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CHARACTERIZATION OF MATRIX-ORDERED
STANDARD FORMS OF W*-ALGEBRAS

LOTHAR M. SCHMITT* and GERD WITTSTOCK
Abstract.

Let .# be a von Neumann algebra operating in standard form on a Hilbert
space # and let #* be the corresponding selfdual cone. The algebra .#,
= ./ @M, operates on the Hilbert space #,= # ®M, in such a way that »# is
matrix-ordered by the corresponding selfdual cones #, (n € N). We call this
situation a matrix-ordered standard form of ..

On the other hand, to any matrix-ordered Hilbert space with selfdual cones
we associate a von Neumann algebra which respects the matrix order. We call
it the matrix multiplier algebra. It is a non-commutative analogue of the ideal
center of an ordered vector space. If a von Neumann algebra operates in
standard form on a matrix-ordered Hilbert space # with selfdual cones #,
then it is the matrix multiplier algebra of this space.

There is a one-to-one correspondence between the projections of the matrix
multiplier algebra and the projectable faces of the cones. We obtain a
characterization of matrix-ordered standard forms of von Neumann algebras
in terms of the facial structure of the cones #," : The matrix multiplier algebra
is in standard form iff every completed face of #; (n € N) is projectable.

Introduction.

The striking analogy of order structure in C*- and W *-algebras and related
spaces such as their duals, preduals or the selfadjoint cones of standard
representations with the lattice structure of the corresponding commutative
objects: C(K), L™ (n), and L?(u) has always been a rich source for inspiration in
the theory of operator algebras. The theory of Banach lattices unifies the order
properties of the classical function spaces. A general theory of non-
commutative order is growing [10] fast, but a simple general definition
comparable to “Banach lattice” has yet to be found. An important step in the
development of Banach lattices and a main tool in the theory is the
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characterization of the classical function spaces in terms of AM-spaces, AL-
spaces and Hilbert lattices. The corresponding program is carried out for
selfdual cones of standard forms of W*-algebras by Connes [9] and for C*-
algebras by Alfsen, Shultz and Hanche-Olsen [1]. Another method was
developed by Werner [17].

An operator algebra is determined by its underlying ordered vector space
uniquely up to a Jordan isomorphism. An additional condition often called an
orientation, is necessary to determine the full algebraic structure. Without
orientation one obtains characterizations of JBW-algebras (Alfsen, Shultz and
Stermer [2] and Bellissard and Iochum [4], [S]).

At present we know of three different notions of orientation: Connes [9]
introduced an orientation of a selfadjoint homogeneous cone in a Hilbert
space. Alfsen, Shultz and Hanche-Olsen [1] defined an orientation of the state
space of an order-unit space with the three-ball property. Choi and Effros [7]
introduced matrix-ordered spaces as the appropriate objects to which
completely positive maps apply. They showed that an injective matrix-ordered
order-unit space is an injective C*-algebra. In [20] the injective W*-algebras
are characterized by a matricial analogue of the Riesz separation property.
Werner [17] characterizes C*- and W *-algebras in terms of the facial structure
of the underlying matrix-ordered spaces. In [19] the physical meaning of
matrix-order and the facial structure are discussed.

Matrix-order seems a very natural structure to describe order and
orientation of operator algebras and related spaces. In this paper we
characterize standard forms of von Neumann algebras (Araki [3], Connes [9],
Haagerup [11]) by the facial properties of the selfdual cones of the associated
matrix-ordered Hilbert space. Let us explain our procedure which is inspired
by the commutative case: Let u be a localizable measure. L2(y) is a Hilbert
lattice. Its ideal center (Wils [18]) is the commutative von Neumann algebra of
multiplication operators. There is a unique correspondence between the
projections in the ideal center and the split-faces of the selfdual cone. (Penney
[13], Bos [6]). We define the matrix multiplier algebra as a non-commutative
analogue of the ideal center and study the faces which correspond to the
projections of the matrix multiplier algebra. We are led to these definitions by
the physical considerations in [19] and the corresponding results of Werner for
matrix-ordered order-unit spaces. In [16] the Lie algebra of derivations of a 2-
ordered Hilbert space with selfdual cones was studied.

1. Matrix-ordered standard forms.

Let M, , be the space of complex mxn matrices and M, be the nxn
matrices, m,n € N. We will write st: « — a* for the natural involution on M,, ,
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and Tr: M, — C for the trace on M,. If V is a complex vector space then V,, ,
=V®M,,, and V,=V®M, will denote the vector spaces of mxn and nxn
matrices with entries in V. If J is an involution on V, then we have a natural
involution

Jpn = J@st: V, , —V

n,m

defined by [v,;] — [Jv;,] and we write J, for J, ,. We define
Ve={veV| v=Ju}

to be the real vector space of selfadjoint (hermitian) elements.

