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ON THE DOUBLE POINCARE SERIES
OF THE ENVELOPING ALGEBRAS OF
CERTAIN GRADED LIE ALGEBRAS

CALLE JACOBSSON

0. Introduction.

Let N be a graded connected algebra over a field k. It is well known that a
basis for the graded vector space TorY (k, k) is in a one-to-one correspondence
with a minimal system of generators for N. A basis for TorY (k, k) corresponds
to a minimal system of relations for N, Tor} (k,k) corresponds to a minimal
system of relations between the relations of N, and so on. If V=@ V; is a
graded vector space, then its Hilbert series is V(z)=Y.F|Viz', where ||
=dim, ().

The Hilbert series of all the Tor,’,\’ (k,k), n=0,1,2,... define the double
Poincaré series of N:

oc

Py(x,z) = Y x"Torl (k,k)(z) = Y [Torl; (k,k)x"z" .

n=0 niz0

The Hilbert series of N is also related to the double Poincaré series by the
formula

Py(~1,2) = (N(2)~".

The double Poincaré series thus gives us much information about the graded
algebra N. (cf. Roos [12])

Lofwall and Roos [8], [9] have given a method, using extensions of Lie
algebras, how to, from a given algebra, construct a new finitely presented Hopf
algebra with “much worse” properties. The new algebra e.g. have a
transcendental Hilbert series (cf. Anick [3]). In this paper we will study the
double Poincaré series of the algebras in the Lofwall-Roos construction, and
also give an example of a finitely presented Hopf algebra A where TorZ (k, k)(z)
is a transcendental function for each n=3, thereby answering a question of
Lemaire [5] in the negative.

One of the main reasons for studying the series TorZ (k,k)(z) is that they

Received April 23, 1981.



46 CALLE JACOBSSON

occur e.g. in the study of the homology algebra of loop spaces of finite, simply-
connected CW-complexes of dimension =4 ([S], [6], [11]). These series also
occur e.g. in the study of the Yoneda Ext-algebra Ext} (k, k), where (R, m, k) is a
local ring with m®*=0 [11].

Details about these applications are given in Section 1.3 below. The proof of
the main theorem in Section 1 is given in Section 2, using two technical
lemmas, which are proved in Section 3. In Section 4 we use an analytic
property of the series TorZ (k, k)(z) to answer a question of Lemaire. Finally, in
Section S we mention some open problems.

We wish to thank Jan-Erik Roos and Clas Lofwall for their encouragement,
helpful discussions and good ideas.

1. The main theorem.

1.1 THe LoFwaLL-Roos consTRUCTION. From a given algebra N, we
construct a new finitely presented Hopf algebra Ug with transcendental
Hilbert series (cf. Anick [3]).

We analyse the double Poincaré series of this Ug, and give a complete result
in the case, where gldim N £2. As an example we will take Lofwall-Roos’
prime example of an algebra with transcendental Hilbert series. Its double
series will be computed in Section 1.2

It should be noted that Anick [1], [2] was the first to construct finitely
presented Hopf algebras with transcendental Hilbert series, using completely
different methods but with very similar results. The Lofwall-Roos construction
is, however, more suitable for the study of the double Poincaré series. The
construction is as follows (for more details, see [8] and [9]):

Take a graded associative algebra N= @), N; with relations of degree <n
for some n, where N* = @iz1 N, is generated by N,.

Put f=FxF'=F(V® W)x F(V'®ka), where F(-) is the “free graded Lie
algebra”, V=V'=N,

W={x,| xeN,} degx, =1,

and a is a symbol of degree 1. We consider N* as an abelian Lie algebra, and
as an f~-module by:

WoN* = aoN* =0, von = vn, and
von = —(—1)8"y, neN*, veV,veV.
The class [§] € H?>(f,N*), is defined by:

g(x,,a) = x for x e N, and § = O for other elements of degree 1 .
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This determines an extension of graded Lie algebras
0Nt >5g—-fo0

such that g is finitely presented, with generators of degree 1 and relations of
degree =n. The Hilbert series of Ug is the product of the Hilbert series of Uf
and that of UN*, so we have

PUg(_l’z) = PU!(—I,Z)'PUN+(~1,Z) .
The entire double series of Ug would also be the product
Pyg(x,z) = Pydx,2)-Pyn+(x,2),

if the extension were the trivial one. This would not, however, give a finitely
presented Ug, so with the Lofwall-Roos extension we get a more complicated
result.

