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THE n-BALL PROPERTIES IN
REAL AND COMPLEX BANACH SPACES

DAVID YOST

Subspaces of Banach spaces which possess the n-ball property, for some
n e N, have been the subject of considerable attention. Unfortunately, the
literature contains a plethora of definitions of the n-ball property. Here we
attempt to clarify the relationships that exist between all these properties. Let
us begin with the relevant definitions.

Throughout, M will be a closed subspace of a Banach space E. Fix n € N.
We will say that M has the n-ball property in E, if, given n closed balls B(a;, r;)
such that MNB(a,r)+ @, for all i<n, and N?_, B(a,r;) has non-empty
interior, then M NN7_, B(a,,r})+ &. If the conditions M N B(a;, r;) + ¢ for each
i, and N?_, B(a;,r)+ & imply that M NN?_, B(a,,r;+¢)+ & for all ¢>0, then
we say that M has the weak n-ball property in E. It is straightforward to show
that the n-ball property implies the weak n-ball property, and that the weak n-
ball property is equivalent to the “n-ball property for open balls” considered in
[1] and [2]. If we may take £=0 in the definition of the weak n-ball property,
then M is said to have the strong n-ball property in E. Obviously the strong n-
ball property implies the n-ball property.

In [10] we declared M to have the 1i-ball property in E if the conditions
a,e M, MNB(a,,r))+& and la; —a,ll<ry+r, implied that
M N B(a,,r,) N B(a,ry)+ . Similarly we say that M has the weak 13-ball
property in E if the conditions a; € M, MN B(a,,r,))+ & and |a, —a,||=r,
+r, imply that M N B(a,,r, +¢&) N B(a,,r, +¢) % & for all e>0. If we can take ¢
=0 in the latter definition, M is said to have the strong 14-ball property in E.
After translating and scaling, we see that M has the 14-ball property in E iff
MNBO,1)NB(a,r)+ & whenever MNB(a,r)+ and |a| <r+1. Similar
remarks apply to the weak and strong 1i-ball properties.

We wish to know which of the trivial implications so far mentioned can be
reversed. One easy result is available to us now. Suppose M has the weak n-ball
property in E, for some n € NU {13}. If M is reflexive, or if E is a dual space
and M a weak* closed subspace, an easy compactness argument shows that
M actually has the strong n-ball property.
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If there is a projection P from E onto M satisfying {x|| = | Px| + ||x — Px]||
(respectively, || x| =max {|| Px|), || x — Px||}), then M is said to be an L-summand
(respectively, an M-summand) in E. It is routine to show that an M-summand
has the strong n-ball property, for all n € N U {14}. If M°, the polar of M, is an
L-summand in E*, then M is said to be an M-ideal in E. Every M-summand is
an M-ideal, but numerous examples show that the converse is false. However, a
reflexive M-ideal is easily shown to be an M-summand.

Alfsen and Effros [1, Theorems 5.8 and 5.9] showed that an M-ideal has the
n-ball property for every n and, conversely, that a subspace with the weak 3-
ball property is already an M-ideal. This paper is devoted to proving that, and
related duality results. Some of the results are not new. However, new proofs
should be of interest. The 13-ball property features prominently in our
arguments, which use the language of approximation theory rather than the
complementary cones considered by other authors [1, 2, 7]. We will also show
that the weak n-ball property is equivalent to the n-ball property, for all
ne NU{13}.

Lastly we show that the strong n-ball property is distinct from the n-ball
property, for every value of n. We do this with a single example, an M-ideal
which fails the strong 13-ball property. Throughout, the scalar field K may be
either R or C.

We now introduce the required results from elementary approximation
theory. Given a € E, let P(a)= Py (a) be the set of points in M which are as
close as possible to a. That is, P(a)={x € M: |x—a| =d(a, M)}. If P(a)
contains exactly (at least/at most) one element, for every a € E, then M is said
to be a Chebyshev (proximinal/unicital) subspace of E. (If M is Chebyshev in E,
then the closest point map P: E — M is called the metric projection.) We
define the metric complement of M by

M* = {x€eE: |x|=d(x,M)} = {xeE: 0e P(x)}.

We say that the subspace M has the unique extension property in E if every
f € M* has a unique norm preserving extension to an element of E*. Note that,
for any fe E*, we have g € Pye(f) iff f—g is a norm preserving extension of
S| M. This gives us the following result of Phelps [8, Theorem 1.1]: M has the
unique extension property in E iff M° is a Chebyshev subspace of E*. Dually, if
M?° has the unique extension property in E*, then M°® will be Chebyshev in
E** whence M is unicital in E. Phelps [8, p. 252] showed that the converse of
this is false. If E=c, and M is the one dimensional subspace spanned by the
sequence (1,1,4,...), then M is Chebyshev in E, but M° does not have the
unique extension property in E*.

