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ON L,-DECAY AND SCATTERING FOR
NONLINEAR KLEIN-GORDON EQUATIONS

PHILIP BRENNER
Abstract.

In this paper we extend previous results on scattering and L,-decay for
nonlinear Klein-Gordon equations to a larger class of nonlinearities and to
dimensions n>3. In particular, for nonlinearities of the type |u/®”'u, the
existence of scattering states are proved for 1 +4/n<g<1+4y,/(n—2), where
y.=1 for n<10 and y,=n/(n+1) for n>10. No quantitative restrictions are
placed on the data. Earlier results of this type were only known for n=3 and
8/3<p<S.

0. Introduction.

In this paper we will investigate the decay in L,(R") as [t| — oo of the
solution of the nonlinear Klein—-Gordon equation (NLKG) in n=3 space
dimensions,

0.1) atzu—Au+m2u+f(u) =0, ueo =0, 0GUio=1VY,

where m> 0 and the data ¢, for simplicity are assumed to have sufficiently
many derivatives in L,(R"), and where in addition the nonlinear term f(u)
satisfies

() f(R)gR and F(u)=rf(v)dv§0 for all u e R,
0

(i) |fPWISClue™), j=0,1 and ¢>1,
If'(w)—f" W £Clu—vle™" if ¢<2 and
If" W) £ Clufe~? if ¢>2.

(i) uf(w)—2FWu)=aF(u), for some a>0 and
Fu)=Blu* (1 +u)~N for some f>0 and some g, N with
esg<oo and N20.

Let us, before we proceed, notice that ¢ in (ii) merely provides a lower bound
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for the corresponding ¢ =g, valid for |[u| <1, Ju —v| 22, and an upper bound for
the corresponding ¢ =g, valid for |u|>1 and |u—v|>2.

As a consequence of the L -decay-estimate that we will prove (under suitable
restrictions on g), we get the existence and asymptotic completeness of the
scattering operator associated with the NLKG. In fact, in Lemma 5.1 below we
will prove, for 1 +4/n<g<1+4/(n—2), and also for n> 10 if in addition g <1
+4n/(n—2)(n+1), that

(02) f If (@)l de < o0,

where u is the solution of (0.1). As is well known, (0.2) implies the stated results
about the scattering operator (cf. Reed and Simon [11, Ch. XI. 13], and
Strauss [12, Lemma 4.2]). In this paper we will concentrate on the L ,-decay
estimates, and as one application we will prove the following result on the
existence of the scattering operator as a consequence of (0.2): Let the energy
norm | ||, be defined by

ol = %J(!VUHMZIUHI@,U!Z)M,

and let a “free” solution of the Klein—-Gordon equation mean a solution v of
(0.3) 0 —Av+m?v = 0,

with suitable initial data.

THEOREM 1. Let n23, 1 +4/n<g<1+4/(n—2), and assume in addition that
0<1+4n/(n—2)(n+1) for n>10. Then for each solution u of (0.1) there exist
unique free solutions u ., that is solutions of (0.3), with suitable data in L} x L,
such that

Jlu(@)~uy (), —0 ast— too.

Previous results on scattering for the NLKG were proved by Morawetz and
Strauss [7] for n=3 and f(u)=u?, and extended by Pecher [8], [9], still for
n=3, for f (u) satisfying (i), (ii) and (iii) with N =0, for 8/3 < ¢ <5. Notice that the
lower bound for ¢ in Theorem 1 is 7/3 for n=3! For small data Theorem 1 is a
consequence of the result by Marshall, Strauss and Wainger [6] who actually
proved that the scattering operator in that case is in fact defined in a whole
neighborhood of the origin (cf. also Strauss [13]). That Theorem 1 cannot hold
for g<1+2/n was proved by Glassey [S] (cf. also Strauss [12]).

The estimate (0.2), and hence the proof of Theorem 1, is based on the
following L ,-decay result for solutions of (0.1):
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Let 1<p=2<p <oo, I/p+1/p'=1and 6=1/2—-1/p. If 1+46<p, (n—1)8
<1, and 1+4/n<e<1+4/(n—2), and g<1+4(n—-3/2)/(n—-2)(n—1) for
n> 10, then

(0.4) [ul, = CA+1)™™, 20.
If in addition ¢ <1+4n/(n—2)(n+1) for n> 10, then
0.4y lu@ll, £ CA+07", 120,

With a little care and Hoélder’s inequality, we will prove that (0.4), or rather
(0.4), will imply (0.2).

From the L -estimates (0.4) and (0.4) one may also obtain maximum-norm
decay results using the jacking-up process suggested by Pecher [6]; we refer to
[4] for such results.

The proof of (0.4) and (0.4) is based on the following (known) basic
estimates for solutions of (0.1) and (0.3): Below, E;(t), i=0, 1, will denote the
solution operators of (0.3) so that v=E,(t)p+ E,(t)¥ is the solution of (0.3)
with data u|,_,=¢ and o,ul,.,=y.

A Let 1Zp£2, 1/p+1/p=1,1Z5q=00, and 6=1/2—-1/p'.
Let B} denote the L, -based Besov space of order s=0. Then

(0.5) IE:08llgye < K(@)lIglpe Ost,
where

t—-(n—-1+9)6 , tgl ,
06) Ko = C{t”“s'“z"", O<t<l,

provided é(n+1+60)<1+s—5, 0<6=<1 and 5,5 20.

For a definition of the Besov spaces involved, see e.g. [2], [3]. We will
frequently use the following well known inclusion between Besov and Sobolev
spaces:

0.7)
Bs*2L, 1<ps2 and B2 c Ly, 25p <.

As norms on B}? and on L} we will use, with s=0+S, 0<o<1,S an integer,

1 a4\
fullpse = Ilull,,+(j <t"’ Y W,,(t,D“u)> 7) ,
0 laj=S

w,(t,v) = lilllp los—vll,,  va(x) = vix+h)
st
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and, with #Fu =1 denoting the Fouriertransform of u,

lully = lull,s = 171 @EA+IEPFI,

respectively. Notice that if s is an integer and 1 <p<oo, then

lullp,s ~ lull,+ ‘Z I D*ul, .

The estimate (0.5), (0.6), in the following for simplicity called estimate or
inequality A, is easily proved using the method of the stationary phase as in [2]
(using e.g. Theorem 3.2 in [1]). The corresponding L,— L ,-estimates are
contained as special cases of the L,— L -estimates proved by Marshall, Strauss
and Wainger [6].