THEOREM: Assume in the above construction that N= @& N; is a Hopf
algebra over a field k of characteristic 0. Then we have
Pyg(x,2) = x*- Pyd—1,2) Pyy+(x,2)+ (1 + x)(1 —x2) "Ml 4
+ (N4 +IN 2Dz = ) (x +x7)(N (2)) "' Pyn+(x,2) + xPy(x,2) = x(N(2)) ']
+(x+x%) Y x"(X,®nk)(2),

nz0

where

(1+x221')|sz|
PUN+(x’Z) = jl;ll (l_x22}"1)|Nzi—||

Pyd—1,2) = (1= (IN,|+IN2Dz)(1 - (N, +1)2)
X, = ker[N,®,EN* > EN*],
E,N* is the n-th graded exterior product of N*, and
Y x"(X,@nk)(2) = Tory (kk)(2): (N(2) ™! (Pun+(x,2)+x—1)+|N,|z

nz0

if gldim N £2.
The theorem thus gives a complete series only when we have gldim N <2.

1.2. AppLicaTiONs. If we put N=k{T) in the above construction, we get the
Lofwall-Roos example of a finitely presented Hopf algebra with transcenden-
tal Hilbert series. Since gldim N =1 in this case, we can apply the theorem
(N(z)=(1-2)"" and |N,|=1). We have:
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1+
Pyy(x.2) = x*(1=221 [] —xzzj——1+(1+x)(1——xz) *
je1 1—xz

14
+x+x)Bz—1)(1-2) [] T;CzilTﬁu(erxznz
jz1
The Hilbert series is
1+221 1

izt 1=z

Ug(z) = (Pyy(—1,2)7" = (1-22)72
The main theorem gives, in particular, the series for Tory® (k, k).

COROLLARY 1: Ifin the Lofwall-Roos construction, N is a Hopf algebra over a
field k of characteristic 0, we have:

Tor¥® (k,k)(2) = Pyd—1,2)(N(2)— 1) +5(N, P +INDEG(IN,|+2)z+1)22 +
+ (N4 +IN,|+ D)z—= 1[N (2) = N(=z*)(N(z)) ' +2 Tory (k,k)(z)] +
+Tor (k, k)(2)+ (X, ®nk)(2) ,
where
(X, @nk)(2)
= Tor (k, k)(2)3(N(2) = N(=2*)(N(2) "' +2 Tor} (k, k)(z) = 2IN,2)
if gldim N<2.

This gives many examples of infinite-dimensional Tor¥® (k,k), but since
gldim N £2 implies that N(z) is rational, all completely computed series are
rational. If, however, we could compute (X,®yk)(z) for N=the Ug of
Lofwall-Roos above, this would very likely give a transcendent Tor¥® (k, k)(z).
In Section 4 we will take an algebra N which is not a Hopf algebra, with
relations in degree 2, and show that the corresponding Hopf algebra Ug has
transcendent TorUs (k, k)(z) for n23, without actually computing the series.

1.3. APPLICATIONS TO THE HOMOLOGY OF LOOP SPACES AND OF LOCAL RINGS. Let Y
be a finite, simply-connected CW-complex with dim Y<4, QY the loop space
on Y and H, (Y, Q) the homology algebra of QY. It is known that Y (at least
over Q) can essentially be obtained as the mapping cone of a map

V S35 V §*

between finite wedges of spheres. It is also known that the algebra image of the
natural map
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H,(Q8%,Q) — H,(QY,Q)

is a finitely presented Hopf algebra A with generators in degree 1 and relations
in degree 2, and that all such A—s (over Q) occur in this way ([11]).
Furthermore, under weak conditions ([5], [6]) we have

(%) Tor{}?*9(Q,Q) = Tor{, (QQ®Tors, ,_, (QQ).

It follows, in particular (i=1), that a minimal set of generators for the
algebra H,(QY,Q) is formed by the generators (of degree 1) for A, and some
“strange” generators corresponding to a basis for Tor{ (Q, Q). These “strange”
generators can occur in a very irregular manner, since we in Section 4 will
show that all the series Tor{! (k, k)(z) for i=3 can be transcendental for some A
—s. This also shows that the relations (and higher relations) between the
generators can occur in a “transcendental” way.

