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COMPARISON OF THE LENGTH OF
INFINITE GEODESICS IN MANIFOLDS
WITH NONPOSITIVE CURVATURE

THORDUR JONSSON
Abstract.

Let M be a simply connected complete Riemannian manifold of nonpositive
curvature. Let M* be the points at infinity. Suppose there is a unique geodesic
in M joining any two points in M*. An even number of distinct points in M,
{og,. . .,0,,}, can be joined pairwise by geodesics in (2m— 1)!! different ways.
We show that there is a canonical way of defining the difference in length of
two such geodesic configurations. This difference is a continuous function of
oy, ..,0,, in the cone topology and is invariant under asymptotic extensions
to M*® of isometries on M. We compute this difference explicitly for the
Poincaré disc.

1. Preliminaries.

Let M be a simply connected complete Riemannian manifold of nonpositive
sectional curvature K. We denote the geodesic distance between two points
x,y € M by d(x,y). All geodesics in M are parametrized by arclength. If y, and
7, are two geodesics in M, we say they are asymptotic, written y; ~y,, if there is
a number ¢ >0 such that d(y, (¢), 7,(t)) <c for all t>0. Let M* be the collection
of all geodesics in M modulo the equivalence relation ~. We call M*® the
points at infinity and denote MUM™ by M. If y is a geodesic in M, the
equivalence class of y in M™ is denoted [y]. We say that y begins at o € M
and ends at @ € M™ (or joins o with w), if [y] = w and [7] =0, where 7 denotes
y with reversed orientation.

Let x € M and let y be a geodesic in M. We shall need the following two
facts:

1) There is a unique geodesic through x asymptotic to y.

2) The limit

ty lim [d(x,7(0) -] = b,(x)

t— 00
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exists and is continuous in x. For a proof see e.g. Busemann [1 III, § 4].

We shall assume that our manifold M satisfies Axioms 1 and 2 [3], i.e. if «
and w are two distinct points in M®, there is a geodesic y, unique up to
parametrization, joining o with w. A sufficient condition for the existence of y is
K <C, where C is a negative constant [2]. Uniqueness holds under weaker
conditions, e.g. K<0 [3].

2. Comparison of Geodesic Configurations.

Let A={0y,05,...,0,,} be a collection of an even number of distinct points
in M*. The points in A can be joined pairwise by geoedesics in precisely (2m
—1)!! ways. We are interested in comparing the lengths of the geodesics, albeit
infinite, in two such configurations.

We denote the family of all pairings of {1,2,...,2m} by P,, and regard each
element of P,,, as a collection of m pairs. If o, and o, are two distinct points in
A, let y,, be a geodesic beginning at o, and ending at o, with the convention
72a(0)=74,(0).

Let y be a geodesic in M. From (1) we see that it is natural to regard b, (x) as
the difference of the distance from x to [y] in M™ and the distance from y(0) to
[v], both of which are infinite. This motivates the following definition. For
,n € P,,, let

2m
@ DO 2 = T by 500).

j=

where t pairs i with j and » pairs j with k,j=1,2,...,2m. The quantity
D(z,%)(2y,. . .,%,,) has an interpretation as the difference in length of all the
7;; geodesics and all the y,; geodesics.

PROPOSITION 1. D(t,9)(ay,. . .,0,,,) is independent of the choice of geodesics

Vpa

Proor. The geodesics y,, are unique up to parametrization, and since they
have unit speed, they are unique up to a translation. If y a geodesic, let 4 be its
translate by t,, i.e. 6(t)=y(t+1,). Then

) bs(x) = b,(x)+1o
for any x € M. Similarly, if y, and y, are asymptotic,
4 b, (2(to)) = b,,(72(0)— 1o

for any ¢, € R. Let §,, be the translate of y,, by t,, and 6,,(0)=4,,(0).
Then t,,=—t,, and



COMPARISON OF THE LENGTH OF INFINITE GEODESICS . .. 153

(5) b;s (6,;(0) = b, (v (O)+1t;;—ty; -

Summing (5) over j yields the desired resuit.

3. Properties of D(z,n).

For any x € M, y € M, x#y, let y,, be the unique geodesic in M joining x
with y, such that y, (0)=x. Let x € M, y,z € M be three distinct points. We
define the angle subtended by y and z at x as the angle between the tangent
vectors y,,(0) and y,,(0) in M,, the tangent space to M at x. We denote this
angle by «,(y,z). If v is a unit vector in M, and 7y a geodesic such that y’ (0)=uv,
let

©®) Clue) = ye M| =[] y<e} .

The set C(v, ¢) is called a cone with vertex x, axis v and angle ¢. The following
result is due to Eberlein and O’Neill [3].

PROPOSITION 2. There is a unique topology T on M such that

1) The topology induced on M by T is the Riemannian topology, and M is a
dense open subset of M.

2) If y is a geodesic in M, then its asymptotic extension is continuous, i.e.
lim,_, () =[7].

3) If ¢ is an isometry of M, then its asymptotic extension is a homeomorphism.

4) For each oo € M, the family of cones containing o form a local basis for T
at o.

Let 4,, denote the set
{015+ - 0pp) | o e M®,  i=1,....2m, o;%a;if i)}

equipped with the topology induced by the cone topology.

ProrositioN 3. Let 1,1 € P,,,. The function
(7 D(t,n): Ay — R

is continuous and antisymmetric in t and n. If @ is an isometry of M and  its
asymptotic extension, then

(8) D(T’ ")((b(o'l)’ M "(p(cxlm)) = D(T’ '1)(“1,- . -’a'Zm)

for any (0,...,0,,) € Az
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ProOF. Let SM be the unit tangent bundle of M and let z: SM — M be the
projection. If v € SM, let y, be the geodesic defined by y,(0)==(v), y,(0)=v. The
function

B:SMxM — R

given by B(v, x)=b, (x) is continuous [4]. We say that a sequence of geodesics
v, converges to y if y, have a reparametrization such that v,(0) converges
to y'(0) in SM.