A complex vector space V with an involution J is called matrix-ordered, if
each (V,), is partially ordered by a cone V,} and the following transformation
law yields: if a is any n x m matrix of complex numbers, m,n € N, then

(1.1 aVie* <« VI,

Let ¥V and W be matrix-ordered vector spaces and @: V— W be a linear
map. If

¢, = oRid,: V,— W,

is defined by @,[v;] — [®v;;] and maps V, into W, for all n € N, then @ is
called completely positive.

The definition of matrix-order and basic results are due to M. D. Choi and
E. G. Effros [7].

If # is a complex Hilbert space with a selfdual cone #* (ie. ¢ € #* if and
only if (& #* > 20), then #,:=#" — #* is a real Hilbert space, and we have
that 3¢ = #,@iAH,. #* induces an involution J =J ,+ on #, namely the map
J:é+in — E—in for & n € #,. This can be found in [9], Proposition 4.1.

Let .# be a W*-algebra that operates on a Hilbert space J#, 1 , € .#, let
H#™* be a selfdual cone in # and J=J 4+ the induced involution. We call
(M, #,#7) a standard form of # if the following conditions are satisfied:

G JHI=M
(1.2) (ii) JzJ=z* for every z in the center of /4,
(iii) xJxJH#*<=H#* for every x € 4.

Every W*-algebra .# has a standard representation (., %, # *) which is
unique up to a spatial isomorphism. H. Araki [3], A. Connes [9] proved this
for o-finite W*-algebras and U. Haagerup [11, Theorem 1.6 and Theorem 2.3]
presented the final form of the standard representation.

Let ¢ be a faithful normal semifinite weight on .# and

Ny 1= {xe A | @(x*x) < o0}
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the induced pre-Hilbert space. Let #, be the completion of .47, and n,: A
— #, n,: M — B(H,) the natural embeddings. Then .o =n,(A,N.A¥)is a
left Hilbert algebra. If J, is the involution defined by the Tomita-Takesaki
theory and we put

(1.3) Hr = (m, (I (%) | xe AN NE,

olly

then (n,(.#), # ,. #5) is a standard representation of .# and J,=J #: (cp. U.
Haarerup [11, Theorem 1.6] and F. Combes [8] and F. Perdrizet [14]).

Also ¢ induces faithful normal semifinite weights ¢, on the W*-algebras .#,
= /#/®M, in a very natural way:

(1.49) ¢, = oRTr: x = Y o(x,) forall x=[x;]e 4, .

To each ¢, exist similar objects as to ¢ which will be denoted by .#4,, #,, 7, J,,,
H}. 1t is easy to see that

(1.5) N, = N,@M, and H, = #,®M,.

If we define an inner product {a, f):=Tr (f*«) for o, f € M,, then #, is the
tensor product of the Hilbert spaces #, and M,. With similar methods as in
[9, Lemma 2.3] we can show that

(1.6) J, = J,®st.
1.1 LemMA. Suppose .M is a W*-algebra and ¢ is a faithful normal semifinite
weight on M and (n,(M),#, #) the standard representation of M,

corresponding to the weight ¢, for every n € N. In this situation we can obtain
the cones H#, from H{ =#] by the formula

(1.7) #y = colal, al,(#7])| aen,(M)®M, }
where co denotes the closed convex hull. In addition
(1.8) al, (K 5) = Ky
holds for every operator valued matrix a € n,(H#)@M, .
Proor. Let xe (A#,NA2QM,, , (mkeN) and define matrices

X, € (N, NN HOM,, for x=1,...,k whose first column coincides with the
xth column of x and whose remaining columns are zero. Let

rlm,k = rl¢®idm,k : ‘/V¢®Mm.k - %¢®Mm,k
and
Ty i= R,®id, , 1 MM, , - B(K )M, ,

be the naturally extended embeddings. We have



CHARACTERIZATION OF MATRIX-ORDERED STANDARD FORMS . .. 245

(1.9) T k(XM i, i (X)

i

k
|: Z n(p(x).u)‘]q)nw(xux)]
x A,u=1...m

=1

k

= 2 XM lim(x,) € Ay .

x=1
If m=k and x, € (/' ,N A/ *)R®M,, , is the xth column of x, then (1.9) shows
that

Tcm (x)erIm (x) = nm, 1 (ix)‘]m, lnm, 1 (ix) .
=1

x

Hence #, is the closed convex hull of elements of the form

(110) é = nm,l(y)‘]m,lnm,l(y)ﬂ y = [yu]u=1...m € (/V(pﬂ/v‘;;)@Mm,l .
To show (1.7) we have to rewrite £ in an appropriate way. Let
m 3
z=<z y,’fy,,) e NV, N NE.
u=1

Then there exists a=[a,],~-, € #®M, , such that y,=a,z (cp. [12,
Proposition 1.45]). Therefore we can write

¢

0

T, 1 (a)ym, (Z)Jm, 1m, 1 (a)n,(2)

T, 1 (A gy, 1 Ty, @) (g (2)J 111 (2)) -

This proves (1.7).
Letae #®M, , and ¢ as in (1.10). Then we have by (1.9)

7':n,m(a)‘]n.mﬂ:n,m(a)‘]mé = T["’ 1 (ay)‘]n, lqn, 1 (ay) € W: .