Let (R, m,k) be a local commutative, noetherian ring with m>=0. Consider
the Yoneda Ext-algebra Ext} (k,k), and let A be the subalgebra generated by
Extk (k,k). Then A is a finitely presented Hopf algebra, with generators in
degree 1 and relations in degret 2, and all such A —s occur in this way. The
following formula, very similar to (%) above, is proved in [11], assuming R
equicharacteristic.

(x) TorEX k&K (k k)y* = Torl (k,k)* ® Torf, , (k, k)**!

(A is considered here to be upper graded).

It follows in the same way as above that Ext} (k, k) besides generators of
degree 1, needs some “strange” generators, and that these can occur in a
transcendental way. The Hopf algebra Ug of Section 4 corresponds (cf. Roos
[11]) to a local ring (R,m,k) with embedding dimension |m/m? =27, having
168 relations of degree 2. There ought to exist smaller examples.

2. Proof of the main theorem.

2.1. THE HOCHSCHILD-SERRE SPECTRAL SEQUENCE. We analyse TorU® (k, k) by
means of the Hochschild-Serre spectral sequence ([4], [8], [9]) in the graded
case, We have

E%, = TorY (k, TortUN" (k,k)) == Torl%, (k,k).
As N* is considered as an abelian Lie algebra, it is easy to see that
TorYN' (k, k)= E,N*, the g-th graded exterior product of N*, where E;N * =k.

Since gldim Uf=2, we have E. =0 for p+0,1,2, d; ,=0 for p+2 and
also EQ, =E3 .

The mapping

Math. Scand. 51 — 4
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d3,: Tor¥! (k,E,N*) > Tord! (k,E,. N*)
is given by
(alaa2)®uf<x1" . '3xq> = <g(a19 a2)9x19' . "xq> >

where [§] € H2(f,N*), as above determines the extension. It is easily shown
([9]), that

Imd} , = Ej ,,,—{all elements of degree q+1}
and so
ES .+, = {all elements of degree q+1}
= {{Xy,. . s Xg41) I x; € N, for all j} .
Thus we can see that

Y x"ES,(2) = (1—xz)~ Ml

nz0

This shows, in particular, that we always have gldim Ug=o00 if N* +0.
We know that

Torl® (k, k) = ES,®EY,. ®EY,, for n22,
and that
0> EX, ;> E3, 4> E, > EF, >0

is an exact sequence for n=2. Since E®,_, =E? ,_, this gives us;
1,n—1 1,n—1

(2+) Tor,® (k,k)(z) = Eg,(2)+Ef ,-1 () + E3,,-5(2)~
—E§ -1 (+EE,-1(2)
for n=2. It thus remains to compute the series Ef,, 42
2.2. THe TERMs E2  OF THE SPECTRAL SEQUENCE. We can analyse E2

=Torgf (k,E,NT) by means of the “small”—only four terms-—spectral
sequence associated to the trivial extension of graded Lie algebras;

0>F->f->F -0 (f=FxF)

We have
E},_, = Tor{F (k,Tor§¥ (k,E,_,N*))
E},_, = Tor§¥ (k,TorF (k,E,_,N*))@® Tor!F (k, Tor{¥ (k,E,_,N*))
E%,_, = TorUF (k, Tor{F (k,E,_,N*)).
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We want to compute E3 ,_,(z)+E?,_,(z)—E3,_,(2). It is useful to compute
E} ,-1(2) together with the second term of E? ,_,(z). Since V, or V’, acts on
E,N* as N, from the left, or right, respectively, it is convenient to have the
following notation;

X, = ker (N,®E,N* — E,N*).

(All tensor products are over k, except when especially stated.) As N is a Hopf
algebra, the series will not be affected by putting N, to the right, instead of to
the left. We will allow this ambiguity, but by X, ® y k it will be understood that
this X, has N, to the left, and vice versa. Since ka operates trivally on N*, we
have:

}
b

Tor{¥ (k,E,N*) = coker (V' @®ka)® E]N* — E,N*)

coker (E(NT®N, —» E,N*)
= E,,N+®Nk.

And similarly
Tor{¥ (k, E,N*) = ker (V' @ka)® E,N* — E,N*) = E.N* ®@ka® X, _, .