Next we will use the well known property of preservation of energy of the
NLKG (0.1) when (i) holds:

B. Let u be a solution of (0.1). Then
Ew) = |}u||§+JF(u)dx = constant, t=0.
Finally we will use a weak decay estimate due to Morawetz (cf. [7]):

C. Let u be a solution of the NLKG. Then
2F
H W =2FW 4 < CEW .

Together with the integral equation for the solution of NLKG and the finite
speed of propagation of supports, the estimates A, B and C above are the main
tools, to be systematically used throughout this paper. In order to cover the
case 9<2, i.e. space dimensions n=6, we will use additional Besov space
inequalities for f(u) of a type already employed in [3].

Conceptually this paper owes much to the papers by Morawetz and Strauss
[7], Pecher [8] and [9] and Strauss [12], although the present set-up requires
a technically more involved argument. The main difference is the systematic
use of L,— L ,~estimates, and, in higher space dimensions, of the corresponding
Besov space inequalities.

1. On the uniform boundedness in L, of solutions to NLKG.

Let us first fix some restrictions on p/, and so on §=1/2—1/p' 20, having
various applications of the stimate A in mind. We introduce the following
condition:
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(%), Let 1/p+1/p'=1, 2<p'<o0, 6=1/2~1/p', and assume that for some
0e (0,1]: n—14+60)0>1>(n—1-0)5, and that for some s,s' € [0,1],
n+1+0)0=1+s-5".

Remark 1.1. Under assumption (x),, inequality A, i.e. (0.5) and (0.6), holds
with K(¢) e L, (R ).

ReMARk 1.2. Define r=r(p’,s) by 1/r=1/p'—s'/n, where p',s' satisfy (x),.
Then
1/r = (n=2(1+5)+2(1+6)9)/2n .

Thus for each 7 sufficiently close to r, there exist p,5 such that (*); holds for
p',§ and such that F=r(p’,§). Notice also that (), implies that 2(1 +0)6 >s—s
> 20.

We will throughout this section assume that f satisfies (i) and (ii) in the
introduction. Since we may have to use fractional derivatives, that is Besov
spaces, for high dimensions, a number of arguments will split in two cases.

The following two lemmas and their corollaries will be very useful in what
follows.

LEMMA 1.1. Assume that (), holds, and that for some n € (0,1].
(L1, 14+46-20n £ ¢ £ 0, —2(1-(1+0)9)/(n—2), o22-1
where 9,=(n+2(n—1—0)8)/(n—2). Then
(1.1) 1@,y < Cllullgy! " llullp )

Proor. Apply Holder’s inequality to

1@l = C Y ule™2"ul* "D, .

lajs1
The lower bound for ¢ is obtained from
Hule =2l =D, = Cllull§™ > "lull,~ "I D%ull,

which holds for

= -, Q“2+'I§O,

N -
|

1 1
Sle—2+n+— (I-n+

p
that is for 9=21+46—20n, ¢=2—#. Similarly we obtain (1.1) for all g’s
satisfying (1.1),, using the relation (n+1+0)6 =2 —5 and Sobolev’s embedding

theorem.

Math. Scand. 51 — 22
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By chainging sign in the above argument we get:

COROLLARY 1.1. Assume that (x), holds and that for some n=0,
(1.2), 1+46+20n S ¢ S 0 2+n =0,
where g, is defined as above. Then

(1.2) 1f @, = Clullgy ~"lullpty .

Next, we treat the case of fractional derivatives:
LemMma 1.2, Assume that (%), holds and that for some n € (0,1]

1+s—(1+0)5_2g—1—s

(1.3), 14+46-26n <9 = 0,—2n

n—2 n-2 °
l+s—n <0 <21
where g, is defined as above. Then
(1.3) If @z < Clullsy "lully

Proor. In view of the norm used on Bj? it is enough to estimate

o f ) =S @l A =1,

by
(L.5) t ) —f @I, £ Ct™*fluy—ull§™ " u,—ull 278" )¢}
+Ct ™ lu,—ull§ ™ " ull

which holds by (i) and (ii) and Holder’s and Sobolev’s inequalities provided
1-n=¢=£2-nand

!

1 1 1 1
— _ —(] — > > —(o— PR, —_
2(@ 1+'1)+p,(1 n)=p= 2(@ 1+r/)+<p, n>(1 n,

which is equivalent with (1.3),. If we estimate |lu,—u|/, by
lup—ul§™ " < Cee™ P w3t ", hI<t,

and integrate (1.5) after squaring both sides, we obtain (1.3) after having
carried out the estimate corresponding to (1.5) for f(u) with s=0, provided
¢—1+n>s. This completes the proof of Lemma 1.2.

As above, we obtain by a change of sign:
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COROLLARY 1.2. Assume that (), holds and that for some =0,
(1.4), 1+46420n < 0 £ 0,—2(0—1-5)/(n=2), 1+s+n <o £ 247

where g, is defined as aobe. Then

(1.4) I/ @lgz = Clluldy uly’

REMARK 1.3. In (1.1) through (1.4) we may replace the Lj,', norm on the right
hand sides of the inequalities by L,-norms with 1/r=1/p'—s'/n, that is
r=r(p’,s’) defined as in Remark 1.2 above.

We now proceed to prove a boundedness result for the solution of the
NLKG.

LemMA 1.3. Let n23, 6(n—1)<1, 1 +25 <g, where 1 +2/n<g<1+4/(n—2),
with 6=1/2—1/p', p'=2. Then for any solution of the NLKG

sup [u(d)], < oo .
t20

Proor. It is enough to prove that if 1+256<p<g, d(n—1)<1, and if (x),
holds either with s=1 or else with s<g—1, s close enough to g—1, then

(L6) sup [u(®)ll < 00

t20

To see this, notice that as 0 runs from 1 to 0 in (%), s choosen as above, then
the set of possible choices of é runs through the interval (1/n,1/(n—1)). Thus all
values of g in the interval (1+2/n, 1+4/(n—2)) will be obtained by suitable
choice of § and § in (). Interpolation with the uniform Li-bound of u
provided by the energy inequality B, now completes the proof of Lemma 1.3
from (1.6).

In order to prove (1.6) we shall prove that either (1.1), or (1.3), is satisfied.
As long as 1 272 (n—5)/(n—3) we will use (1.1), and (*),. If n<5, this covers
all values of n in (0,1], and (1.1), may be satisfied by suitable choice of . If
n=06, we may still statisfy (1.1), for 0 <# <1/3, as simple calculations show (let
0 be close to 0 and d(n—1) close to 1 when n<1). For n>6, we will for n<
(n—5)/(n— 3) instead satisfy (1.3),and (), with s <¢ — 1 sufficiently close to g — 1
(notice that gp<2 for n>6). Again, this is easily verified, and we omit the
details.

