THE STRUCTURE OF AN ALMOST ARTINIAN MODULE ## JAMES HEIN Let R be a commutative ring with identity. Call an R-module almost Artinian if every proper homomorphic image is Artinian. If A is an almost Artinian R-module that is not Artinian, then it must be the case that either (1) R is a Noetherian domain of dimension one (equivalently every almost but not Artinian R-module is faithful) or (2) R has a non-zero prime ideal P such that R/P is a Noetherian domain of dimension one (equivalently every almost but not Artinian R-module is not faithful). It is also the case that $Ann_R(A)$ is a prime ideal of R and R is isomorphic to a submodule of the quotient field of $R/Ann_R(A)$. Therefore to study the structure of R it is sufficient to assume that R is a Noetherian domain of dimension one. The structure of R when R is a Dedekind ring along with the above results appear in [1]. The purpose of this paper is to give the structure of A in the general case, where R is a Noetherian domain of dimension one. Matlis in [3] studied the theory of an Artinian divisible module over a local Cohen-Macaulay ring of dimension one, and we will use results from this theory. In what follows, let Q denote the quotient field of R, and for each maximal ideal M of R let $R(M^{\infty})$ denote the M-primary submodule of Q/R. That is, the set of elements in Q/R that are annihilated by some power of M. THEOREM. Let R be a Noetherian domain of dimension one and let A be an almost but not Artinian R-module. Then there is an ideal I of R, a non-zero element $y \in I$, and a finite set M_1, \ldots, M_n of maximal ideals of R such that $$A \cong I(1/y) + G_1 + \ldots + G_n$$ where each G_i is an R-submodule of Q containing R with the property that G_i/R is M_i -primary and there is a series of modules $$R = D_{i_0} \subset D_{i_1} \subset \ldots \subset D_{i_{m_i}} = G_i$$ such that each factor D_j/D_{j-1} is divisible and has no proper non-zero divisible submodules. Received January 14, 1981. PROOF. Since A is isomorphic to a submodule of Q, we can assume without loss of generality that $R \subseteq A \subseteq Q$. Since A/R is Artinian, there exist maximal ideals M_1, \ldots, M_n of R such that $A/R = P_1 \oplus \ldots \oplus P_n$, where each P_i is the M_i -primary part of A/R [2, Theorem 1]. It follows that each P_i is an Artinian module over the local, one dimensional, Noetherian domain R_{M_i} . Let G_i/R be the largest divisible R_{M_i} -submodule of P_i . Then $P_i/(G_i/R)$ has no non-zero divisible submodules, and must therefore be a finitely generated R_{M_i} -module [3, Theorem 5.1]. Hence there is a finitely generated R_{M_i} -submodule F_i/R of P_i such that $P_i = F_i/R + G_i/R$. Since G_i/R is an Artinian divisible R_{M_i} -module, it follows from [3, Theorem 5.5] that there is a composition series of divisible R_{M_i} -modules $$0 = D_{i_0}/R \subset D_{i_1}/R \subset \ldots \subset D_{i_m}/R = G_i/R$$ such that the factor modules (isomorphic to D_j/D_{j-1}) have no proper non-zero divisible submodules. Since the R_{M_i} -submodules and the R-submodules of $R(M_i^{\infty})$ are identical, it follows that F_i/R is a finitely generated R-module. Also each D_j/D_{j-1} is a divisible R-module with no proper non-zero divisible R-submodules. Let $F = F_1 + \ldots + F_n$. Since each F_i/R is finitely generated it follows that F is a finitely generated R-submodule of Q. Therefore there is an ideal I of R and a non-zero element $g \in I$ such that F = I(1/g). Since A is the sum of the F_i and the G_i , the proof is finished. REMARK. The series $R = D_{i_0} \subset D_{i_1} \subset \ldots \subset D_{i_m} = G_i$ in the theorem is unique in the following sense [3, Theorem 5.10]: Any other series from R to G_i has the same length, and there is a one to one correspondence between the sets of factors such that the corresponding factors are homomorphic images of each other. R is said to be analytically irreducible if for each maximal ideal M, the completion of R in the M-adic topology is an integral domain. This is equivalent to the property that every proper R_M -submodule of Q/R_M is finitely generated [3, Theorem 7.1]. A Dedekind ring is analytically irreducible. The structure of an almost but not Artinian module is much simpler for this class of rings. COROLLARY. Let R be an analytically irreducible Noetherian domain of dimension one and let A be an almost but not Artinian R-module. Then there is an ideal I of R, a non-zero element $y \in I$, and a finite set M_1, \ldots, M_k of maximal ideals such that $$A \cong I(1/y) + G(M_1) + \ldots + G(M_k)$$ where $G(M) = \{x \in Q \mid M^r x \subseteq R \text{ for some } r \ge 0\}.$ 208 JAMES HEIN PROOF. As in the proof of the theorem we can assume that $R \subseteq A \subseteq Q$. Let M_1, \ldots, M_n be the maximal ideals of R such that $A/R = P_1 \oplus \ldots \oplus P_n$, where each P_i is M_i -primary. Since $P_i \subseteq R(M_i^{\infty})$ and $R(M_i^{\infty}) \cong Q/R_{M_i}$, it follows that either P_i is finitely generated or $P_i = R(M_i^{\infty}) = G(M_i)/R$. After some renumbering of the indices the result follows. ## REFERENCES - 1. J. Hein, Almost Artinian modules, Math. Scand. 45 (1979), 198-204. - 2. E. Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960), 495-508. - 3. E. Matlis, 1-dimensional Cohen-Macaulay rings (Lecture Notes in Mathematics 327), Springer-Verlag, Berlin Heidelberg New York, 1973. DEPARTMENT OF MATHEMATICS PORTLAND STATE UNIVERSITY PORTLAND, OREGON 97207 U.S.A.