So E2,_,=Tor{¥ (k,E,_,N* ®yk), the second term of E} ,_, is equal to
TorYF (k,E,_ ,N* ®y k), and since we want to compute the difference between
the series, we can instead compute the difference;

(VOW)® (E,- N* ®yk)(2)—(E,_,N* @y h)2)
= (N[ +IN)z—1)(E,- \N* @nk)(2) -
As W operates trivially on N7, the fist term of E} ,_, is;
Tor{F (k, (E,_,N* ®@ka®X,_,)) = k®N(E,_,N*" @ka® X, _,)
= (kQNE, (N )@ka®k®y X,
Finally we compute the term E3 ,_,;

2
E2,n—2

]

Tor{F (k, (E,_,N*®ka® X,_,))

ker (V@W)®E,_;N* - E, ;,N")®ka®
Dker (VOW)® X, -, — X,_))

(WR®E, ;N"®X, ) Qka®dWRX,_,®
@ker (N\®X,_,— X,_,).

I

I

The series of X,_, can be computed from the exact sequence:
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0-> X, ,>N®E,_,N">E,_ ,N*" > k®@yE,_,N* >0
and we get
X,-2(2) = (INjJz=1)(E,.N")(2)+ (k®NE,-,N")(2) .
Similarly, we use the exact sequence;
0— ker(Ny®X,_, > X, ) > N®X,_, > X, , > k®@nX,_, >0

to get

ker (N;®@X,_» = X, _5)(2) = (IN\Jz— DX, _»(2)+ (k®n X,-2)(2) .
Summing up, the series for the term E3 ,_, is;

E3n-2(2) = (1= (IN{|+IN2D2)(1 = (IN,| + D2)(E, N *)(2) +

+ (N4 +INo |+ Dz =)k QN E,.N "))+ (k®@n X,-,)(2) -

Since UN* is the enveloping algebra of the abelian Lie algebra N*, we have

1 2j)IN3,l
Pyn+(x,z) = ¥ x"(E'N*)@) = [] (1+x27)

e (T—xzf T
The proof of the main theorem is completed by the two lemmas;

LEMMA 1: The double series of k@ E N* is given by;
Y X"k@NENT)2) = (N(@) ' Pyn+(x,2)+ (1 +x) 7" (Py(x,2) = (N(2)) ),

nz0

where Py(x,z) is the double Poincaré series of N.

LEMMA 2: For n=0,1, we have
(k®n X,)(z) = Tory,; (k,k)(z),
and if gldim N £2, the double series of k®@y X, is given by:

2 X"(k®y X)) = (N@) ! Tory (k,k)(2): (Pun+(x,2)+x—1)+|Ny|z .

nz0

3. Proofs of the two lemmas.

3.1. COMPUTATION OF THE SERIES OF E,N* ® y k. We use a lemma shown to us
by Roos;

LEMMA 3: When N is a Hopf algebra, the n-th graded exterior product E,N is
free as a right or left N-module, for its natural N-module structure.
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Here we observe that the lemma treats the exterior product of N=k@N™.
Assuming N to have generators of degree 1, the (left) N-module structure is
given by the action of N;:

Tiodxy,. ., X = (TiXy, Xg,0 0 X0 + (— 1)¥BX1 xy, Tixg, X, .y X0 +
Fo (DN X, T

Proor oF LEMMA 3. Since N is a Hopf algebra N = Uh for some graded Lie
algebra h, and Q)7 N =U(@1]h). This is a free N-module, since the diagonal
embedding h = @ h gives an injection of Hopf algebras N = Uh =»U (@} h),
and as a Hopf algebra is a free module over any sub-Hopf algebra.

Now X} N can be considered as the direct sum of E,N and the ideal C
of ®]N generated by all elements of the form u;@u,®...®u,—

(=)'t @ 1,2y ® - . . ® Uy in the tensor algebra. (|a] is defined with respect
to the degrees of u;.) We can do this since we have the exact sequence

OACﬁ@Nz?EnN—»O
where the “splitting” map s: E,N — X} N is defined by

1
<u1" . "un> = ‘n_!- Z (‘— 1)Ialua(l)®’ . ®u0(") 4

where the sum runs over all permutations of (1,2,...,n). This map is a left and
right N-module homomorphism (shown by direct computation). Since
projectives —and even flats—are free for Hopf algebras, this completes the
proof of Lemma 3.

