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REPRESENTATIONS OF EXCESSIVE FUNCTIONS

MURALI RAO

Introduction.

In this paper we look at the problem of representing excessivé functions as
potentials of measures. Various such results are known. When the process has
a strong Markov dual and when the process and its dual satisfy certain strong
Feller type conditions these representations are presented in Chapter 6 of [1].
Dropping duality assumptions but imposing very mild conditions on the
potential kernel, such results are obtained in [4].

In the other direction, Mokobodzki has shown that e'very excessive function
is the integral of extreme ones. However to realize this one needs to enlarge the
space. In this paper we will get a representation without enlarging the space.

In this note we show that one can associate a measure with an arbitrary
purely excessive function of an arbitrary transient standard Markov process
satisfying hypothesis L so that the measure is the Revuz measure provided the
excessive function is given by an additive functional. We shall show that with
respect to this measure (provided it is finite) there is a kernel u(-,y) such that

1) u(-,y) is excessive for every y,

2) fu(-,y)m(dy)=s,

3) u(-,y) has support y in the sense Pp u(-,y)=u(-,y) for every open set D
containing y.

We show that extreme purely excessive functions have point supports. An
example due to H. and U. Schirmeier is presented at the end to show that
excessive functions with point supports need not be extreme.

Under certain assumptions on the excessive function we can show the
following: Whenever Uf, increases to s, f,(x)dx converges weakly to the
measure associate with s.

Section 1 closely follows Meyer [3]. Notation will generally be that of [1].
Some comments and problems are presented at the end.
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1.

We assume that the kernel U is proper so that every excessive function is the
increasing limit of a sequence Uf,.

PROPOSITION 1. Let s be excessive and finite almost everywhere. Then for every
o >0, there exists a unique o-excessive function s* such that
(1) s = *+alU% .
Further for 0<o < B,
(2 s = P+ (B—a)UPs
= P+ (f—a)U" .
In particular

Ussf = Ubs* .

Proor. Let Uf, increase to s. The resolvent equation
3 uf, = U, +aUUf,

and monotone convergence theorem show that lim U?f, exists at every point at
which s is finite. Denote by s* the regularization of the a-supermedian function

liminf U%f, .
Taking limits in (3) one gets
(4) s = s*+oalU%

because identity almost everywhere of a-excessive function implies equality
everywhere.

Now let o <f. We know U®f, converges almost everywhere. Since U%, < Uf,
<s and BUPs<s, at each point at which s is finite, we can use the resolvent
equation and dominated convergence to get (2).

Norke. It is easy to choose a density u(x, -) of U(x, -) such that for every y,
x — u(x,y)
is excessive.

Apply Proposition 1 above to this excessive function: We get u*(x,y) such
that



REPRESENTATIONS OF EXCESSIVE FUNCTIONS 369

I

u(x,y) = u*(x,y)+olU%u(x,y)
= w(x,y)+oUu*(x,y) .

This shows that u*(x, -) is a density for U* and that if we define
U%g() by f U%(x,y)g(x) dx

U* is a resolvent dual to U This will be useful later. Note also that with
respect to this dual resolvent, y — u(x,y) is co-excessive for every x.

ProOPOSITION 2. Let s and s* be as in Proposition 1. Then (as* &) increases
with o.

This follows using the second part of (2) and the excessivity of £.

NoTE 1. s* decreases as o increases. This together with the second part of (2)s
show that either (s*,&)=o0 or finite for all a>0.

NotE 2. If s°=1im,_s* and h=1lim,_,aU", then s° is the purely excessive
part of s and & is the “regular” part. And we have for all o>0,
0 = s*+aU%°

s*+alUs* .

DEFINITION. L(s)=lim a(s* &).
By (5) we have L(s)=L(s%).

PROPOSITION 3. Let s be purely excessive and s=Uf. Then for all >0
(%0 =z (Uf%).
Proor. Let 0 <a< 1. Since s* increases to s as o ends to zero, the sets

A, = (s*2aU%)

have the property lim inf A, = E almost everywhere. By Note 1 we may assume
(s%, &)< oo for all o. Now s*=2aU*(f1,) everywhere. Using the first part of (2)
and a similar one for U*(f1,), we find

™ (%,8) 2 (@UP(f14),8) B>o.

