*$, $|f_1|+f_2|\in M^\circ$. If $||f_2||\leq ||f_1||$, then $|f_2(a)|\leq (r+1)||f_2||\leq ||f_1||+r||f_2||$ as required. If $||f_1||<||f_2||$ then, since

$$f_1 + f_2 \in M^{\circ} \cap B(f_2, ||f_1||)$$
,

the $1\frac{1}{2}$ -ball property gives us $f \in M^{\circ} \cap B(0, ||f_2|| - ||f_1||) \cap B(f_2, ||f_1||)$. Now $M \cap B(a, r) \neq \emptyset$, so $|f(a)| \leq r ||f||$. Thus

$$|f_2(a)| = |f(a) - (f - f_2)(a)|$$

$$\leq r(||f_2|| - ||f_1||) + (r+1)||f_1||$$

$$= ||f_1|| + r||f_2||.$$

The converse follows from a similar argument, using Lemma 1 (ii).

Finally, suppose M satisfies these conditions and choose $a \in E$ with d(a, M) = 1. The proof of (ii) \Leftrightarrow (iii) shows that $M \cap B(a, 1) \neq \emptyset$. Thus M is proximinal.

Next, we give a characterization of subspaces with the 2-ball property.

THEOREM 4. The following are equivalent:

- (i) M has the weak 2-ball property in E,
- (ii) M has the $1\frac{1}{2}$ -ball property and the unique extension property in E,
- (iii) M has the 2-ball property in E.

PROOF. (i) \Rightarrow (ii). Obviously the weak 2-ball property implies the $1\frac{1}{2}$ -ball property. Fix $f \in M^*$ with ||f|| = 1. To show that M has the unique extension property, we must prove that, for all $a \in E$,

$$\sup \{ \operatorname{re} f(x) - \|a - x\| : x \in M \} \ge \inf \{ \operatorname{re} f(x) + \|a - x\| : x \in M \}.$$

We may assume that ||a|| = 1. Now fix $\varepsilon > 0$, and choose $x \in M$ with ||x|| = 1, $f(x) > 1 - \varepsilon$. Then $a \in B(a + x, 1) \cap B(a - x, 1)$ and $\pm x \in M \cap B(a \pm x, 1)$. Hence we can find $y \in M \cap B(a + x, 1 + \varepsilon) \cap B(a - x, 1 + \varepsilon)$. Then y + x, $y - x \in M$ and

$$\begin{aligned} \{ \operatorname{re} f(y+x) - \|a - (y+x)\| \} - \{ \operatorname{re} f(y-x) + \|a - (y-x)\| \} \\ &= 2f(x) - \|a - x - y\| - \|a + x - y\| \\ &> 2(1-\varepsilon) - 2(1+\varepsilon) \ . \end{aligned}$$

This establishes the inequality.

(ii) \Rightarrow (iii). Suppose $M \cap B(a_i, r_i) \neq \emptyset$ for i = 1, 2 but that $M \cap B(a_1, r_1) \cap B(a_2, r_2) = \emptyset$. We must show that $B(a_1, r_1) \cap B(a_2, r_2)$ has no interior points. Suppose that $B(y, \delta) \subset B(a_1, r_1) \cap B(a_2, r_2)$. We will show that $\delta < \varepsilon$, for any given $\varepsilon > 0$.

Let A be the closure of A_1-A_2 , where $A_i=M\cap B(a_i,r_i)$. Now A_1 and A_2 are closed, bounded, convex subsets of M, and $0\notin A_1-A_2$. It follows from [6, Corollary 22.5] that 0 is not an interior point of A. Thus we can find $x_0\in M$ with $\|x_0\|\leq \varepsilon$ and $x_0\notin A$. The Hahn-Banach theorem then gives us $f\in M^*$ with $\|f\|=1$ and re f(x)<re $f(x_0)$ for all $x\in A$. Putting c=sup re $f(A_1)$, we have re $f(x)\leq c$ for all $x\in A_1$ and re $f(x)\geq c-\varepsilon$ for all $x\in A_2$. Since M has the $1\frac{1}{2}$ -ball property, f has norm preserving extensions $f_1, f_2\in E^*$ with re $f_1(x)\leq c$ for all $x\in B(a_1,r_1)$ and re $f_2(x)\geq c-\varepsilon$ for all $x\in B(a_2,r_2)$. The unique extension property forces $f_1=f_2$. Now

$$\sup \{ \operatorname{re} f_1(x_1 - x_2) : x_1, x_2 \in B(y, \delta) \} = 2\delta.$$

However $x_i \in B(y, \delta) \Rightarrow x_i \in B(a_i, r_i) \Rightarrow \text{re } f_1(x_1 - x_2) \leq \varepsilon$. Thus $2\delta \leq \varepsilon$.