Since (), will imply that inequality A will be valid with K(t) € L (R.), we
easily obtain from (1.1) or (1.3) and the uniform Li-bound B,
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t

(1.7) lu@lx; = C(wnﬁHJ K= f @)l xsdz
(0]

T
< c+cj K(—ollulls"de,

(]

where X3, is B3:2 if (1.3) is used and L3, if (1.1) is used. The inclusions (0.7) and
(1.7) also imply that

sup u(d)llx; < c<1+sgg ||u(r)||‘x;")

T2t

and so that (1.6) holds, since #>0. This completes the proof of Lemma 1.3.

REMARK 1.4. If r=r(p',s’), where p', s’ satisfy (*), then r>g+ 1. To see this,
merely observe that since by Remark 1.2, s> 24,

Lo n=2_ n=2049+20400 1 o\
Q+1 2n 2n r

Thus (1.6) is an improvement of the estimate B.

2. On the uniform convergence to 0 at co in L} -norm of solutions to NLKG.
For a while we shall assume that

(##) the data ¢,y for (0.1) have compact supports contained in |x| < R, < 00.
We will later remove this restriction.

Lemma 2.1. (Morawetz and Strauss [7]). Let (x*) be satisfied, and let ¢, T,
and S be positive numbers. Then there exists an S, depending boundedly on S, T,

& and the energy E(u), but not depending on R,, and there exists an interval
I=[t*-2T,t*]1<[S,S,] such that

Jf F(u(x,t)dxdt < g, .
I

For a proof we refer to Morawetz and Strauss [7, Lemma 3 and pp. 17-18].

LEMMA 2.2. Assume that (x) and (%) hold, with s chosen such that s<g—1
and either (1.1), or (1.3), are satisfied for some n € (0,1). Then for ¢, T and S
positive numbers, there is an S,>S independent of R, and an interval I=
[t*=T,t*]1<[S,S,] such that

sup [u()l e < ¢
tel
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PROOF. Let us write the lower bound (iii) for F(u) as
F(u) = Bluf*'(1 +u))~NE+D

Let >0 (small and let r=r(p’,s), 1/r=1/p'—s'/n, where p’ and s satisfy (*),.
Then

fuly = J(l +[ul) ™ Vol |l (1 + u) V" dx

. . al(@+1) 1/q
< (f(wlul)‘”‘@”’iut@“dx> ( j (1+lu|)N"“|u|("""‘dx> ,

where 1/g=1—0/(¢0+ 1) is chosen close to 1. In particular, we want Nog+
(r—o)q <7 and 2 < (r—a)q, where also 7 is of the form 7(p’,§) with p’ and §
satisfying (x),. This is accomplished by choosing ¢ >0 small enough. If we now
apply (iii) and (1.6), that is the fact that sup |u(t)||, < oo for 2 <r <, we obtain

@.1) ()], < CGF(u(x, t))dx)a,

where C is independent of t and where o =0/r(g+1)>0 is as small as we want
by suitable choice of o.

If we now apply (1.1) or (1.3), using L,-norms instead of L}-norms (as
suggested in Remark 1.3) we obtain by using inequality A and the uniform
boundedness in L} (ie. the energy estimate B) of u(t),

t—T t
lu@®lxs = C(1+t)’""+Cj +CJ K(t=9)llu@)|; ""d
0 t-T

t
S C(l+n™™+CT 714 C j K(t=)llu@|, "dr,
t—=T

where X%, is either LS, (if s=1) or B}:? (if s<1). In both cases X$. < L3, by (0.7).

p=
Next, since r=r(p,s’), where as above p',s satisfy (), we have by (2.1) that

a(l —n)
lu()l; ™" < C(JF(u)dx>

and so

lu@l ¢ £ Cllu@lx: £ C(L+) ™+ CTH071¥0

T 1/q t a(l —n)
+ C(j K(1)? d‘c) (j J‘F(u) dx dt)
0 t~T

where 1/g=1—0a(l —n) is chosen so close to 1 that K(t) € L,(0, T). Let now
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t*=22T+S in Lemma 2.1. Then, for t*—T<t<t* we find that [t-Tt]c
[t*—2T,t*] and hence for ¢t and T large enough

Ju@)ly,s S Ceg+Ces1 ™ < &
for sufficiently small ¢,. This completes the proof of Lemma 2.2.
Next, we shall prove that we actually have uniform convergence of u(t)| - 5
to 0 as t — oo. In order to do so, we have to sharpen the lower bound for g:

Instead of allowing g’s in the range 1+2/n<g<1+4/(n—2), we will have a
new lower bound 1+4/n<g.

LEMMA 2.3. Let (%), hold with s chosen such that either (1.2), or (1.4), holds for
n>0 small enough. Then
fim Ju(@l,., = 0.

t— 00

RemMark 2.1. If
22) 14456 <9, o(n-1)<1 and 1+4/n<g < 1+4/(n-2),

then we can find p', s’ satisfying (*), (and s=1 or s<g—1 sufficiently close to
¢~ 1) such that (1.2), or (1.4), will hold for n >0 small enough. The verification
is simple: Choose #> 0 sufficiently small and let 6 run from 1 to 0 in (x),. Then
any 6 in (1/n, 1/(n— 1)) can be obtained, and so any g satisfying (2.2) will satisfy
either (1.2), or (1.4), for suitable 6 and s.

Proor oF LEMMa 2.3. Let 6> 0 be so small that, with C given by (2.3) below
e"C, J K(r)dt < 1/3.
0

Determine t* by Lemma 2.2 such that
lu@ly s <& for t*-T<=t < t*
and define
t** = sup{t; Ju@®l,, <& in [t*=T]}.