This completes the proof.

(1.6) and (1.8) show that »#, is matrix-ordered in the sense of Choi and
Effros [7]. Moreover (1.8) means that 3, is a matrix ordered .#-module in the
sence of Werner [17].

1.2 DeriNITION. Suppose # is a complex Hilbert space and #, < #,
(n € N) is a family of selfdual cones. Hereby #, is meant as the Hilbert space
tensor product of the Hilbert spaces #, and M, (see below (1.5)). In addition
suppose that the transformation law (1.1) yields, i.e.

(1.11) aH ar = H}

for every nx m matrix « with complex coefficients. Then we call # a matrix
ordered Hilbert space with selfdual cones.
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1.3. LEMMA. Let 3# be a matrix ordered Hilbert space with selfdual cones #;
(neN). If J,=J y: is the induced involution on #,, then we have that J,
=J,®st. This implies that # is matrix-ordered in the sense of Choi and Effros

7).

ProoF. Let x=[x,;] € #, . If one chooses suitable « € M, , in (1.11) then
one obtains that x,,, (X, +X;;) £ (x;+Xj), (Xe+Xj;) T i(x,;—x;) are elements
of #{. This implies that J,x,,=x,, and J,x;=x; (i.k=1,...,n). Hence J,
and J, ®st coincide on #,}.

1.4 DerINITION. Let .# be a W*-algebra operating on a Hilbert space #,
ly,e.# and let #) (ne N) be a family of selfdual cones in #,. If
(M, #,#7)is a standard representation of # and if for every a e #/QM, ,
(m,ne N)

(1.12) al, nad (K} < H}

holds, then we call (4,5, #,) a matrix-ordered standard form.

Suppose (A, #,# ) is a matrix-ordered standard form. By Lemma 1.1
formula (1.7) we obtain that (.#,, #,, #,) is a standard form for every n € N.
We will show that .# can be reconstructed from the family #,) (n e N) of
selfdual cones. In addition it is our objective to characterize those matrix-
ordered Hilbert spaces with selfdual cones #, which belong to a matrix
ordered standard form (.4, #, #.)).

2. The matrix multiplier algebra.

In [17], K.-H. Werner has constructed the matrix multiplier algebra of a
matrix-ordered complete order unit or base normed space. He could show that
it is a C*-algebra or a W*-algebra, respectively. We will define the matrix
multiplier algebra of a matrix-ordered Hilbert space with selfdual cones and we
will prove that it is a W*-algebra. It is easy to see that some parts of our
construction carry over to general matrix-ordered spaces with proper
archimedian cones. But one needs some additional structure to define an
involutove algebra.

Let # be a matrix-ordered Hilbert space with selfdual cones #, (n € N).
Let

Ji=Jy =Jygy, Jy=Jgr = J@st
(Lemma 1.3) and )
Jpon 1= J@st : KM, ,—> XM, ,
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be the induced involutions. In order to write (1.12) similarly to (1.11) we have
to define a multiplication from the right hand side for operator valued
matrices. We let

(2.1 Ex? = IxJE

for £ € # and every linear (not necessarily bounded) map x e L(#). If é.
:[éuv] € JfQ(DMm,n" x:[xxy] € L(%)®Mk,m* and y=[yle € L(#)®Ml,n
(k,l,m,n € N), then we define

2.2) xé = [Z Xy m,] e #XQM, ,
n=1
and
(2'3) éyj = Jl,my']m,né = [Z éu\-y‘i\':l € %®Mm.l .
v=1

Finally we define a sesquilinear Jordan product for x and y by the formula
(24) {(x&y’} 1= Hy +x(8) -
If xi,....x, € L(#) (n e N), then we let
x 0 ... 0
25  diag(xp....x,) = 2 e L(#A)OM, .
0o ... 0. x
We write 1 for the identity map on #.
2.1 DerINITION. Let # be a matrix-ordered Hilbert space with selfdual cones

A (n € N) and induced involution J. The matrix multiplier algebra .# of #
is the set of all linear maps x € L(5#) that satisfy (see (2.4))

(2.6) {diag (x, 1. .., )¢diag (x,1,..., 1))} € #}
for every £ € #, and all ne N.