(iii) \Rightarrow (i). This is trivial.

In [11] we showed that, for certain Banach spaces E, $c_0(E)$ is a subspace of $l_{\infty}(E)$ which has the *n*-ball property for every *n*, but not the strong 2-ball property. It is an easy exercise to show that $c_0(E)$ does have the strong $1\frac{1}{2}$ -ball property in $l_{\infty}(E)$. Thus, despite Theorem 4, a subspace with the strong $1\frac{1}{2}$ -ball property and the unique extension property need not have the strong 2-ball property.

Let us say M is a semi-L-summand in E if M is proximinal, and ||x-y|| = ||x|| + ||y||, whenever $x \in M$ and $y \in M^{\perp}$. This is equivalent to the definition made by Lima [7, section 5].

THEOREM 5. The following are equivalent.

- (i) M is a semi-L-summand in E,
- (ii) M is Chebyshev, and has the strong $1\frac{1}{2}$ -ball property in E,
- (iii) M is unicital, and has the $1\frac{1}{2}$ -ball property in E.

PROOF. (i) \Rightarrow (ii). Suppose $M \cap B(a,r) \neq \emptyset$ and $||a|| \leq r+1$. If $x \in P(a)$, then

106 DAVID YOST

 $||a-x|| = d(a, M) \le r$ and, since $a-x \in M^{\perp}$, $||x|| = ||a|| - ||a-x|| \le 1 + (r-||x-a||)$. Choose $\lambda \in [0, 1]$, so that $\lambda ||x|| \le 1$ and $(1-\lambda)||x|| \le r - ||x-a||$. Then

$$||a - \lambda x|| = ||x - \lambda x|| + ||x - a|| \le r$$
,

so $\lambda x \in M \cap B(0,1) \cap B(a,r)$. To show M is Chebyshev, suppose $a \in E$, $x, y \in P(a)$. Then $x - y \in M$ and $a - y \in M^{\perp}$, so

$$d(a, M) = ||x-a|| = ||x-y|| + ||a-y|| = ||x-y|| + d(a, M).$$

Thus x = y.

- (ii) \Rightarrow (iii). This is trivial.
- (iii) \Rightarrow (i). By Theorem 3, M is proximinal. Now let $x \in M$, $y \in M^{\perp}$ and fix $\varepsilon > 0$. Since M is Chebyshev, $M \cap B(y, ||y||) = \{0\}$. Since M has the $1\frac{1}{2}$ -ball property,

$$M \cap B(x, ||x-y|| - ||y|| + \varepsilon) \cap B(y, ||y||) \neq \emptyset$$
.

Thus $0 \in B(x, ||x-y|| - ||y|| + \varepsilon)$, and so $||x|| \le ||x-y|| - ||y|| + \varepsilon$. Letting $\varepsilon \to 0$ finishes the proof.

We can now give easy proofs of the duality results concerning the 2-ball property.

THEOREM 6. [7, Theorem 6.10]. M has the 2-ball property in E iff M° is a semi-L-summand in E^* .

PROOF.

M has the 2-ball property in E,

- \Leftrightarrow M has the $1\frac{1}{2}$ -ball property and the unique extension property,
- $\Leftrightarrow M^{\circ}$ has the $1\frac{1}{2}$ -ball property, and is Chebyshev in E^* ,
- $\Leftrightarrow M^{\circ}$ is a semi-L-summand in E^* .

When M° is a semi-L-summand in E^* , M is said to be a semi-M-ideal in E [7, section 6].

THEOREM 7. [7, Theorem 6.14]. M is a semi-L-summand in E iff M° has the 2-ball property in E^* .

PROOF. (=). Combine Theorems 4, 3, and 5.