If t** =00 there is nothing to prove. Thus, assume that t** <oo. For ¢, small
(to be specified below), let t** <t=t**+¢,. Then by the estimate A and (0.7)

t—T t*
lu@®l ¢ = Cllu@llxs = C(1+t)"""+J +f ;
0 t—
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+L‘ K=ol f @lx; dr,

where as above X} is L) if s=1 and B5? if s<1, and with the corresponding
choice of X3,

The first term is estimated by c(1 + T)™", since t > t** = T. For the estimates
of the following terms we apply (1.2) for s=1 and (1.4) for s<1:

(2.3) If@lx; £ Collully?y

where once more the uniform boundedness of the L}-norm has been used.
We find by inequality A and Lemma 1.3 (or, rather, (1.6)) that the second
term is estimated by

T
CJ (t_T)~(n—1+0)||u“117’-,+srldr é CT1~(n—~l+0)6
0

and by (2.3) and the integrability of K(t), and our choice of ¢>0,

J TK(t~T)Hf(u)llx;dT

t—

= Coj K(@)ydrsup {{u(@)l,7; t—T\étét*} <3,

0

applying the definition of t**. Finally (1.6) and inequality A imply that

IA

t**

t t
j K= fWllx;dr = CJ (=" ")), dr
t**

A

C(t_t**)l—(n—1~-6)6 § Ce}—(n«l—())é .
Adding these estimates we have
(24) “u(t)”p',s' § C(l +T)-m§+CT1—(n—1+9)6+_§_6+C8}—(n—1—0)6 .

By condition (*), (n—1+6)6>1>(n—1-0)d, and so we may choose T such
that the first two terms in (2.4) together are less than ¢/3, and we may choose ¢,
>0 so small that also the last term in (2.4) is less than ¢/3. Altogether, we have

lu@®l, s <e fort** <t < t**+¢, ¢ >0,
which contradicts the maximality of t**. Thus t** =00, and Lemma 2.3 is

proved assuming (**). Let us finally remove this assumption:

Notice first that S, in Lemma 2.2, and so t* in the proof above, can be
chosen independently of the supports of the data. Let v=u, be a solution of
NLKG with compactly supported data ¢y, Assume that ¢, and y,
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approximate ¢ and ¥ in L%, for k large enough. Choose t* independently of v
such that |lu,(t)] ¢ <& for t=t*, which can be done by the above proof. Then

lu@ly,s = luy@lp,s +Ilu@—u,0Ol,,¢ < e+ lu@—u,@Oly.s -
Lemma 2.3 now follows in general if we can prove that
(2.5) lu@=u, Ol s -0 asv—o00,each t =2 0.
But a simple computation, given in the appendix show that, with u,=u,

(2.6) lu—vlly +lu=vl, ¢ £ Cllo—o 0+ V=¥l

+Cf I+ K@= llu—vly,¢+llu—vll,}dr,

0
and so by the standard estimates for Volterra integral equations,
lu=u,@lys £ o=@ lliat ¥ =¥l }C0,  C@) e Ly,
and so (2.5) follows.

3. Proof of the L ,-estimate (0.4).
We begin by proving a well known variant of Gronwall’s lemma.

LemMMA 3.1. Let K20, K € L,(R,) and assume that for some £>0,
3.1 K(r) £ Cl+7)7 175 121.

Assume also that 0L h(t) £ C for 120 and that h(t) — O ast — oo and let 1 +¢
2x>0. If f=0 is uniformly bounded for 1=0 and if

(3.2) f@ £ C(1+t)”‘+f K(t—2h(t)f (1)dr,
0

then

(3.3) f(y £ Cl+n™* t=0.

Proor. We may assume that » =¢k for some integer k> 1. Let us first prove
that if for some j=1,

(o) f!Z K({t—oh()f(t)ydt £ C(1+1)~%

0

then, for je< x

B) fysca+y™® t20.
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Once this assertion is proved the lemma follows: To see this, notice that (f)
and (3.1) together imply (o) with j replaced by j+ 1. Thus (3.3) follows after a
finite number of steps, since (o) certainly holds for j=1 by (3.1) and the
boundedness of f.

Assume now that (o) holds. Then by (3.2)

t/2 t
f = C(l+t)”‘+f +j K(t—1h(r)f (r)dr .

0 t/2

Let m(f)=sup,, (141)f(r). Then, since for & <x,

1+ (1) £ C+f K(t—t)h(r)dr-m(t) .

t/2

Now, since h(t) > O ast— oo and K e L,,

t

J K(t—1h(t)dt -0 ast— oo,

t/2
and so, for some t, < 00,

1+ (1) = C+im(), 2 t,.
Thus,

m(t) £ C+im@t), t=0,

and hence m(t) is bounded and (f}) follows. This completes the proof of the
lemma.

We are now in position to give a proof of the decay estimate (0.4), that is: If §
=1/2—-1/p'20, (n—1)<1 and 1+45 <p, with 1 +4/n<p<1+4/(n—2), then
the solution of the NLKG (0.1) satisfies the decay estimate

(3.4) lu@)], £ CA+n~ "1+
where 6=1 if
<1+ 4 noz
e n—2 n—1"

and 0<6<1 for

4 _n—%< <1+ 4 n—-1-36
n—2 n—1 =0 n-1 n-—1

Proor oF (3.4). First, let #>0 be sufficiently small, such that for the g in
question, either (1.2), and (%), or (1.4), and (*), with s <@ — 1 sufficiently close
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to ¢ —1, hold. As shown above, such a choice of >0, é (and p’,s') is possible.
From inequality A and either (1.4) or (1.2) we obtain

lu@ll, .y < CL+1)™™+C j K(t—1)u(0)) ) de .

0

With f ()= u()ll, s and h(t)=[u(®)|}, s, and noticing that K € L, satisfies
(31) for (n—1+0)0—1=¢>0 by (x), we find by Lemma 2.3 that the
assumptions in Lemma 3.1 are satisfied with x= (n—1+ 6)d. The conclusion is
(3.4), provided 6 satisfies the above restrictions. The general case now follows
by interpolation with the uniform bound for {ju(t)|, ; which follows from the
energy estimate B. This completes the proof of (3.4), that is of the L ,-estimate

(0.4) in the introduction.

4. Proof fo the L) -estimate (0.4).

In this section we will prove (0.4), thatis: If 6=1/2—1/p'20, §(n—1)<1,
1+4d<yg, and if 1+4/n<g<1+4/(n—2), and in addition g<1+4n/(n—2)
(n+1) for n>10, then

(4.1) Clu@ly, = CA+DT

for the solution u of the NLKG (0.1).

The proof of (4.1) is much more complicated then that of (3.4), in particular
for the case ¢ <2. The argument in that case is effectively a boot-strapping
argument, carried out though several lemmas. The arguments may also be used
to prove uniform (that is L) decay estimates as in [4].