The next theorem shows that this set carries a rich structure. .# is in fact a
W*-algebra and # is a two-sided .#-module.

2.2 THEOREM. Suppose # is a matrix-ordered Hilbert space with selfdual
cones #, and J is the induced involution. If .M is the matrix multiplier algebra
of #, then we have
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() JAT M, ie. (xE)y' =x(&Y))  for x,ye M, E € H#.
(1) 4 is a W*-algebra.
(i) a# o' cH}  for every ae #QM, , (mneN).

Proor. (i) If one chooses suitable scalar matrices « € M,, one sees by (1.11)
that #, is invariant under simultaneous permutations of rows and columns.
Hence (2.6) implies for x € .#

(27 {diag(l,....Lx,1...,)#} diag(1,....1,x,1..., 1)} = #; .
Let £ € #] and x,y € .#. We define
d, = diag(x,1,1), d, = diag(1l,1,y), d; = diag(l,x,1) e L(#A)QM, ,
and
o =[L-11], B=[i""i" ieleM,,
for A>0 and ¢= +1, +i. It follows that the iterated Jordan product
Blds{dy{d, (a*Edi}ds}di) p*
= 2{pey’} +e(r(Ex) = (rOx) +E((x0y ~ x(&y))

is an element of 5[ . Since #; is closed proper cone this holds for 4 — 0 and
we obtain (x&)y’ — x(£y’) =0. This proves (i). Left and right multiplication with
elements of .# commute and we write x£y”’ for {x&y’} in this case.

(ii) Let again x,y € .#. Part (i) shows that xy € .#. Also ix € .# for every
A € C. We define

d, = diag(x,1,...,1), d, = diag(l,y,1,....1)e 4,

11 0
= M .
& [0 0 ln—l:l € nn+1

where 1, denotes the unit matrix in M,. Then we have for & € #,

diag (x+y,1,...,)édiag (x +y. 1,.. .. 1Y = ad,d,a*éadidlo* € H#) .

and

Hence .# is closed under addition.

The selfdual cone #; is generating and weakly normal in (#,),. It follows
that every positive linear map from (3#,), into itself is bounded (cp. [15,
Chapter V, Section 5.5 and 5.6]). Hence

diag (x,1)J, diag (x,1)J, € B(s#,) for every x € A

and therefore x € B(#).
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If x € M = B(#), then x* € .4 since the cones #, are selfdual. Kaplansky’s
density theorem implies that .# is weakly closed.

(i) This part of the proof is due to K. H. Werner [17, Proposition 4.1]. Our
assertion is clear in the case n=m and a=diag (x,,...,x,) € #, (n € N). The

general case follows from this in the following way. Let a e . #®M, ,, and
Ee H).
We define a block diagonal matrix

1...1 0...0 . .. ... ... 0...07
0..0 1...1. 0...0 ... ... 0...0
0...0
T = eM, ..
R ... 0...0
1 0...0 0...0 ... ... 0...0 1...1]
a matrix
Y= [1n*"'91n]eMn,mn
and
d = diag (dy 1, A0 o Uy1s Q123 00- + s Oyzse v oy Qe « s Q)

in .#,,. Since a=ydt* we obtain

(2.8) aa’ = ydr*éwdly* e #) .

2.3 CoROLLARY. #,=H# @M, (k € N) is a matrix-ordered Hilbert space
with selfdual cones #,., (ne N). The matrix multiplier algebra of #, is
M= MR M, operating by left multiplication.

Proor. We identify B(#)@M,<=B(#,) by (2.2) and #,@M,=#Q@M,,
(k,n € N). It is clear that s, is a matrix ordered Hilbert space with selfdual
cones #,.. Theorem 2.2 (iii) implies that .# ® M, is contained in the matrix
multiplier algebra 4, of #,.

M, is the tensor product of the Hilbert spaces M, ; and M, , (which are
both isometric to C* with the standard scalar product). The complex k x k
matrices operate on M, ; by left multiplication and on M, , by right
multiplication. Hence B(M, ,)=M, and B(M, =M, where M, is the
opposite algebra to M,. We obtain

(29) B(#)) = B(XQM, @M, ) = B(%)®Mk®Mk'

Let B be a k x k matrix, f € M, right multiplication with B. It follows from
(1.11) that 1 ,®@M,®1, = .#,. We obtain
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1#’@11(@3 = Jk“)i"@ﬁ*@Tk)Jk e J, (1 #@Mk®Tk)Jk < JiNJe = N
by theorem 2.2 (i). Hence
M = (1e®L,®M) = B(#)OM,®T, .