Let now o, € M*™, 0.4 w, and suppose (o, w,) — (o, w). Let y, and y be the
geodesics joining o, with , and o with w, respectively. Then y, converges to 7,
see [3]. If now of is a sequence in M™ converging to o, i=1,2,...,2m, where
(o, . ., 05,) € A,,, then the geodesic joining of with of, i=j, converges to y;;.
The continuity of D(z,#) follows.

The antisymmetry of D(t,#) is clear since

by.j(ij(O)) = “'by,,,»(Vij(O))‘
Let ¢ be an isometry. Then @oy;; is geodesic joining @(x;) with ¢(o;) and
b(po}'((p(x)) = by(x)
for any geodesic y and x € M. This proves (8).

4. Regular families.

We would like to give another definition of D which is more convenient in
applications [5] and exhibits D(z,5)(oy,. . .,®,,) as the limit of differences in
length of finite segments of fixed geoedesics. Let {Z,}5%, be an increasing
family of compact subsets of M such that

©) Uz, =M.
n=1

We say that such a family is regular if the following two conditions are met:

(i) For any geodesic y in M, the intersection yN X, is connected for all n
sufficiently large.
(ii) If y, and vy, are two asymptotic geodesics in M, then

(10) lim d(y, (i), 7, (") = 0,

n—*oo

where t{" is the largest value of ¢t for which

ez, i=12.
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The existence of a regular family is not guaranteed without a further
assumption. We say that the manifold M satisfies the zero axiom if the distance
between any two asymptotic geodesics is zero. The conditions under which the
zero axiom holds are discussed in detail in [3]. A sufficient condition for the
zero axiom to hold is K<c¢<O.

LEMMA. Suppose M satisfies the zero axiom. Let p e M and let X, be the
closed ball centered at p with radius n. Then {Z,}3%, is regular.

ProofF. It is clear that {Z,} satisfies (9), and £,N7y is connected for any
geodesic y since X, is convex. Let y, and y, be two asymptotic geodesics, and let
" be as in (10), i=1,2. We denote y,(t{") by x, and y,(t{") by y,. Note that
d(yy,7,(2)) is a convex [2] bounded function of t =0 and takes values arbitrarily
close to 0. It follows that d(y,,7,(t)) decreases monotonically to zero. Let z, be
the unique point on 7y, closest to y,. By a suitable reparametrization of y,, we
have b, (p)=0. Given £>0, we can therefore choose N so large that for all n
=N

dy,z,) < €
d(p, x,) —d(x,, 7 )] < ¢
ld(p,z,) = d(z,, 7, () < &.

It follows that d(x,,y,) <4¢ and the proof is complete.

Let us now assume that there exists a regular family ={Z } in M. Let
(0, ..,0,,) be a fixed point in A,,, t,n € P,, and define

(11) D, (@;tm) = Y WaNZl= X hbuNZl,

U ket (k,Den

where |yN X,| denotes the length of the geodesic segment yNZX,.

PROPOSITION 4. Let @ ={Z,} be a regular family of compact subsets of M. Let
t and n be two pairings of {1,...,2m}. Then
lim D (®; 7,n) = D(1,n)(0y,- . -5 %ap) -

n—oo

ProoF. Let n be so large that y,,(0) € Z, and y,,N Z, is connected for any
p,q. Let t9) be the largest value of t for which y,,(t) € Z,. Let t pair j with i and
let # pair j with k. Then

2m

(12) D(®; ) = ¥ [ -1l

ji=1
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Note that
(13) |d (y:;(0), vij(tﬁ? )—d(y;;(0), ij(tsc';‘) ) d(Vij(tg!)), ij(ti';') )

and the right hand side of (13) tends to 0 as n — oo by condition (ii) for the
regular family ¢. Combining (12) and (13) gives the desired result.

5. Example. The Poincare disc.
Let M be the Poincaré disc, i.e. the open unit disc in R* with the metric

d*s = (1—x*—y?)"2(dx?+dy?).

The Riemannian manifold M has constant negative curvature and thus satisfies
all our hypotheses above, i.e. axioms 1,2 and the zero axiom.
Let

o
{oy,00,. . ., 05, © M™, o0

if i%j. To compute D(z,n) we take a regular family e.g. {Z,}, where X, is the
closed disc of radius (n—1)/n. Designating points (x,y) € M by complex
numbers z=x+iy, the distance from z, to z, is given by

1+f(z4,25)

(14) d(z1,22) = Hlog 7 2

where

2172
R .8 [6].
17z, see e.g. [6]

f(zh ZZ) =

We can identify M* with the complex numbers of modulus 1. A short
calculation and Proposition 4 now give

(15) D(t, )0y, 0py. - -5 0p,) =
Y loglsin[3(6;—0)1— ) loglsin[3(6,—0)]l,
i, et (k,l)en

where o;=¢", j=1,2,...,2m. It is easy to see directly that (15) is invariant
under the isometries of M, which are fractional linear transformations.

The problem of comparing the length of infinite geodesics arose in the
study of solutions to a nonlinear elliptic partial differential equation in the
Poincaré disc [5]. The corresponding action functional was estimated in terms
of the length of geodesic segments and the lowest action solution corresponds
to the ‘shortest” geodesic configuation. This will be further discussed elsewhere.
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