LEMMA 4.1. Let 1/q+1/q' 22, and §=1/2~1/q' with d(n+1)=1—¢ 0<e< 1.
If 14+20r<o<1+4 (26 +¢/n)r, then

If@lgs < Clullé™ ullg, 1+ -

REMARK 4.1. If we in addition assume that 1/r=1/p’ —s'/n, where p’, s’ satisfy
(*), with either s=1 or s<g—1 sufficiently close to ¢—1, then the above
limitations on r and ¢ imply that we may use any ¢ with g < (n+2)/(n—2) for
n<10 and with go<l+4n/(n—2)(n+1) for n>10. The corresponding
computations are identical with those of Lemma 6.3 in [2] for n<5, and
Lemma IILS in [3] for n=6.

In order to shorten some staements below we introduce the notation

. 4/(n-2) , ng10,
e = MW/ n=2)(n+1), n>10.
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Proor oF LEMMA 4.1. By Holder’s inequality and (ii),
1f@llgy S Cllullg™ ulg, 4

with

-1 _
e 254
-

S oy

If we let £=0 we obtain the lower bound for ¢, and if we let £=¢, the
corresponding upper bound. This completes the proof of the lemma.

The next lemma will be crucial for the proof of (4.1), and will be the starting
point of the boot-strapping argument.

LEMMA 4.2, Assume that 1+4/n<o<g,. If 3<n<5 and 2<p, and if §(n+1)
=1—¢ 0<e<1, with §=1/2—1/¢', then
lu@llg i+ £ CO+DT.

If n=26 or if <2, the same conclusion is valid for =0, that is for S(n+1)=1.

COROLLARY 4.2. Let 3<n<S5, and 1 +4/n<p<1+4/(n—2) and 9>2. Then

sup lu@llz,2 < 0.

The corollary is an immediate cofisequence of Lemma 4.2 with ¢=1.

ProoF oF LEMMA 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then
by inequality A

1

@2)  (u®lg. 4. < CL+D)™+C J (t—7) """ D3| fw),., de

0

IA

t

Cl+n™"+C j (=1~ ()| u(@)ll g 4 de .

0

A

We may now apply (3.4),
(4.3) lu@)ll, £ C(L+g~ "7 1*%,
provided we also satisfy the limitations
n—-1D6 <1, 14406 <o, 1+4+4/n <o < g,

(2nd+e)/n(@—1) = 1/r = 2nd/n(e-1),
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under which we will prove that we may choose d such that

4.4) Sn—1)+(@-)n—1+65 = > 1.

We will choose =1 if p<1+4+4/(n—1), 0>0close to 0 if 1+4/(n—1)<e<g,
We also let 1/r=1/2—6—a/n, where §<8'=1/2—1/p’ and 6 <5, and (%), holds
for p', s’ with s=1 if > 2, and with s<g —1 close enough to ¢ — 1 for ¢ <2. Let
us prove (4.4) afterwards, first showing how (4.2), (4.3), and (4.4) will imply the
statement of the lemma.

Now, if (4.3) holds we have for §>0

(4.5) f (t—1) """ D)o dr
0

C J‘l (t_,r)“('l‘l)s(l+T)—(n—1+0)6(q—l)dt
0

t/2 t
= CJ +J (t—1)" D1 47) - 140%-Dgr < C(141)'"F,
0 t/2
where =B if (o—Dn—1+05<1, 1+ (n—1)56=p>1 otherwise. If §=0,
lull¢~* is integrable by (4.3) and (4.4), and so ||u|l, ,=ull, ., +. is bounded by
Gronwall’s inequality. If §>0, we have by (4.5)
lu@llg,1+e = C(1+t)_"5+C(1+l)‘"”'OSUP lu(@ g1+ -

<tst

Since (4.4) holds, and since (4.2) and (4.3) imply that [u(})ll, ;.. € LI%R,)
this gives by (4.2) and (4.3) that
by (4.2) and (4.3) that

It remains to check (4.4): As above, let 1/r=1/2—0—a/n, where 66" =1/2
~1/p’, 6<s, where p’ and s satisfy (), for ¢>2 and (%), with s<g—1
sufficiently close to ¢ —1 for ¢ <2. Since d < (9 —1)/4 we may choose s in this
way in (1.4), for #>0 sufficiently small.

Let first £=0, that is 5(n+1)=1. Then (4.4) means that if g<14+4/(n—1),
0>2/(n+1)(e—1)n, and if g>1+4/(n—1), 6>2/(n+1)(e—1)(n—1). Since
¢>1+4/n, we take 6>1/2(n+1). Notice that

2nd/n(g—1) £ 1/2—1/2(n+1) for ¢ > 1+4/n,

Ju@lg14e S CA+D™, S(n+1) = 1-¢.

while by the remark after Lemma 4.1, we can find p’,s satisfying (x), and
0'=1/2—1/p'<min[(¢—1)/4,1/(n—1)] such that 1/f=1/p'—s'/n is at most
2nd/n(g—1) for g<g,. Thus we may choose 1/2(n+1)<d<¢, 0o <s such
that 1/r<2nd/n(g—1), 1+4/n<g<g,, < (0—1)/4 and such that (4.4) holds.
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This completes the proof of (4.4) under the given limitations for all n =3, when
e=0,ie d(n+1)=1.

Next, consider the case ¢>2 and n<5. As in the proof above, it is enough to
find a 6, <6’ such that 1/2—8,=2n8/(n—1+0)(¢—1) and 5(n— 1)+ (¢ — D)nd,
=p>1, ie. such that

(e=Dn—1+6)0,+(n—1)0 < e~ n—(n+1)5,
dn—-D=@-Dn-1+0, > 1.

These two inequalities hold for ¢>1+4/n, (n+1)<1, provided (n—1+6)5,
(e—1) is close enough to 1 —&(n—1). Thus it remains to show that §'=d,>
(1-=3(n~1))/(n—1+6)(¢—1). Butfor g>2,8(n+1)=1—¢<1, the largest value
this lower bound may take is 1/n, and so this inequality holds for all ¢’ for
which (*), holds. This completes the proof of (4.4) in case ¢>2, and 0Ze<1,
and so of Lemma 4.2.

We next prove (4.1) using Corollary 4.2 and the following Lemma.

LemMA 4.3. Let 3£n<S5, 2<g, 1+4/n<g<(n+2)/(n—2) and assume, as
before that 6 <(¢—1)/4. Then for n>0 sufficiently small and 2<r=p’

1@z = Cluls ~lully, s+ llulll .
Proor. By assumption we have
10.0,f @) £ C(jule™2"10ull0 ul ] + ule =2 ~"|ul|0,0 ul [ul") .
Let 0=0<2,0=f<1 and 0<s<s. Then by Holder’s inequality
1@,z < Clluls? ™ ulls, s+ plully, 1+ sllull?