We are now able to compute the series of E,N* ® y k. No element u; of even
degree can occur twice in {u,,...,u,> € E,N, so we have
EN = EN*®(E,_ N",1)
as vector spaces, and that
0—->EN*"->EN->E,_ N"—>0 (n2l, ELN'=k)

is an exact sequence of N-modules. If we apply the functor - ® y k, and make
use of Lemma 3, we get the exact sequence;

0 — Tor} (E,_,N*,k) » EN*®yk > EN®yk — E,_ ,N*®yk > 0
and the isomorphism

TorN,, (E,_,N*,k) = TorN(E,N*,k) (i=1,n=1)
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which immediately gives us
(3%) Torl (E,_ N*,k) = Tor¥ (k,k),
and that
0 — TorY (k,k) > EN*®nk — EEN®Onyk > E,_N*"@yk—> 0
is an exact sequence of N-modules for n=1. Since E,N is free, we have

(E.N®nK)(2) = (N(2) ' (EN)2) = (N(@) ' ((E.NT)2) + (E,-\NT)(2) -

These formulas put together implies;

(E.NT®nK)() = (N@) (ENT)@)+

(=1 S (1Y Tor® (k) — (= 1" (N ()" .
j=0

J

We have proved;

LemMa 1. If N is a Hopf algebra, the double series of E,N* ® vk is given by
the formula:

Y X"ENT®nk)(2) = (N@) "Pyn+(x,2)+ (1+x) 7 (Py(x,2)— (N(@)7'),

nz0

where Py(x,z) is the double Poincaré series of N.

The lemma is thus valid for arbitrary N, but the formula is particularly
simple when N has finite global dimension, since (3%) shows us that; If
nzgldim N, then E,N* is free as an N-module, and

(E.N*®nk)(2) = (N@2) (ENT)(2).
3.2. COMPUTATION OF THE SERIES OF X, ® y k. We recall the definition of X,;

X,=ker (N,®E,N* — E,N*). For n=0, we have—as E,N * =k— the exact
sequence;

0— X, > N,®k—->k—->k—-0
so we see that
X, = Xo®nk = N, = Tory (k, k) .
For n=1 we study 0 —» X, > N;®N* > N* > N, —» 0. Since N, ®k

— N, is an isomorphism, we can substitute N for N*, and get 0 — X,
— N;®N —» N — k — 0, which is the exact sequence to the right in:
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. — Tord (k, k)@ N — Tor) (k,k)@N;—»/N1®N——> N-ok—0
X,

A
o0 Mo

(cf. [7]). Applying - ® y k on the exact sequence to the left, we get the exact
sequence

Tor} (k, k) — TorY (k,k) - X, ®nk — 0.
Since the sequence above is a minimal free resolution of the N-module k, we
have X, ® y k=Tor} (k, k).
When n=2 we are forced, reluctantly, to restrict ourselves to the case where
gldim N2
We know that E,N* is a free N-module for n=gldim N, so in the same way
as above we have the exact sequences of right N-modules;

. — TorY (k, k@ E,N* — Tory (k, k) ®

®EN'— N\ ®EN" - EN* = k@vENT — 0
A
X,

)

Applying - ® y k on the sequence to the left, we get the sequence:
Tor} (k,k)® (E,N* ®y k) — Tor (,k)® (E,N* ®yk) = X, @k — 0.
If gldim N <2, this of course gives us;
X,®nk = Tor (k,k)® (E,N* ®yk) for n=2.

Observing that (E,N* ®yk)(z)=(N(2)) *(E,N*)(z), if n=gldim N, we have
proved;

LeMMA 2. If N is a finitely presented Hopf algebra with generators in degree 1,
we have:
For n=0 and n=1, X,®yk=TorY,, (k,k), and if gldim N £2, the double
series for X, ®yk is given by:
Y XX, ®nk)(2) = (N(2)7! Tory (k,k)(z)  (Pyn~(x,2) +x~1)+|N,|z .

nz0

4. A question of Lemaire.

Lemaire ([5], [6]) gave examples of finitely presented Hopf algebras A,
where Tor4 (k, k)(z) were rational functions but not polynomials. He asked
among other things:
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—Is the series Tor4 (k, k)(z) always a rational function?