(⇒). Suppose $M^{\circ} \cap B(f_i, r_i) \neq \emptyset$ for i = 1, 2 and $||f_1 - f_2|| \leq r_1 + r_2$. It follows that, for any $a_1, a_2 \in E$,

$$a_1, a_2 \in M \Rightarrow |f_1(a_1) + f_2(a_2)| \le r_1 ||a_1|| + r_2 ||a_2||$$

and

$$a_1 + a_2 = 0 \Rightarrow |f_1(a_1) + f_2(a_2)| \le r_1 ||a_1|| + r_2 ||a_2||$$
.

Now suppose $a_1+a_2 \in M$. We may write $a_i=b_i+c_i$, where $b_i \in M$ and $c_i \in M^{\perp}$. Then $b_1+c_1=(a_1+a_2-b_2)-c_2$ and $a_1+a_2-b_2 \in M$. Since M is Chebyshev in E, this forces $c_1=-c_2$. Hence

$$|f_1(a_1) + f_2(a_2)| \le |f_1(b_1) + f_2(b_2)| + |f_1(c_1) + f_2(c_2)|$$

$$\le r_1 ||b_1|| + r_2 ||b_2|| + r_1 ||c_1|| + r_2 ||c_2||$$

$$= r_1 ||a_1|| + r_2 ||a_2||.$$

By Lemma 1(ii), $M^{\circ} \cap B(f_1, r_1) \cap B(f_2, r_2) \neq \emptyset$.

This result gives us a weak converse to [8, Theorem 1.3]. If M is a unicital subspace of E, with the $1\frac{1}{2}$ -ball property, then M° has the unique extension property in E^* .

We need two elementary results before presenting the duality results for the 3-ball property.

LEMMA 8. [2, Proposition 2.19]. For $n \in \mathbb{N}$, the weak (n+1)-ball property implies the n-ball property.

LEMMA 9. Necessary and sufficient conditions for M to be an L-summand in E are that M has the $1\frac{1}{2}$ -ball property, with M^{\perp} convex.

PROOF. If M has the $1\frac{1}{2}$ -ball property, it is proximinal. If M^{\perp} is a subspace, we may write $E = M \oplus M^{\perp}$. This implies that M is Chebyshev, with linear metric projection. By Theorem 5, M is a semi-L-summand in E. Thus the metric projection is an L-projection.

The converse is easy.

THEOREM 10. [7, Theorem 6.16]. The following are equivalent.

- (i) M is an L-summand in E.
- (ii) M° has the (strong) n-ball property, for all n.
- (iii) M° has the (strong) 3-ball property in E*.

PROOF. (i) \Rightarrow (ii). M° will be an M-summand in E^* .

- (ii) ⇒ (iii). This is trivial.
- (iii) \Rightarrow (i). By Theorem 3, M has the $1\frac{1}{2}$ -ball property in E. Thus it suffices to show that M^{\perp} is convex.

So let $x_1, x_2 \in M^{\perp}$. Since M is proximinal, we may write $x_1 + x_2 = y - x_3$, where $y \in M$, $x_3 \in M^{\perp}$. Now the Hahn-Banach theorem gives us $f_i \in M^{\circ}$ and $g \in E^*$ with

$$||f_i|| = ||g|| = 1$$
, $f_i(x_i) = d(x_i, M) = ||x_i||$, and $g(y) = ||y||$.

Note that

$$g \in \bigcap_{i=1}^{3} B(g+f_i,1)$$
 and $f_i \in M^{\circ} \cap B(g+f_i,1)$.

Hence we can find

$$h \in M^{\circ} \cap \bigcap_{i=1}^{3} B(g+f_{i},1)$$
.

Then

$$||y|| = g(y) = (g-h)(y)$$

$$= (g-h)\left(\sum_{i=1}^{3} x_i\right)$$

$$= \sum_{i=1}^{3} (g+f_i-h)(x_i) - \sum_{i=1}^{3} ||x_i|| \le 0,$$

so y=0. Thus $x_1+x_2=-x_3\in M^{\perp}$, so M^{\perp} is convex.

Defining L-ideals in a manner analogous to the definition of M-ideals does not introduce a new concept. For, if M° is an M-summand in E^* , then by Theorem 10, M is an L-summand in E. This was first proved by Cunningham, Effros, and Roy [4], who showed that every M-summand in a dual space is weak* closed.