Let o decrease to zero in (7) and then let a increase to 1 to get (6).

Math. Scand. 51 — 24
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COoROLLARY 4. If s is purely excessive and s= Uf, then L(s)= (f, &).
This follows from the definition of L(s) and the above proposition.

Note 3. If Uf, increases to s, then lim U%f,=s* almost everywhere. Hence
from Proposition 3

®) lim (js* - Uf,l,§) = 0

provided (s% &) < oo.

COROLLARY 5. Let s be purely excessive and s=t. Then for all >0
9 (%8 2 (.9)
In particular L(s)= L(?).

Proor. Let Ug, increase to t. Then Ug,<s, and therefore (U%g,, &) = (5% &).
Now use Note 3 above.

We will use the following Corollary later.

COROLLARY 6. Let s and s, be purely excessive and lim s, = s almost everywhere.
Then

L(s) £ liminf L(s,) .
In particular if 5,<s, and lims,=s almost everywhere then

limL(s,) = L(s).

We omit the proof.

2.

In this article we associate a measure to an excessive function. In the
following s denotes a fixed excessive function. For two functions 4 and B,
(A, B) will denote (AB, £). Choose a positive bounded function g so that

1) (145,82 < 00.
0* denotes the dual resolvent. This always exists. We have
) (0%, s+1) = (g,aU%s+1)) < (g,s+1) < 00.

So for suitable numbers



REPRESENTATIONS OF EXCESSIVE FUNCTIONS 371

3) (Z s,,ozU“g,s+1) < o0,
aeQ

where Q denotes the set of rationals. Denote by u the finite measure whose
density is the first function in (3).

Let now Uf,<s with limit s. Since (s, u)<oo, Uf, is uniformly integrable
relative to u. For any continuous bounded function ¢ the sequence U (f,o) is
also uniformly integrable. Denote by Y the space of continuous functions on
the one-point compactification of the state space. Y is separable. By choosing a
subsequence of necessary we may assume that

4 lim (U(f,0)e, 1) = (054 1)

for a function s, all bounded functions ¢ and all ¢ € Y. For each o € Q and
each 0< <1, the measure ¢,(2U%(go))d¢ is less or equal to u. From (4)

) lime, jaUa(ge)U (Lo dé = ¢, JaU“(gQ)sq,dé-
Let ¢ be non-negative. We can rewrite (5) as

(aU%s,,g0) = lim (xUU (f,9), g0)

< lim (U(f,0).80) = (s,.80) -

The last equality following because the measure go d¢ is dominated by p. One
concludes that aU%,<s, almost surely for all rational o. Thus s, is equal
almost everywhere to an excessive function. This we again denote by s,,. Clearly
we have s,+s,_,=s. We have proved

PRroPOSITION 1. To every b non-negative continuous function ¢ on the one point
compactification of E corresponds an excessive function s,. The msp ¢ — s, is
linear and s, =s.

If s(x) < 00, 50 is s5,(x) for all ¢ € Y. For each such x, corresponds a measure
L(x,dy) on E U oo such that

(6) 5,(x) = jtp(y)L(x, dy)
Let
A = {x: s(x)<oo}.

We proceed to define s, for each positive measurable function fon E U occ. First
let f be lower semi continuous. Define
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sy, = sups,, Q€Y.
osf

Clearly s, is excessive. If x € 4 and f'is lower semi continuous, we must have
syp(x) = ff (L (x,dy) .

If g is non-negative and measurable, define

s, = infs, and flsc.,
fzg

the top bar indicating regularization. Hypothesis (L) makes things work. If
x € A we must have

infs, = fg(y)L(x, dy),
fzg
so that

S, = Jg(y)L(x, dy) almost all x .