The proof of the Hahn-Banach theorem gives us the following useful result.
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Let fe M* with || f| =1 and fix a € E. Then fhas a norm preserving extension
g € E*, with reg(a)=4 iff

sup{re f(x)—|Ix—al: xe M} £ A < inf {re f(x)+||x—al: xe M} .

Of course, at least one such A exists.
The following two results are essential for what follows.

LemMaA 1. [7, Theorems 1.1 and 1.2].
(i) Fixay,...a,e Eandr,,...r,>0. Then

MN fn] B(a,r;+¢€) £ & for all >0, iff
i=1

=< }n: rilfill  whenever z": fie M°.

i=1 i=1

iil fi(a)

(i) Fix fy,... f,e E¥and ry,...r,>0. Then

M0 A B + B i

n
< Y rlall  whenever Y a;e M.
i=1

i=1 i=

3 St

CoROLLARY 2. [7, Corollary 1.3]. Fix a,,...a,€ E and ry,...r,>0. Then

M N N B(ayri+¢e) = &  (in E) for all e>0,
i=1

M N N Ba,r) £ &  (in EX**).
i=1

It follows at once that M has the weak n-ball property in E, if M°° has the
(strong) n-ball property in E**.

Now we give some useful characterizations of the 14-ball property.

THEOREM 3. The following are equivalent:
(i) Suppose MNB(a,r)*+ &, fe€ M* and re f(x)=c for all x e MN B(a,r).
Then f has a norm preserving extension g € E* such that re g(x)2c for all
x € B(a,r).
(i) M has the 1i-ball property in E.
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(iii) M has the weak 1%-ball property in E.
(iv) M® has the (strong) 1i-ball property in E*.

Moreover, any subspace satisfying these conditions is proximinal.

ProOF. (i) = (ii). Suppose M N B(a,r)=* & but that M N B(0, 1) N B(a,r)= .
We will show that |a| =r+ 1. By the Hahn-Banach theorem, there is fe€ M*
with re f(x)=1 for all x e MN B(a,r) and re f(x)<1 for all x e M with |/x||
< 1. By hypothesis, fhas an extension g € E* with ||g|| <1 and re g(x)=1 for all
x € B(a,r). It follows that B(0,1)N B(a,r) has no interior points.

(i1) = (i). Assume without loss of generality that K=R and | f|=1. We
claim that f(x)=c+r—|x—al for all x e M. First suppose ||x—al| <r. Then

yeM, |yl =1 = x—(r—|x—al)y e M N B(a,r)
= f(x) 2 c+(r—llx—al)fQ).
Hence
Sx) 2 e+ (r=lx—allfll.
Now suppose |x—al| >r. Then, for all >0, the 14-ball property gives us
some y € M N B(a,r) N B(x, [|x—al —r+é).
Hence

fX) =fO+f(x=y) 2 c—lx=yl

c+r—|x—al—e¢.

1\%

Letting ¢ — 0 establishes the claim.
Now the Hahn-Banach theorem gives us a norm preserving extension
g € E* with g(a)=r+c. Then, for any x € B(a,r), g(x)=g(a)—||x—a| =c.

(ii) <> (iii). Obviously the 1i-ball property implies the weak 11-ball property.
Conversely, assume M has the weak 1i-ball property in E. Given a € E, r>0
with d(a, M)<1<|a| <r+1, we will show that M N B(0,r)N B(a, 1)+ . (If
lal =1, 0 e MNB(0,r)N B(a, 1).

Let e=3(r+1—|lal). Then ¢>0, MN B(a,1+1e)* & and |la|| <1+ (r—3e).
The weak 13-ball property then gives us some x, € M N B(0,r —2¢) N B(a, 1 +¢).
By induction, we will construct a sequence (x,)c= M satisfying

(1) 1Xe=Xas1ll S 277,
) Ix,—all < 1427%.

Given x, satisfying (2), the weak 1i-ball property gives us a suitable
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Xp41 € M N B(x,,32 "e+427") N B(a, 1 +42 7 "e+427").

Now (x,) is a Cauchy sequence, whose limit x € M satisfies || x — x,|| <2¢ and
Ix—all £1. Then | x|| < ||xoll +2¢, so x e MN B(0,r)N B(a, 1).