We will answer this question in the negative by taking an algebra
constructed by Lofwall (a modification of an algebra of Shearer [13]) as N in
the Lofwall-Roos construction. The resulting Ug is a finitely presented Hopf
algebra, with generators in degree 1 and relations in degree 2, where all the
series TorU® (k,k)(z) (n=3) are transcendental analytic functions defined for
|z] < 1. We first prove the following lemma:

LEMMA 4. If the finitely generated algebra N in the Lifwall-Roos construction
has a Hilbert series N (z) with radius of convergence r, 0 <r <1, then all the series
TorY% (k,k)(z) for n=3 also have radius of convergence r, and moreover, for
functions on 0=< z<r, we have the inequality:

TorV® (k,k)(2) 2 (N()—-3z"">  (n23).
Proor. When we analyse Tor!8 (k,k) by means of the Hochschild-Serre

spectral sequence as in Sections 2.1 and 2.2, we easily see that each E2-term is
majorated on 0=<z<r by

pPEENT)() £ p(NE)

for some polynomial p(z). This shows that TorV8 (k, k)(z) converges in the open
disc |z|<r.

Since all the coefficients of the different terms are non-negative, we have the
following inequalities for functions defined on 0=z <r:

Tor8 (k,k)(2) = EF,(2)+E} -1 () +ES, 2(2) Z E} ,_1(2)
= Tor¥F (k, TorVF (k,E,_,N*))(2)+ TorYF (k, TordF (k, E,_ N *))(2)

2 Torl* (k, TorV" (k,E,_,N*))(2) = 2(k®yE,-N*)(2)
+(k®N X 1)(2)

2(k®yE,-,N*)(2) .

v

Clearly
N@*k®NE, N*)(z) z (E,_ N*)(2)

and Since

v

(E;NT)(2)2" 3

(E2N™)(2) = (N =1 = N(=2%)+1) 2 }((N(2)*~3N(2)

(N(2)2 N(—2z*) for 0=z <r), we get the desired inequality by dividing with N (z)
which is a strictly positive function on the interval. The proof is completed.

We can now use a graded algebra constructed by Lofwall, which is a
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modification of an algebra of Shearer (“Note added in proof” in [13]). The
algebra is described in greater detail in the following Appendix by Lofwall.
Take the algebra

N = k{a,b,c,d,e)/(ba—cd, ac—be, ad —da, ae—ea, b*, c?,
d?, €%, bd, bc, eb, ec, ce, cb)

with generators in degree 1 and relations in degree 2. Its Hilbert series

N(@) = R(2) [[ 1=2")7""+R,(2)

jz1

(where R, and R, are rational functions) has radius of convergence r =1, and,
since

lim (1—-2)"N(z) > 0 forallm,
z—> 17

it has an essential singularity at z=1.

The corresponding Lofwall-Roos Ug is a finitely presented Hopf algebra,
also with generators in degree 1 and relations in degree 2 ([8], [9]). Lemma 4
immediately gives us the transcendency of all the series TorV# (k, k)(z) n>3. We
have proved:

COROLLARY 2. There exist finitely presented Hopf algebras A (ie.
Tor{ (k,k)(z) and Tor2 (k,k)(z) are polynomials), where for each nz=3,
Torf (k,k)(z) is a transcendental analytic function.

The algebra Ug constructed above is applied to the case of local rings and to
the homology of loop spaces in Section 1.3.

5. Related problems.

The obvious problem is to compute the series of X, ® y k, when gldim N = 3.
The series of X,®yk is, in view of the corollary in Section 1.2 and the
applications in Section 1.3, especially interesting.

Since the Ug-s in the Lofwall-Ross construction always have gldim Ug
=00, they cannot be used to answer

—If A is a finitely presented Hopf algebra with finite global dimension, is
the series Tor? (k, k)(z) always a rational function?

This would make the double Poincaré series P 4(x,z) a rational function in
two variables, whenever gldim A4 < oo, and give a partially positive answer to
(the already negatively answered) Problem 2 of Roos [11].

The algebras of Shearer and Lofwall has an essential singularity as the
“smallest singularity” (at z=1), which is necessary for the use of Lemma 4.
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These algebras are not Hopf algebras, however, and indeed Anick in [3] asked
the following question:

—Is the smallest singularity of a finitely presented Hopf algebra with
generators of degree 1 and relations of degree 2 always a pole of finite order?
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