+Clul§ 2 uly, g sllulla, 2 ully

valid for

son

1 1 o\ 1 g 1
i ‘@“2‘"’(5‘;>+5";+;‘n r

A lower bound for g is obtained by letting o =f=5=0:

1
'1+‘—,+g.

L_e-l-
p 2 por

For r close to 2 and >0 small enough, any d < (¢ —1)/4 will do. Next, an
upper bound for ¢ (and correspondingly a lower bound for J) is obtained by
letting =2, f=1 and 5=,
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1 n—4\ 1 1 145§ ¢
- = (0—2— 0, )g-4-— 1.
’ (0—2 n)max( " om >+2+p’ p +

r

Thus by Remark 1.2, we find this to imply the bound

-4 —6+26(1+0 1 -4
02 (9“2)(n2n> + +2n( . )+n(;_<n2n ) >

For n>0 small enough and n=3, 4 or 5, this holds trivially for any with 2<g
<(n+2)/(n—2) and any & with 0<é<4i. This completes the proof of the
lemma.

Proor oF (4.1) FOR 3=n=<5 anND ¢>2. Since by our previous results
lu(®ll,, — 0 as t — oo and since by Corollary 4.2, |[u(t)|,,, is uniformly
bounded for ¢t =0, we may use Lemma 4.3 and then take h(t)= ||u(¢)||} and f ()
=|u(t)ly,1+y and use the argument which proved (3.4) from Lemma 3.1.
Since, by interpolation |u(t)]|, — 0 as t — oo for 2<r=<p’, the assumptions of
Lemma 3.1 are satisfied, and so (4.1) is proved in case 3<n<5 and ¢>2.

We now proceed to discuss the case ¢ <2. We may then only use the second
part of the conclusion of Lemma 4.2, that is

(4.5) lu@ly: S CA+D™™
for §(n+1)=1, §=1/2—-1/¢' 20.

LEMMA 4.4. Let d(n+1)=1, 8,=35/2, with 1/r=1/2—6,, and s=5 <p—1.
Then for 1+4/n<g<g, and |n|>0 small enough

1f @)lgeeee < Clulest ™"l b,

where in addtion 5,(¢—1—nn+d(n—1) > 1.

COROLLARY 4.4 (Iteration argument). Let §(n+1)=1 and s’ <g—1. Then

(4.6) lu@ly, 140 S CA+D)™

LEMMA 4.5. The conclusion of Corollary 4.4 holds for all § with0<5(n+ 1)< 1.

Proor oF LEMMA 4.5, It is enough to prove (4.6) for ¢ =2 (and §=0). The
statement then follows in general from interpolation.
If 6(n+1)=1, 1/¢'=1/2—3, then

1/ @2, = Clf @ gy+e2,

if 1/g—(s+1)/n<1/2—0/n, g<2, that is if 6<s+1-nd=s+1/(n+1). By
Lemma 4.4,
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= C(1+0)7"

1Lf @lgyes2 < Cllulle3 ullprove £ C(1+0)~ % D(1 )7

and, since y=nd,(0—1)+nd>1+4,

t t
lullz, 140 = C+j Clf@ll,,,dr = C+CJ (I+077dr £ C < o0
0

(o]
by which

sup [u(®l2,1+, = C < 00,
t
for any 6 <g—1+1/(n+1). This proves the lemma.

Proor oF LEMMA 4.4. Let |#|>0 be small. For |¢|<1 we have

@7 t7ID ) =D g = Ct™*|Du—Duy|lp Nuullf s+ N2y "

+Ct ™ lu—u, |27 " Doul g
provided || >0 is small enough, and

1 1 _1 1 1 14¢ 1 1
4.7a 1+n)—=+@—-1-n-2-= —+n|{—-— ~1l-p)l-—-
(47a) ( n)q, (e - 2,27 n(q, ” )+(e n)(r n)
and

1 1 _1 1 & 1
4.7b 1 — —l-np-=z-2=2( ——— —1—n)-.
(4.70)  ( +n)q,+(@ m. z 2 ( +n)<q, n>+(9 I=n)-

First, both (4.7a) and (4.7b) will give the same lower bound for the admissible
values of g:

0= 142r6+rmd = 14+ 26+18)/(1/2-6,) = 1+(4+2”)T%

= 14+@+2n)/n,

that is each ¢>1+4/n will be admitted in (4.7) provided |7|=|n(g)|>0 is
chosen small enough. If we let s=s" be sufficiently close to ¢—1, then (4.7b)
gives an upper bound for ¢ of the form

11 11 s\ 1 ,
(Q-U(;—;) < 25+n<;—;+;)—;(9—1—8)-

The last two terms may be choosen arbitrarily small by suitable choice of |n|
>0 (small) and 5'<g—1. Thus we only have to check that

25— nr

+1 2 g, .
n—r
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But with our choice of r and § the right hand sie of this inequality
becomes

4 nd
n—21-nd/(n—2)

where nd>1—nd/(n—2), that is nd(1+1/(n—2))>1, since d(n+1)=1 and
n(n—1)/(n—2)>n+1 for n=3. Thus

dn+nfr—1)/(njr—1) = 1+4nd/(n—2—-5n) = 1+

=~

4 >
2=Q

gives an upper bound for those ¢ that are admitted in (4.7b). Notice that (4.7a)
gives the same upper bound for ¢ as (4.7b), but without the (¢ — 1 —s')/n-term,
that is an even larger upper bound for g. Thus (4.7) is valid for s=s'<g—1
close to ¢ —1, and |»| >0 small enough. Squaring and integrating (4.7) against
dt/t over (0, 1), we obtain the desired estimate, provided 9 — 1 —n>s=s’, which
holds for |7/ >0 small enough.

It remains to verify that

S,(0—1—mn+dn—-1) =4 > 1.
But by definition

B = Gle—1-nn+(n-1)5 = ((g—l——n)g—z)/(nﬂm > 1,

if ¢>1+4/n+n, which is the case for |§|>0 small and ¢>1+4/n. This
completes the proof of Lemma 4.4.