(iii) <> (iv). First suppose M° has the strong 11-ball property in E*. Given
MNB(a,r)+=J and |la| <r+1, we must show that M N B(0,1+¢) N B(a,r+¢)
+ @ for all ¢>0. By lemma 1 (i), we need only show that | f,(a)| < || £l + 7l f2],

whenever f,,f, € E*, fi+f, e M°. If |l =l/il, then |fr(@)|=(r+D)IL2]
SIAN+rlfoll as required. If || fi[| <l f;]l then, since

fitfr e M° 0 B(f, 141D,

the 1i-ball property gives us fe M°NB(O, || 5l = I/ )N B(f2 I fil). Now
MNB(a,n+J, so |f(a)=r| fl. Thus

2@ = |f@—(f—f)(a)
r(ll = 1A+ e+ DA
1A +rIL0

The converse follows from a similar argument, using Lemma 1 (ii).

Al

Finally, suppose M satisfies these conditions and choose a € E with d(a, M)
=1. The proof of (ii) < (iii) shows that MNB(a,1)+F. Thus M is
proximinal.

Next, we give a characterization of subspaces with the 2-ball property.

THEOREM 4. The following are equivalent:

(i) M has the weak 2-ball property in E,

(i) M has the 1i-ball property and the unique extension property in E,
(iii) M has the 2-ball property in E.

PROOF. (i) = (ii). Obviously the weak 2-ball property implies the 15-ball
property. Fix f e M* with || f| =1. To show that M has the unique extension
property, we must prove that, for all a € E,

sup{re f(x)—lla—x||: x e M} 2 inf {re f(x)+ la—x||: x € M} .

We may assume that |ja]j=1. Now fix £¢>0, and choose x € M with ||x| =1,
f(x)>1—¢. Then a € B(a+x,1)NB(a—x,1) and +x € MNB(a+x,1). Hence
we can find ye MNB(a+x,1+¢NB(a—x,1+¢). Then y+x, y—x € M and
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{re fO+x)=lla=—@+x)l} —{re fy—x)+lla— y—x)ll}
= 2f(x)—lla—x—yll—lla+x—y]|
> 2(1—¢)—2(1+¢).
This establishes the inequality.

(if) = (ii)). Suppose MNB(a,r)*xd for i=1,2 but that
M N B(a,,r;)N B(a,,r,)=. We must show that B(a,,r,)N B(a,,r,) has no
interior points. Suppose that B(y,d)< B(a,,r;) N B(a,,r,). We will show that ¢
<g, for any given ¢>0.

Let A be the closure of A, — A4,, where A,=M N B(a,,r;). Now A, and A4, are
closed, bounded, convex subsets of M, and 0 ¢ A, — A4,. It follows from [6,
Corollary 22.5] that O is not an interior point of A. Thus we can find x, € M
with ||x,|| ¢ and x, ¢ A. The Hahn-Banach theorem then gives us fe M*
with || f]l=1 and re f(x)<re f(x,) for all x € A. Putting c=supre f(A4,), we
have re f(x)<cfor all x € A, and re f(x)=c—¢for all x € 4,. Since M has the
14-ball property, f has norm preserving extensions f;, f, € E* with re f;(x)<c
for all x € B(a,,r;) and re f,(x)=c—¢ for all x € B(a,,r;). The unique
extension property forces f; =f,. Now

sup {re f,(x; —=X;) 1 x;,x; € B(y,8)} = 25.
However x; € B(y,d) = x; € B(a,,r;) = re fy(x; —x,)<e. Thus 26 <e.

(iii) = (i). This is trivial.

In [11] we showed that, for certain Banach spaces E, c,(E) is a subspace of
I (E) which has the n-ball property for every n, but not the strong 2-ball
property. It is an easy exercise to show that c,(E) does have the strong 14-ball
property in I (E). Thus, despite Theorem 4, a subspace with the strong 14-ball
property and the unique extension property need not have the strong 2-ball
property.

Let us say M is a semi-L-summand in E if M is proximinal, and |[x—y||
=||x| +|lyll, whenever x € M and y € M*. This is equivalent to the definition
made by Lima [7, section 5].

THEOREM 5. The following are equivalent.

(i) M is a semi-L-summand in E,

(i) M is Chebyshev, and has the strong 1%-ball property in E,
(iti) M is unicital, and has the 13-ball property in E.