Since 1 ,®M, is contained in .#} we obtain A=A ®M,, where 4] is a
subspace of B(s#). It is easy to see (again by (1.11)) that 4] c.#. This gives
M MAIM T, = MAOM,.

In the sequel we will write .#, for the matrix multiplier algebra of #,.

2.4 THEOREM. If (A, A, #,} (n € N)) is a matrix-ordered standard form of the
W*-algebra A, then A" is the matrix multiplier algebra of the matrix-ordered
Hilbert space # with selfdual cones #.

Proor. Let .# be the matrix multiplier algebra of s#. Definition 1.4 implies
that &/ <.#. By (1.2) and Theorem 2.2 (i) we obtain A" =J AN JcJ M. M .
The von Neumann commutation theorem implies that .# < A7

3. Projectable faces.

In this section we want to examine the relationship between the projections
of the matrix multiplier algebra .# of a matrix-ordered Hilbert space # with
selfdual cones #, (n e N) and the faces of the cone #* =#7.

3.1 DEerINITION. Suppose # is a complex Hilbert space and #* < # is a
selfdual cone. Let F 3" be a face of #* and Py be the selfadjoint projection
on the closed subspace of # generated by F. We call F a projectable face if

Pr#* =F.
If Sc#™ is a subset then the set
Sti={fe#T| ESH=0}
is called the orthocomplementary face to S. A face F< s * is called completed

if F=F*+*

3.2 LEMMA. Let # be a matrix-ordered Hilbert space with selfdual cones #,}
(n € N). Suppose E=[¢,,] € #, and &, =0 for a fixed k € {1,...,n}. Then ¢,
=¢,.=0for v=1,...,n

Proor. Take A>0 and ¢ = 1,i and define



CHARACTERIZATION OF MATRIX-ORDERED STANDARD FORMS ... 251

a=(0,...,0,47%0,...,0,62,0,...00 e M, ,,
where o, ,=47" and a; ,=¢i. Then we obtain

aéa* = ;Lzé\v\-+(gé\'k+£_£kv) € fr .

Since ;] is a proper closed cone this holds for A — 0 and we obtain &, =¢,,
=0.

3.3. COROLLARY. Let S be a matrix-ordered Hilbert space with selfdual cones
H (neN), J=J, the induced involution, and . its matrix multiplier algebra.

If xe M, E e #] and xIxJE=0, then xt=JxJE=0.

Proor. By (1.11) we have

[ ens

| ' 0 «x¢
= /= :
diag (x, 1)5 diag (x, 1) [JxJC ¢ } e

Hence

by Theorem 2.2. Lemma 3.2 implies that x¢=JxJ&=0.

3.4. PROPOSITION. Let # be a matrix-ordered Hilbert space with selfdual cones
K (neN), #£*=H#}, J=J, the induced involution, and A its matrix
multiplier algebra. Suppose p € .# is a selfadjoint projection. Then

(i) F:=pJpJA#* is a completed projectable face and Pr=pJpJ.
(i) Fr=(1—-pJ(1—pJ#* and Pp. = (1-p)J(1-p)J.

Proor. (i) pJpJ is a selfadjoint projection, since p and JpJ commute.
pJpJ# T < #* by Theorem 2.2. Let & € #* with E=pJpJ¢, n e #* such
that £—n e #*, and

Eénf _|E-nOf [nn +
{'[M]_[O O]J{M]E‘#Z'

Then diag (1-—p, 1){ diag (1—p,1)’ € #5. Since (1 —p)¢(1—p)’ =0, Corollary
3.3 implies now that (1 —p)yp=J(1 —p)Jn=0. Hence y=pJpJn and F is a face.

(ii) It is clear that (1 —p)J (1 —p)JH# * < F*. If n € F*, then 5 is perpendicular
to the linear span of F, and therefore pJpJn=0. By Corollary 3.3, pn=JpJn
=0. Hence n=(1—p)J(1-p)Jn.
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3.5. LEMMA. Let # be a complex Hilbert space and # ™ be a selfdual cone in
H. If F,G are projectable faces and P;F < F, then FN G is a projectable face
and PGﬂF=PGPF=PFPG~

PRrROOF. PgF F is equivalent to PgPp# * = Pp# ™, and therefore

PGPr = PpPGPp = (PGPp)* and  PgPp = PpPgPp = (PgPp)*.
Hence P;Pr=PpP is a selfadjoint projection. It follows that

PGPF”-F CPFf+nPG=#+ anGCPGPFf+
If £ #,)} and n e # (mn e N) we define

(Pn = [g 0] eHr, ..
n

Analoguously S®T:={{®n | teS,neT}for ScH#, and T<H#,. Let S be
a subset of # . We define the face in #* generated by S to be the set

Fg={(eH" | exists >0, n € S such that An—¢e #*} .