ProoF oF CoroLLARY 4.4. Since (4.6) is already known for s'=0 by Lemma

4.2, it is enough to consider the case when s’ is close to ¢ — 1. Let us then apply
inequality A and Lemma 4.4:

48)  Ju@|g2 £ CA+D)™+C J (t—1)" D) £ (u)]| gy +s2dt
0

A

C(1+t)‘"5+CJ (t—1) D3 ue 3 " u| 52 dr

Now
”u(t)”0 1-n < C(1+t)"m§,(g——1_.,,)

by Lemma 4.2 (5,=45<8!) and (n—1)6+nd,(¢—1—n)=p>1. With y small
and negative, we find that, as before, since



ON L,-DECAY AND SCATTERING FOR NONLINEAR KLEIN-GORDON EQUATIONS 353

t
J‘ (t—1)~ "~ DS(1 4 gyrdde=1-m gr
(V]

is uniformly bounded, also [|u(t)| B2 is uniformly bounded. Next, (4.8) will
then imply that |[u(t)|| g+ — 0 as t — oo, with a rate of at least (1+1)' 7,
where we now have used #>0 (and small). An obvious iteration argument in
(4.8) will now imply (4.6) for s sufficiently close to ¢ — 1. As mentioned above
this completes the proof of the corollary.

LEMMA 4.6. Under the above assumptions, if (), holds for ¢ —1>s, then with
O,(n+1)=1,

U@l 19 S CA+)™e.

Proor. It follows from (x), and the above assumption that is enough to

prove the estimate for s’ <9 —1—20. But Sobolev’s embedding theorem implies
that for any s’ <g—1-—296,

(4.9) lu@lly,1+5 = Cllu@llg, 1+
provided
| Y 1 d
Pl i
p n q
that is if

1
o >s+n6-48) =s +m.

Since the upper bound for s’ is ¢ — 1 — 26 and 6 > 1/n by (%), (4.9) holds for any
¢’ <o—1 which is sufficiently close to ¢—1. But for such ¢’ we have the
estimate (4.6) for the right hand side of (4.9), which proves Lemma 4.6.

We are now in position to prove (4.1) also for ¢ <2, that is (0.4) in the
introduction, using the following lemma:

LeEMMA 4.7. Assume that ¢ <2, that (), holds with s <@ — 1 sufficiently close to
0—1, and that S(n—1)<1, 1+46<g and 1+4/n<g<g;, Then

U@l 1se < CA+O™™.

PRrOOF. Let g—1>0>s. As above we have

410) [ f @l £ Clully,ssollullgida+ Clul2 iy lullull s

Math. Scand. 51 — 23
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provided d(n+1)<1, §,(n+1)<1 and

1 1 1 ¥
g—7+m—n(7—i)
P q p n

1 o 1 s
w—n(u~)+f——.
r n) p n

From (4.10b) we get the following upper bound on g:

[\
|

1 1
(4.10a) —+-1)-=
q p

v

(4.10b) lo-n+i 2
r 14

SRR

26n+s  rn
n n—ro

o =1+

and as

r - 2
n—re n-—8/n

a straightforward computation gives
¢ £ {(n+26(n-1)/(n-2)-2(e—1-15)/(n—2)}
while (4.10a) gives correspondingly, with §=1/2—1/q,

’

(Q—l)(%—é— > < 0+94,

s
n
by which

n+2-2/(n+1) n+2

¢ = - (1400) n—2'"
It is not difficult to check that if s is sufficiently close to ¢ —1>40, then

y - LYo
1=2(s— (1 +0)3)/(n—2)

since

w22 L
n n+2n+1

and so, as ¢ is assumed >1+46 and <1,

n—-2 1
n+2n+1"

0—1—(1+0)5 >

Thus the upper bound in both (4.10a) and (4.10b) for the admissible values of ¢
is at most g,.
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Next, we have to check the lower bounds for the ¢’s appearing in (4.10a) and
(4.10b): From (4.10b) we merely get ¢ =1+ 2rd, so that any r> 2 sufficiently
close to 2 will do. Further, (4.10a) requires g>1+p’ (5 +9), that is

4.11) (e—1)3E-6) =2 6+6, dm+1) 1.
We let £>0 be such that

nég = nd+e, nd+(@—135, = nd+e,

which is possible since ¢> 1 and ,>0. We then obtain by Lemmas 4.5 and 4.6

and (4.10) that, since (*), holds, and the upper bounds of ¢ above are
independent of 0,

“u(t)”B;,”’z é C(1+t)_"6+c J\‘ K(t_t)(l‘{"l')—"g-edt

0

t/2 t

(1-7)7 "1 +T)*"5_‘dr+J~ K({t—t)(1+1)" " ¢ de

/2

< C(1+t)_"‘5+J.

0

so that
lu(@llgser2 S CL+Y ™ +C(L+1) W04 (14 "+ 1m0
< C(L+)™™+C(+0)""0¢,

where nd — 1 >0 by (*),. We now iterate this procedure, replacing the estimate
of |u(o)|l BLt+2 in Lemma 4.6 by the bound

lu(@lgyess £ C(14+7) ™+ C(1+7) ™"

for j=1,2,....

It remains to satisfy (4.11). But since § <4 we may simply choose § as close
to (e—1)(1/2—68)— 6 as possible, satisfying d(n+1)<1. (Notice that (o —1)
¢—0)—6>(1-46)>0 for n=5)

This completes the proof of the lemma.

The proof of (4.1) is now completed by interpolation between the estimate
given in Lemma 4.7 and the bound for the L}-norm given by the energy
estimate B.

5. Proof of Theorem 1.

We will finally use (0.4) and (0.4) to prove Theorem 1. In fact, since (0.4) is
the more powerful estimate, we will use this result rather than (0.4), which
however can be used for dimensions n=3 and 4 (cf. [4]).
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First a lemma, which connects the L,-estimates with the existence of
scattering states:

LEMMA 5.1. Let u be a solution of (0.1) and assume that for some r 2 n(Q — x)/
(x+1in(1—x)), where 0<x <1,
lu@lg™> e Ly(R,) .

Then there exists a unique solution u, of the corresponding linear equation (0.3)
with data in L} x L, such that

lu@—u, @l = Csup llu(r)ll:j Ju(o)le " de .

In particular,

lu@@—u, @, — 0 ast—oco.

Proor. We first notice that

(5.1 If @l = Cllul3, Jullz™™

for r=n(o—x)/(ex +3n(1 —x)), 0=e<1. We conclude that
v(t) = j E (t—7)f (u(z))dr
0

is a solution of (0.3) with data in L} x L,. Denote by u, the solution of (0.3)
which has the same data as u(t). Then u, (t)=uy(t)—v(t) is a solution of (0.3)
with data in L x L, such that

u()—u, (1) = f " By (t—0f (@) dr .

t

By the well known energy estimates for (0.3),

t

lu@—u, @), = CJ If (u(@)ll, de
which by (5.1) proves the lemma.