It follows that s;, ,=s,+s, almost everywhere and hence identically. Also if
b,1b, so does s, increase to s,
The map

A — 5;,(x) = s5(4,x)
determines a kernel such that
s(A,-) is excessive for every A4,
s(-,x) is a measure for every x ,
S(EU00,x) = 5.

We have thus associated a kernel with every excessive function which is finite
almost everywhere. This kernel gives rise to a measure in the obvious way:
Define for each AcEU oo

v(4) = L(sg) ,

where L is defined in section 1. It is obvious that v is a measure. In case s is the
potential of a natural additive functional, v is simply the Revuz measure of the
natural additive functional.

Norte. If s is purely excessive, the definition of L(s) shows that L(s)=0, iff
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s=0. If s is purely excessive, so are s(4, *) for all sets 4. v(4)=0 implies then
that s(4, -)=0. But if s(x)< oo

5(A,x) = L(x, A)

That is to say: The measure L(x, ‘) is absolutely continuous relative to v if
s(x)<0.

We show in this article that when ever Uf, <a purely excessive function s
with limit s, then for a subsequence

Hm U(f,9)(x) = 5,(x)

exists everywhere along the subsequence at every point at which s(x) < oo and
for every function ¢ which is between 0 and 1 and is continuous on the one
point compactification EU oo of E.

We keep the notation of section 2. Let Uf, <s with limit s. It was shown in
section 2 that by choosing a subsequence if necessary we may assume

(1) lim JU(f..(p)edu = jes(p du

with s, excessive, for every bounded measurable g. Recall that p is the measure
with density

Y eo0U%.
aecQ

Let 0<p<1. For each o € Q, U*(go)d¢ <dp.
Therefore

) lim fU (f,0)U%(go) dé = j s,U%(go) d& .

which is the same as

(3) lim J U*U(f,0)ged¢ = j U%(s,)ged¢ .

Recall that there is a unique o-excessive function s, such that
4) s, = Sp+oalU’s,

@

using (3) and (4), for all 2 € Q:

(%) lim J U*(f.o)gedé = js:, ‘godé.



374 MURALI RAO

It is possible to choose a version of the density u of U such that for every x,
y = ulxo,)) = q()
is co-excessive, namely
q = increasing limit as « tends to infinity of aU?q .

For any n and o € Q,

@he,8) 2 (fupal%q,¢) = al(q, U*(f,0))
a(g A Ng, U*(f,0)) -

Since g A Ng is of the form gg with 0< g9 < N we see from what we have already
proved that the right side of last inequality tends to a(q A Ng,s,). Namely

liminf (gf,0,%) = a(sj,g A Ng) .
Since g>0, letting N increase to infinity we obtain
liminf (¢f,,8) 2 a(s3q)
= aU(sy)(xo) by (5) of section 1.

v

= a(U%,)(xo)

because s being purely excessive, so is s,. Now let a tend to oo, note that s, is
excessive and recall the definition of ¢ to get

liminf U(£,0)(x0) Z 5,(xo) -

Because Uf, tends to s=s,+s5, _,, the last must be an equality whenever s(x,)
<o0o. Thus we have proved

THEOREM 1. Let Uf, < a purely excessive function s with limit s. There exists
a subsequence such that

() lim U(f,0)(x) = 5,(x)

along the subsequence for all non-negative continuous functions @ on the point
compactification of E and all x at which s(x)<oo.

Theorem 1 permits another look at the measure v of a purely excessive
function.

Suppose L(s)<oo. Then ¢ — L(s,) defined a measure, which we called v in
section 2. Let Ug, and Uh, increase to the excessive functions s, and s, _,,.
Since lim U (f,9)=s,, we see from Corollary 6 of section 1
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lim (g, &) = L(s,) < liminf (f,9,¢)
lim (h,, &) = L(s,-,) £ liminf (f,(1-9¢),%)
and
lim (g, +h,, &) = L(s) = lim (f,¢).

We therefore have

V(@) = L(s,) = lim (f,9,9) .

4.