3.6. LEMMA. Suppose that # is a matrix-ordered Hilbert space with selfdual
cones #, meN)and ScH), TcH,}. Then

(i) SO =Fsgry,
(li) (S@ 'T‘)‘L = FsJ.@TJ..

ProoF. Let &;1,71 € #p £12:M12 € Hmw $205M21 € H s E22:M22 € H e
Suppose that

3.1) £ = [511 512] c (S@T)ll, N = |:'h1 'hz]e (S®T)J_‘
$a1 S22 21 N2z

It follows that #,, € S*, n,, € T*, and &, € S*4, &,, € T, since S'®T
< (S®T)'. Now

& 0] l: & _Clz] [1 0 ] [1 0 ] R
2 e = = €Hoim-
[0 €22 ¢ =& &2 0 -1 ¢ 0 —1 +
Hence
f € FS.LLG)TJ.L and (S@T)‘Ll c Fle.@le, .

Similarly

neFsgr: and (S®T* < Fagr: .
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The opposite inclusions are easily verified and left to the reader.
From now on o, will denote the zero vector and O, the zero subspace in #,,.

3.7. LEMMA. Suppose that # is a matrix-ordered Hilbert space with selfdual
cones #,} (neN)and ScH# ). Then

i) (S®0,)" =50,
(i) S@#,) =S"®O0,

PrOOF. Let ¢ € (S®O0,)** as in (3.1). Then &, € S* and &,, € 041 =0,
Lemma 3.2 implies now that &;,=¢&,, =0. Hence ¢ € S'*@®0,. The opposite
way is straightforward. '

Let n € (S®#)) asin (3.1). Then 5,, € S* and 7,, € (#,)* =0,. Now the
remainder of the proof is clear.

The methods used in the proof of the following theorem were developed by
K. H. Werner [17]. The physical aspects of faces with the projection property
considered in the following theorem were investigated in [19]. The
corresponding projections are called there interactive projections.

3.8. THEOREM. Suppose # is a matrix-ordered Hilbert space with selfdual
cones #} (ne N)and F=F, is a completed face in #* =3#]. Let

Fp=F@#,. )"t (1=23,...).

If F, is a projectable face for every n e N, then there exists a selfadjoint
projection p in the matrix multiplier algebra .# of # which satisfies

(3.2) Pp = diag (p,1,...,1)J,diag (p,1,...,1)J,, .

Proor. Define ¢, € M, as the usual matrix units. We consider three
selfadjoint projections Q,Q’,Q": #, — i, defined by
Q¢ = &8sy, Q& = (1—e)é(1—gyy) and Q"¢ = (1—g,)E(1—em)

for ¢ € #, (1.11) implies that all three projections map #,; into #,. We
have Q#}'=#!®0,.,, QH# 5 =0,@#,_ ,, and Q"H =K' 00,
Lemma 3.7.(i) shows that Q#), Q'#,), and Q"#, are faces which are
projectable by their definition. Lemma 3.7 (ii) implies Q(F})=Q(F+@®O0,_,)
=F; and this implies QF, = F,. Hence we have by Lemma 3.5

(3.3) QPf, = PrQ,

and analoguously Q'F, < F,, respectively Q"F,<F, implies
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(34 QPp = PrQ" and Q"Pp = PpQ".
In addition Lemma 3.5 and Lemma 3.7(ii) imply that
QPr#,; = F, N (#{®0,-,) = F,®0,., = (Pr,#)®0,_,
Q'PrH,S = F,N(H,-1®0) = F,_,®0, = (Pg,_H#, )®O, .
Hence we have for every £ € #,, ne #,_,
(3.5 Pg (E®o,_,) = PFO(EDo,_,) = (PF Do,
(3.6) Pr,(n®0;) = PrQ"(1®0,) = (Pr, n)®o, .
The identity
QP (H,) = F,N(0,@H,) = 0,0H#,_,
implies
(3.7 QPr, =0

Let v € M, _, be a unitary matrix and define u=1®v € M,. The map U: ¢,
—» #, defined by Ul =u*&u (£ € H,) is unitary and U*¢&=uéu*. (1.11) implies
that U#[ =o#) and U*#, =#,. This and Lemma 3.7(ii) imply U*F}
=U*(F'®0,_,)=F;} and therefore UF,=F,. Analoguosly we obtain U*F,
=F,. Hence

(3.8) UPpU* = Py .
Since Py #, =F,c#, we have
(3.9) J,Pr = PgJ, .