ProoF oF THEOREM 1. Let us choose » € [0, 1] as close to g —1 as possible,
so that x=1 for g=2 and x=¢—1 for g<2. If né(¢ —x)>1 we may use (0.4)
with 1/r=1/2—6—1/n, and Sobolev’s inequality in Lemma 5.1 to conclude
that Theorem 1 holds (as t — +o00; the argument is the same as t — — 00).
Now, choose d>1/n close to (9—1)/4 as long as (¢ —1)/4<1/(n—1) and close
to 1/(n—1) otherwise. Since 1+4/n<g, 1 +40 <g, this choice of d is possible.
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Then, in particular, né(¢ — %) =nd > 1. In order to be able to apply Lemma 5.1,
it only remains to check the condition

n(@~x)

~
v

%+g(1—x)

First, let ¢ <2, so that x=¢—1. Then we require

r= n/<Q—1+E—E(Q—1)>
- 2 2

n n n
(5.2) (Q—1)<1—§>+§ 2.

that is, that

As above, choose 1/r=i/2—5— 1/n. Then (5.2) follows if
11 1t 1
(g—1)<~—4> < z——=—-49
2 n n
and hence, since 6> 1/n, if

0 < 1+4/(n-2).

This last inequality is satisfied for all ¢ <g), however. Thus Theorem 1 is
proved for 9= 2.

If 0>2 (and so n<5), we take x =1, and now have to verify that r=n(g—1).
Once more, choose 1/r=1/2—9—1/n. Then the condition becomes

n(g—l)(%—%%) <1,

that is

11 1
(e—l)<§—;>—5(9—1) =

If o— 1 <4/(n—1) we take § close to (¢ —1)/4 and so we only have to check that
n—2 1 ) 1
(o— 1)~2n —Z(Q—l) <.
Let x=(g9—1)/2 so that this inequality becomes

—2 1
(5.3) -x2+x"—n— <= x=1e-1>}.
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But the left hand side of (5.3) takes its maximum at x=1/2—1/n<1/2, and so is
decreasing for x=1/2. Since for x=1/2, the left hand side of (5.3) takes the
value 1/4—1/n<1/n for n=3, 4 or 5, this completes the proof of (5.3), and so
of the condition r=n(g—1) for n<5, ¢>2 and (g—1)/4<1/(n—1). In case
4/(n—1)Se—1=<4/(n—2) (say), we choose 6 close to 1/(n—1) and now the
required estimate is given by

1 1 1
(Q“‘l)(z“fs';> = -

which is satisfied provided

2(n—1)
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Since the right hand side of (5.4) is at least 4/(n—2) for n<6, this proves that
r2n(g—1) also in case ¢>2. The proof of Theorem 1 is complete.

Appendix.
Proor oF (2.6) IN LEMMaA 2.3, By the energy inequality

lu—vll;,, = C(”(p_(Pvnz,l+“'//_l//v”2,l)+cJv IS @) —f @), dr,
0

and writing

1
(A1) fW—f) = (u—v)J f'(wis)ds,  wls) = v+s(u—v),
0

we have by (ii) and Holder’s inequality that

1
I/ @)—f @2 = Clu—uvl,,, L lw(s)z~!dz

provided r=n(g—1). By Lemma 1.3, and Remark 1.3, |w|, is uniformly
bounded for 1/2=1/r<1/p'—s'/n, where p’, s’ satisfy ((x)); for n<5. Now, for
o< (n+2)/(n—2) this holds with 1/r={(n—4+2(1+6)5)/2n, with 6 and o
suitably chosen satisfying (x),. Hence

t

”““'0"2,1 = C(”(P“‘Pv”2,1+”‘/"“//vuz)‘*'cJ lu—vl,, dr.

0

Next by the inequality A, we have for large enough k,
t
lu—vll,ye = C{ll¢—¢vlll,k+Ih/l—'//vlll.k}+j K@=l f)—f ), dr.
0

If rd=p—1, then (Al) gives



ON L,-DECAY AND SCATTERING FOR NONLINEAR KLEIN-GORDON EQUATIONS 359

IA

Lf Wu=v)ll,: £ C Y {Iw ™' D*=0)l,+ w2 (D*w)(u—v)l,}

Jaf=1

C Y A{IwlEHID*m=o)l, + Clwig~ D Wil u—vll, o} -

PES!

IIA

By the above d>1/n and r=n(¢—1), and so rd=¢—1. We have thus proved
(A2)  fu—vl,y £ Cllo—@ull x+ I =il

t
+J K(t—t){llu—vllo, 1+ lu—vll o Hllulg™ " +ul§ S +llole™" + [ol35} dr
0

and with the above estimate for |u—uv]|, , this completes the proof of (2.6) for
n<s.

It remains to consider n= 6, that is ¢ <2. As in the proof of Lemma 1.2 (or,
rather, of (1.4))

toS =)y —f (W) u—v),

Ct ™ Wy —wie ™ Hu— vl |+ lwil ™ Hu— ol Ha— o2 7€,

7N

lIA

Clwlsy lu—vll, o+ Clwlg  lu =l lu—vl57°
provided

1+45 =< ¢ = 0,—2(e—1-9)/(n=2)
where p',s’ satisfy (%), with s close to g —1. Altogether this implies that
(A3 IS @) —fOlgz S CUulg s+ lulgy +lvlg S +1vl8 5

{”u_ U"p’,s' + ”u_v“i’—,_sg”u - U”%,_ll

In addition, with x=¢—1, and r=n/(¢—1+4n(2—g)), we also have

1
If—fO)l. = Cllu—vll’z‘_lllu—vllr’_"j lw(s)lg™" ds .
0
If s<p—1 is sufficiently close to ¢— 1, we have once more the possibility to
choose 1/r21/p' —s'/n, where p',s’ satisfy (x),. Thus, by Sobolev’s inequality
and the energy inequality, and the uniform bound (1.6),
(A4)

t

lu—vl,,, = C{H(P—(Pvllz,l+|N/~l//v||z}+cj lu—ol§ 3 lu—vl3 dr.

0

If we now apply inequality A to (A3) and add that result to (A4) we obtain, for
k large enough
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lu—=vlly, +lu—ol, o £ Cl@=@ skt 1=l

t
+Cj L+ K@E=0)(lu=ol o+ lu—vig  lu—vl5 2dr .

0
Since, for 1<p=2,
(A5)  fu—vs i lu—vll; 8 £ @—Dlu—vlly,+Q2=lu—vl,,,

we once more get an estimate (A2), and as before, inequality (2.6) follows from
this and (A4) combined with (A5), now also for n> 6. This completes the proof
of (2.6) in general.
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