PRrOOF. (i) = (ii). Suppose M N B(a,r)+ & and |al <r+1. If x € P(a), then
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la—x|=d(a,M)<r and, since a—xe M*, |x|=all-lla—x|s1+(r—|x
—al)). Choose 4 € [0,1], so that A|x||<1 and (1—A)|x||Sr—|x—al. Then

la—ix| = llx—4ix|+lx—all < r,

so ixe MNB(0,1)NB(a,r). To show M is Chebyshev, suppose a € E,
x,y € P(a). Then x—y € M and a—y € M, so

da,M) = |x—al = |x=yl+lla=yl = Ix—-yl+d(a,M).
Thus x=y.
(ii) = (iii). This is trivial.
(iii) = (i). By Theorem 3, M is proximinal. Now let x € M, y € M* and fix
¢>0. Since M is Chebyshev, MNB(y, |y|)={0}. Since M has the 1}-ball

property,
M N B(x,lx=yll =yl +¢& N B, llyl) + & .
Thus 0 € B(x, |x—y|l —llyll +¢), and so [ x| <|x—yl |yl +e. Letting ¢ > 0

finishes the proof.

We can now give easy proofs of the duality results concerning the 2-ball
property.

THEOREM 6. [7, Theorem 6.10]. M has the 2-ball property in E iff M° is a
semi-L-summand in E*.

PROOF.
M has the 2-ball property in E,
<> M has the 14-ball property and the unique extension property ,
<> M° has the 1i-ball property, and is Chebyshev in E* ,
<> M° is a semi-L-summand in E* .
When M° is a semi-L-summand in E*, M is said to be a semi-M-ideal in E
[7, section 6].
THEOREM 7. [7, Theorem 6.14]. M is a semi-L-summand in E iff M° has the 2-
ball property in E*.
PRrOOF. (<=). Combine Theorems 4, 3, and 5.

(=>). Suppose M° N B(f,r)+J for i=1,2 and | f; —f5|| Sry +r,. It follows
that, for any a,,qa, € E,
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ay,a; € M = |fi(a)+£(a))l £ rillag]l +r;lla,l
and

ay+a;, =0 = |fi(a))+£2(a,) < rilla;l+r;lla,l .
Now suppose a;+a, € M. We may write a;=b;+c; where b;e M and
c; € M*. Then b, +c¢,=(a,+a,—b,)—c, and a,+a,—b, € M. Since M is
Chebyshev in E, this forces ¢, = —c,. Hence

(@) +f@l < 1 (by) + Bl +1fi () +faleo)

S rylibyl 4+ rallball +rylleg | + 72l

rillayl +rllall .

By Lemma 1(ii), M° N B(f,,r,) N B(f5,r))+ .

This result gives us a weak converse to [8, Theorem 1.3]. If M is a unicital
subspace of E, with the 1i-ball property, then M° has the unique extension
property in E*.

We need two elementary results before presenting the duality results for
the 3-ball property.

Lemma 8. [2, Proposition 2.19]. For n € N, the weak (n+ 1)-ball property
implies the n-ball property.

LEMMA 9. Necessary and sufficient conditions for M to be an L-summand in E
are that M has the 15-ball property, with M* convex.

ProOF. If M has the 13-ball property, it is proximinal. If M* is a subspace,
we may write E=M@®M*. This implies that M is Chebyshev, with linear
metric projection. By Theorem 5, M is a semi-L-summand in E. Thus the
metric projection is an L-projection.

The converse is easy.

THeOREM 10. [7, Theorem 6.16]. The following are equivalent.

(i) M is an L-summand in E.
(ii) M° has the (strong) n-ball property, for all n.
(ili) M° has the (strong) 3-ball property in E*.

PRrROOF. (i) = (ii). M° will be an M-summand in E*.

(if) = (iii). This is trivial.

(iii) = (i). By Theorem 3, M has the 11-ball property in E. Thus it suffices to
show that M+ is convex.



108 DAVID YOST

So let x;,x, € M*. Since M is proximinal, we may write x; +x,=y— X3,
where y € M, x; € M*. Now the Hahn-Banach theorem gives us f; € M° and
g € E* with

1Al = lgh =1, fix) = d(x, M) = |Ix;l, and g(y) = |yl .
Note that
3
ge () B(g+f,1) and fie M° N B(g+f,1).
i=1

Hence we can find
3
heM° N N B(g+f,1).
i=1

Then

g0 = (g—h0O)
3
(g— h)(AZI xi)

3 3
= ¥ @+i-hx)= 3 Ixl £0,

Iyl

so y=0. Thus x; +x,= —x; € M*, so M* is convex.