Let n e #®M, ,_, and define £ € o, by

¢ = [001 o,.n_,jl'
It is easily checked that
(3.10) QU*¢ = QU*¢ =0.
Using (3.8), (3.3), (3.4), and (3.10) we obtain
Pp¢ = UPRU*S
U{(ers + (1 —£,))(PLU*E) (o1 + (1—e1,)}
UQPrU*,+UQ'Pr U*¢
+ Ufeys (PEU*O (1 —g;,)+ (1 — &, )(PRU*Oey )
Ufer (PRU*O(1 —&1y) + (1 — &y ) (PF,U*)eyy ) -

1l
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If we choose v=1,_; and v=il,_, respectively, then the last identity implies

PF,,’f = 311(PF,,§)(1 —e)t(1 —811)(PF,,C)£11 .
Hence
o ¢
(3.11) Ppé = o o for some { € QM ,_, .
n-—-1
This defines a bounded linear map r: n — { from # M, ,_,=#""! into
A"~ 1. (3.8) implies that for every unitary v € M, _, r(nv)= (rq)v, and therefore
r(no) = (rn)a for every « € M, _,. Hence
r = p®idy,  _, for some p € B(¥)

(3.6) implies that p is independent from n e N (n=2). It is easy to check that
p=p*=p*, since

PF"=P%: —_—P;!f"

Letl, €, 816 Hyn15801 € Hpoy,15 Erz € # g, and E=[ul e A,
(j,k=1,2). Then we have by (3.5), (3.7), (3.11), and (3.9) that

PF 511 (P®idM _ 512]
3.12 P = 1 L=t )
(.12 R [(JpJ@idMH_l)ézl I

We want to show that Pr =pJpJ=JpJp. In order to prove this identity it is
sufficient to consider (3.12) in the case n=2. Let G= (#{ @F,)**. Changing
the coordinates in #, we obtain from (3.12)

P [fu 512] — [511 JPJélsz'
¢ &1 S22 péay PFlczz

This implies PgF3 =Pg(F1@®0,)=F; by Lemma 3.7(ii). Hence PgF,<F,.
Lemma 3.5 implies that Pr ng=PgPr,=Pr,Pg, and therefore pJpJ =JpJp.
We have by Lemma 3.7(ii) and Lemma 3.6(ii) that

F,NG = (F{®0,)* N (0,®F})* = (Fi1®F1)" = FreF, -
Let
EyeFrgr, Z;=§®eF@F,,
such that £,—Z, € #;, and

53 = (éx*‘éz)@(fx“"éz) = (514’52)@12-
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Then 25— E; € 7 and |jao*|E5—aZ;a* € #; for every o« € M,. The map
1 E — aFo* maps #; into #; . Hence ||aa*|Z;— AZE, € #;, and therefore

AZ, € Fp gr, This implies that Pr s and, A commute for every a € M,.

Hence it is of the form r®idy,, for some r € B(). Finally we obtain

PGPFZ = PFzﬂG = PF1®isz and PF; = p.]p.] .
3.9 LEMMA. Suppose # is a matrix ordered Hilbert space with selfdual cones

H (neN), and A its matrix multiplier algebra. If p € B(#) is a selfadjoint
projection, then the following three statements are equivalent:

(i) p and 1 —p are completely positive,

(ii) p and JpJ are in M4,

(iii) p=pJpJ is in the center of M.

ProoF. (i) = (iii) p#{ < #; implies p=JpJ=p>=pJpJ. Let

&= [Cdju=1...n€ K,
¢ = [ udjk=2...n€ K51 and n:i=o0,®e A, .

Now the Jordan product

{diag (p,1,..., D¢ diag (p,1,..., 1)’} = (p®id,)E+ ((1—p)®id, )y € #; .
Hence pe 4 and p=JpJ e ANJMI = MO M'.

(i1i) = (ii) is clear.

(i1) = (1) p and JpJ commute. Hence

r:=0=-pJ(l-pJ =JrJedNJMI
is a selfadjoint projection. Theorem 2.2(iii) implies that
(r@id,)#; = diag(r,...,r)#;} diag(r,...,r)) = #} .

Hence r and (exactly by the same argument) 1 —r are completely positive. We
have that p(1—r)=p and (1—-r)JpJ=JpJ. Hence

(@=n=-pJ(Q-r)=pJ =r—r=0.

Now Corollary 3.3 implies 1 —r=p.

4. Characterization of matrix-ordered standard forms.

Let s# be a Hilbert space with a selfdual cone #* cH# and J=J -
the induced involution. A. Connes [9, Lemma 5.3] gave the following
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characterization of one-parameter groups of order automorphisms of (#, # *)
with a bounded infinitesimal generator 6 € B(#):
The statements

(4.1) (a) exp (t6)# " = H* for every t € R,
(by Jo=6J and & npe #*, ELn implies &Ly

are equivalent. Observe [6] that this equivalence is true even if # ' is not
homogeneous in the sense of [9, Definition 5.1]. A simple proof is given by
Evans and Hanche-Olsen in [21, Theorem 1].