The final, and most useful, theorem of this paper was first proved by Alfsen and Effros [1, Theorems 5.8 and 5.9] for real Banach spaces. Lima [7, Theorem 6.9] gave a simpler proof, valid for either scalar field, but he only worked with the weak *n*-ball property. Behrends [2, chapter 2] has given another account, including the useful Lemma 8.

THEOREM 11. The following are equivalent.

- (i) M is an M-ideal in E.
- (ii) M has the n-ball property, for every n.
- (iii) M has the weak 3-ball property in E.

PROOF. (i) \Rightarrow (ii). If M° is an L-summand in E^* , then $M^{\circ \circ}$ will be an M-

summand in E^{**} . Hence $M^{\circ\circ}$ has the strong *n*-ball property in E^{**} , so M has the weak *n*-ball property in E. Since this is true for every n, Lemma 8 ensures that M has the n-ball property.

- (ii) \Rightarrow (iii). This is trivial.
- (iii) \Rightarrow (i). This follows, mutatis mutandis, from the corresponding part of the proof of Theorem 10.

At last, we see that the weak *n*-ball property is equivalent to the *n*-ball property, for $n \ge 3$. Several authors [3, 5] have shown, under suitable hypotheses, that *M*-ideals have an intersection property for an infinite number of balls.

It is worth noting that the $1\frac{1}{2}$ -ball property does not imply the 2-ball property. Any non-trivial L-summand is a suitable counter-example; further examples may be found in [10]. Alfsen and Effros [1, Theorem 5.9] showed that the 2-ball property does not imply the 3-ball property.

Finally, we show that the strong *n*-ball property is strictly stronger than the *n*-ball property, for all $n \in \mathbb{N} \cup \{1\frac{1}{2}\}$.

LEMMA 12. Suppose M has the strong $1\frac{1}{2}$ -ball property in E, and that x is an extreme point of E_1 . Then $x \in M \cup M^{\perp}$.

PROOF. If $\delta = d(x, M)$, then the strong $1\frac{1}{2}$ -ball property ensures that

$$M\,\cap\, B(0,1-\delta)\,\cap\, B(x,\delta)\,\neq\,\emptyset\ .$$

However $B(0, 1 - \delta) \cap B(x, \delta) = \{(1 - \delta)x\}$, so $(1 - \delta)x \in M$. Thus either $x \in M$ or $\delta = 1$.

EXAMPLE 13. There is an M-ideal which does not have the strong $1\frac{1}{2}$ -ball property.

PROOF. Let E be the disc algebra (i.e. the sup normed space of functions continuous on Δ , the closed unit disc in C, and analytic on the interior of Δ). Let $M = \{x \in E : x(1) = 0\}$. According to [7, Theorem 7.6], M is an M-ideal in E. Given δ with $0 < \delta < 1$, let x be a conformal mapping of Δ onto $\{z \in \Delta : re z \ge \delta\}$, with $x(1) = \delta$. Then the unit circle T contains an arc J such that $x(J) \subset T$. It follows from [9, Theorem 11.22] that x is an extreme point of E_1 . However $d(x, M) = |x(1)| = \delta$, so $x \notin M \cup M^{\perp}$.

REFERENCES

- E. M. Alfsen and E. G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972), 98– 128.
- E. Behrends, M-structure and the Banach-Stone theorem (Lecture Notes in Mathematics 736), Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- 3. C. K. Chui, P. W. Smith, R. R. Smith, and J. D. Ward, L-ideals and numerical range preservation, Illinois J. Math. 21 (1977), 365-373.
- 4. F. Cunningham, E. G. Effros and N. M. Roy, M-structure in dual Banach spaces, Israel J. Math. 14 (1973), 304-308.
- 5. R. Holmes, B. Scranton, and J. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259-269.
- 6. G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London, 1974.
- 7. Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
- 8. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
- 9. W. Rudin, Real and complex analysis, McGraw-Hill Book Company, New York, 1966.
- D. T. Yost, Best approximation and intersections of balls in Banach spaces, Bull. Austral. Math. Soc. 20 (1979), 285-300.
- 11. D. Yost, M-ideals, the strong 2-ball property and some renorming theorems, Proc. Amer. Math. Soc. 81 (1981), 299-303.

PURE MATHEMATICS DEPARTMENT LA TROBE UNIVERSITY BUNDOORA, VICTORIA 3083 AUSTRALIA