Defining L-ideals in a manner analogous to the definition of M-ideals does
not introduce a new concept. For, if M” is an M-summand in E*, then by
Theorem 10, M is an L-summand in E. This was first proved by Cunningham,
Effros, and Roy [4], who showed that every M-summand in a dual space is
weak* closed.

The final, and most useful, theorem of this paper was first proved by Alfsen
and Effros [1, Theorems 5.8 and 5.9] for real Banach spaces. Lima [7, Theorem
6.9] gave a simpler proof, valid for either scalar field, but he only worked with
the weak n-ball property. Behrends [2, chapter 2] has given another account,
including the useful Lemma 8.

THEOREM 11. The following are equivalent.

(i) M is an M-ideal in E.
(ii) M has the n-ball property, for every n.
(i) M has the weak 3-ball property in E.

PRrOOF. (i) = (ii). If M° is an L-summand in E*, then M°° will be an M-
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summand in E**. Hence M°° has the strong n-ball property in E** so M has
the weak n-ball property in E. Since this is true for every n, Lemma 8 ensures
that M has the n-ball property.

(ii) = (iii). This is trivial.

(iii) = (i). This follows, mutatis mutandis, from the corresponding part of
the proof of Theorem 10.

At last, we see that the weak n-ball property is equivalent to the n-ball
property, for n=>3. Several authors [3, 5] have shown, under suitable
hypotheses, that M-ideals have an intersection property for an infinite number
of balls.

It is worth noting that the 1i-ball property does not imply the 2-ball
property. Any non-trivial L-summand is a suitable counter-example; further
examples may be found in [10]. Alfsen and Effros [1, Theorem 5.9] showed
that the 2-ball property does not imply the 3-ball property.

Finally, we show that the strong n-ball property is strictly stronger than the
n-ball property, for all n e NU {15}.

LEMMA 12. Suppose M has the strong 1i-ball property in E, and that x is an
extreme point of E;. Then x e MU M*.

PRrOOF. If §=d(x, M), then the strong 13-ball property ensures that
M N B0O,1-6) N B(x,d) £+ & .

However B(0,1—08)NB(x,8)={(1—-0)x}, so (1—3J)x € M. Thus either x e M
or 6=1.

ExAMPLE 13. There is an M-ideal which does not have the strong 1i-ball
property.

Proor. Let E be the disc algebra (i.e. the sup normed space of functions
continuous on 4, the closed unit disc in C, and analytic on the interior of A).
Let M={x € E: x(1)=0}. According to [7, Theorem 7.6], M is an M-ideal in
E. Given § with 0<d<1, let x be a conformal mapping of 4 onto {z € 4:
rez=4}, with x(1)=4. Then the unit circle T contains an arcJ such that
x(J)=T. It follows from [9, Theorem 11.22] that x is an extreme point of E,.
However d(x, M)=|x(1)|=4, so x ¢ MU M*,



110 DAVID YOST

REFERENCES

1. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces 1, Ann. of Math. 96 (1972), 98-
128.
2. E. Behrends, M-structure and the Banach-Stone theorem (Lecture Notes in Mathematics 736),
Springer-Verlag, Berlin - Heidelberg - New York, 1979.
3. C. K. Chui, P. W. Smith, R. R. Smith, and J. D. Ward, L-ideals and numerical range
preservation, Illinois J. Math. 21 (1977), 365-373.
4. F. Cunningham, E. G. Effros and N. M. Roy, M-structure in dual Banach spaces, Israel J. Math.
14 (1973), 304-308.
5. R. Holmes, B. Scranton, and J. Ward, Approximation from the space of compact operators and
other M-ideals, Duke Math. J. 42 (1975), 259-269.
6. G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London, 1974.
7. A. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math.
Soc. 227 (1977), 1-62.
8. R. R. Phelps, Uniqueness of Hahn—Banach extensions and unique best approximation, Trans.
Amer. Math. Soc. 95 (1960), 238-255.
9. W. Rudin, Real and complex analysis, McGraw-Hill Book Company, New York, 1966.
10. D. T. Yost, Best approximation and intersections of balls in Banach spaces, Bull. Austral. Math.
Soc. 20 (1979), 285-300.
11. D. Yost, M-ideals, the strong 2-ball property and some renorming theorems, Proc. Amer. Math.
Soc. 81 (1981), 299-303.

PURE MATHEMATICS DEPARTMENT
LA TROBE UNIVERSITY
BUNDOORA, VICTORIA 3083
AUSTRALIA