One property of s, (see section 2 for its definition) is the following: If D is
open and f vanishes off D, then

0] PpS; = S .
To see this it is sufficient to assume f=1, We know
2 sp = sups,

where the sup is overall 0S¢ =<1 continuous on E U oo and vanishing off D.
For each such ¢,

lim U(f,p)(x) = s,(x) if s(x)<oo

and

po(Uf0) = U(f,0) .

Since Uf,¢ < s, by dominated convergence, at each point x at which s(x) < oo,
we have

(3) st(p = sq) s

and hence (3) holds identically. (2) and (3) imply that (1) holds when fin the
indicator of D.

DEFINITION. An excessive function s is called a potential if pg.s decreases to
zero almost everywhere as the compacts K increase to the state space E. It is
said to have point support y if there is a point y € E such that

PpS = S

for each openset D containing y.

THEOREM 1. Let s be a purely excessive potential for which L(s)<oo. Then
there is a measure v and a kernel v such that
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4) s = jv(',y)V(dY)
with v(-,y) excessive having point support y for every y.

Proor. Recall the notation of section 2. s(0o, +) is excessive and for each
compact set K,

(5) pK‘S(OO’ ) = S(OO’ )

s being potential, (5) shows that s(oo, -)=0.

v is a finite measure on EUoo and it cannot have any mass at oo since
5(00, -)=0. Thus v is a measure on E. For each x, s(-,x) is absolutely
continuous relative to v. Using (1) and standard arguments the proof is
completed.

THEOREM 2. Let s be purely excessive and extreme. Then either s has point
support or is harmonic i.e. pg.s=s for each compact set K.

PRrOOF. Suppose s is not harmonic. Then there is a compact set K such that
S pges. Now

§ = Sg+Ske

because s is extreme, sk is a constant multiple of s. Because pg-Sge=sg., the
same will hold with sg. replaced by s if this constant were not zero. Namely
sge=0 and s=sg.
We claim there is a y € K such that pps=s for all open D containing y.
If this were not the case, for each y € K we can find an open set containing y
such that pps=+s. Using compactness, we can thus choose open sets Dy,. .., D,
covering K such that pps*s. But

N

]

Sk = Sp,u...up,
= SD,+SD2\D,+‘ .
= S§;+s,+...+s,, say.

Since s is extreme each of these is a multiple of s and at least one of these is not
zero. If,

s; =ao;s with o, £ 0
we have
oS = S§; = PpSi = %4iPpS

implying
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leS =S
which is a contradiction. This proves the Theorem.
We now look at a condition which guarantees that the measure of section 2

does not depend on the particular sequence Uf, which increases to s. For this
let us assume L(s) < o0o. Define the stopping time T (depending on r) by

T=inf(t: |x,—xo|27)

and let T,, n=1 denote the successive iterates of T. We shall call s a pure
potential, if prs decreases to zero almost everywhere as n increases to infinity.
We then have

THEOREM 1. If s is a pure potential whenever Uf, increases to s the sequence of
measures f,(x)dx converges weakly to v.

A proof can be modelled using Theorem 8 of 2.

5. Complements.

We assume below that we have a Hunt process and that points are polar.

DEFINITION. An excessive function s is said to be of class (D) if Prs decreases
to zero almost everywhere. Here T, is the hitting time to the set (s>n).
LEMMA 1. Let s be excessive and finite almost everywhere. We can write
(1) s =g+h
where g is of class (D) and h satisfies
Poh = h
where O is any set of the form

O = (h>n) for some n.

Proor. Let 0, denote the set (s>n). Let a=lim Py s. By Exercise 3.20 p. 84
of [1], a is excessive at every point x at which a(x)<oco. Let h denote the
excessive regularization of the supermedian function a. It can be shown that

Ponh-——h.

Indeed P a(x) equals a(x) wherever the latter is finite. Thus if T,=T,_and a(x)
is finite h(x)=a(x) and h(x7)=a(xr), Px—as. Therefore



378 MURALI RAOQ
3) Poh(x) = h(x) il a(x)<oo

and hence identically.
Now let

b(x) = s(x)—h(x) if s(x) < o0
= 00 if s(x)=o00.

An argument similar to that in [2] shows that b is supermedian and that its
excessive regularization g satisfies

4 s =g+h.