The idea to use (4.1) in connection with matrix-ordered cones was developed
in [16].

4.1 LEMMA. Let 3 be a matrix-ordered Hilbert space with selfdual cones #
(n € N), J the induced involution, and .4 its matrix multiplier algebra. Suppose
that all completed faces of #, are projectable for every n € N. If x € M#', then
we have

(i) exp (t(x+JxJ)): # — # is completely positive for every t € R.
(i) JxJ € M.

Proor. (i) Let 6=x+JxJ. Then Jo6=4J. Let &,ne #[, Eln and F,
=(Fg)** the completed face generated by ¢ Then & e F, and n e Fy. We
write Pp for the selfadjoint projection on the closed subspace of #°; generated
by F,. By hypothesis F,= (F,@#,_,)*"* is a projectable face in #, for every
n e N. Theorem 3.8 shows that there exists a selfadjoint projection p € 4,
which satisfies Py =pJpJ and Pp:=(1—p)J(1 —p)J. With the aid of Corollary
3.3 we conclude from Ppi(§)=0 and Pg (1)=0 that p{=JpJ{=¢ and py
=JpJn=0. Hence

& my = {xpé,nd>+{IxJIpJEny = xEpnd+<{IxJE Ipiny = 0.

(4.1) implies now that exp (t8)# ;] < #; for every t € R.

By Corollary 2.3 and formula 2.9, the commutant .#, of the matrix
multiplier algebra .#, of (#,, #,, ne N)is 4 @M, M, is the opposite
algebra to M, and formally .#'®M, operates on #, by matrix multiplication
from the right hand side. Hence x®1, € .#} and we obtain as above that

exp (t(6®idy,) = (exp (10))@idy,

maps #, into 3, . This proves (i).

(i) Let x € ', x,=x@T,=x®idy, € M} and X, =x,®¢&,, € MY, where
€, Mv=12 are the usual matrix units in M, We define é=X,
+J X 21 € B(H#,)). Tt is easy to check that X7 =0 and X,J,,X,J,X,=0.
Part (i) shows that exp maps #3, into #3,.

Math. Scand. 51 — 17
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If &€ € o, then we define £=0,®¢ € H#';,. We obtain

30 X+ X x)E kakaf:I e #5,.

(expd)= = [ X, ¢

Using the notations (2.4) and (2.5) we have
{diag (JxJ,...,JxJ,1,...,)Ediag (JxJ,...,IxJ,1,...,1)’}
= (expd)E € H#5, .

Let a= (&}, 1,—€1;) € M, ,, where ¢,, denotes the matrix units in M,. Then
(1.11) implies that

{diag (JxJ, 1,. .., 1)¢édiag (JxJ,1,...,1)’} = a((expd)E)a* e #,F .
Hence JxJ € /.

4.2 LEMMA. Let A be a Hilbert space and # ™ a selfdual cone in #. Suppose
that for every ¢ € H#™, the completed face (Fz)** generated by & is projectable.
Then all completed faces of #™ are projectable.

PrOOF. Let F be a completed face in #*. Then
F = U {(F{g})“‘ e F} .

We write P, for the selfadjoint projection on the closed subspace of #
generated by (F)**. If &ne #*, E—ne#”, then FycFp, (Fp)*
= (Fig)**, and P, <P, Hence lim, r P, exists and equals Py the selfadjoint
projection on the closed subspace generated by F. In addition Pp#* =F.

If the selfdual cones #; (n € N) are all facial homogeneous (Connes [9,
Definition 5.17), then every completed face F=F'' in # (neN) is
projectable. The latter condition is formally much weaker and has a simpler
geometric meaning. In the following we have no assumptions on general non-
completed faces and obtain as a corollary that the cones are homogeneous
(cp. Connes [9, Theorem 4.6]).

4.3 THEOREM. Suppose that H# is a matrix-ordered Hilbert space with selfudal
cones #, (ne€ N), J=J y+ the induced involution, and .4 its matrix multiplier
algebra. Then the following statements are equivalent:

(i) (A, H#,#), ne N)is a matrix ordered standard form.
(ii) The completed face (F {,5})“ generated by & in # is projectable for every
e, neN.
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Proor. (i) = (i) (A,, #,, # ) is a standard form for every n € N. In the
case that ., has a cyclic separating vector &, € #,7, property (ii) was proved
by A. Connes [9]. For the general case see U. Haagerup [11, Chapter 2].

(ii) = (i). Lemma 4.2 and Lemma 4.1 imply J#J=.#'. Let p be in the
center of .#, i.e.p € .M NJ#J. Then JpJ is in the center of .# and Lemma 3.9
implies p=JpJ. The spectral theorem shows that JxJ=x* for every x in the
center of /.
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