(3) and the defintion of h show that P, g decreases to zero almost everywhere.
It is the clear that g is a class (D) potential.
Now apply the argument to h to write

&) h =g +h

with g, class (D) and

6) hy = Py>pyhy alln.
From (3) and (5)

)] Pog, =g alln.
But g, being class (D), (7) forces g, =0. We find
®) Pyswh =h alln.

This proves the Lemma.

COROLLARY 2. Let the excessive function s have point support. Then
s = Py,n,s for every n.
The proof is clear from Lemma 1.
Let s be purely excessive, let A be a thin compact set, and let T, be the
successive hitting times to A. Suppose Prs decreases to zero a.e. then

Pys s of class D.

Proor. Let S, be stopping times increasing to 0o. Let s(x) <00 and ¢>0 be
given. Choose n so that P,s(x) and Prs(x)<e. Then for any k,

E*[Pys(xg): $x2T,An] £ Prs(x)+P,s(x) £ 2¢
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EX[Prs(xs): Sy < T, nn]

Z Ex[s(XSk+T(01)) Tl 1“‘Sk<T‘v Sk<n] (TO—O Tl )

i=1

n

Z E"[s(xT) T,_ =8, <T, Sy <n]

i=1

H

(because on the set T,_; SS<T;, S, + T(fs) is just the first hit to 4 after T,
which is T))

< Y Efs(x7): Si<n].

Since n is fixed, as k gets large, this sum is small, since 3} s(x7) is integrable.
Thus

lim EX[Prs(xs)] — 0.

REMARK. That Ps is class D is proved similarly. Indeed, choose n so that
P, s(x)<e Then

E*[s(xs,+0]

Il

Es(xs,+0) : Sy <nl+E<[s(xs,4) : Si>n]
< E[s(x): S, sn]+E[s(x)] — 0.
We can say more when the process is strong Feller:

P.S is a regular excessive function for every excessive s if the semigroup is
strong Feller.

The proof is very simple P,,s is of class (D). So

t/s Z S

where s, are bounded excessive. So

Ps =) P,s,

P,s, is continuous, because s, is bounded. Hence it is regular. This implies
that, P,s is regular.

It can be shown that every class (D) purely excessive function can be written
as asum Y S; with L(S;) < 0o. The following example shows that it is in general
not possible to do so, if the restriction class (D) is dropped.

ExaMpPLE. Let D be the unit ball in three spaces an(i S=1. It is clearly
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sufficient to show that L(S)=oo0. Indeed, if Gf, increases to 1, G denoting the
Green function we can find N such that

fGﬂ(x)dx 2z $M(D), nzN,
where M (D) is the volume of D.
fo..(x)dx = ff,,(y)g(y)dy,

where g(y)={g(x,y)dx tends to zero uniformly as |y| tends to 1. Also f,(x)dx
tends to zero vaguely. It must then be true that { f,(y)dy tends to infinity i.e.
L(1)=o00.

The following standard counterexample (communicated for instance by H.
and U. Schirmeirer) shows that excessive functions with point supports need
not be extreme.

ExampLE. Consider the Brownian motion on (—1, 1) with reflection to the
right at 0. The functions

1+x x<0
P, (x) ={

0 x=0
I1+x x<0
Pl = {l—x x20

and {(P, + P,) are excessive with support zero.

Here are some questions whose answers would have greatly improved this
note.

1. Is it possible that an excessive function can have two different point
supports? If this cannot happen one can conclude the following: If L(S)<oo
there is a unique measure v such that whenever f, increases to s, f,(x)dx
converges weakly to v.

2. Is the set of those points y which are supports of at least two linearly
independent excessive functions of measure zero?

3. Suppose the measure in section 2 is finite with a density f. Is it true that
s=Uf?
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Positive answers to 2 or 3 would imply the following: If s is excessive with

L(S)< o0, it is possible to choose a density u(x,y) for U and a measure v such
that s=Uv.

4. Let K be a compact thin set. Can there exist an excessive function s
satisfying

s = PyS?
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