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CARDINALITY OF GENERATING SETS FOR
MODULES OVER A COMMUTATIVE RING

ROBERT GILMER! and WILLIAM HEINZER?

Let M be a unitary module over a commutative ring R with identity, and let
o be an infinite cardinal. Following the terminology of universal algebra [5],
[4], we call M a Jonsson a-generated R-module if there exists a set of
generators for M of cardinality o and no such generating set of cardinality less
than o, while each proper submodule of M has a set of generators of cardinality
less than o. (We remark that there is an analogous notion that considers the
cardinality of the module itself, rather than its generating sets. We call an
infinite module M a Jonsson a-module if |M|=0o while [N| <o for each proper
submodule N of M. This analogous notion is- considered in [10].) We are
interested in the structure of rings R and modules M such that M is a Jonsson
a-generated R-module primarily for the case where o € {w,, @}, but several of
our results in Section 1 are valid for an arbitrary infinite cardinal o. For
example, Proposition 1.1 yields that if M is a faithful Jonsson o-generated R-
module, then R is an integral domain, and Theorem 1.4 states that if M is a
torsion-free Jonsson o-generated R-module, then M is isomorphic to the
quotient field K of R. We prove (Corollary 1.2) that if an ideal I of R is a
Jonsson a-generated R-module, then I? = (0) and I is contained in each regular
ideal of R. For each regular cardinal o, we confirm the existence of Jonsson
o-generated modules and ideals. We also prove that if there exists a Jonsson
o-generated module for o an irregular cardinal, then it must be a torsion module.
In Theorem 1.6 we prove, using results from [2] and [8], that most rings
normally encountered in commutative algebra do not admit Jonsson ;-
generated modules. Theorem 1.8 shows that if R admits a Jonsson ;-
generated module, then R does not satisfy the descending chain condition
(d.c.c.) for prime ideals.

In Section 2 we study Jonsson m,-generated modules. We prove
(Proposition 2.1) that a Jonsson m,-generated module is either torsion or
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torsion-free. If M is a faithful torsion Jonsson w,-generated module over an
integral domain D, then Theorem 2.4 shows that there exists a maximal ideal P
of D such that P=]/Ann (m) for each nonzero m € M. Moreover, D/Ann (m) is
an Artinian ring and

©) = N{Ann(m) | O%me M} = (] P'.
i=1

We prove in Theorem 2.7 that a Noetherian ring R admits a torsion Jonsson
wo-generated module if and only if dim R=0. Results of Armendariz in [1]
completely determine the structure of torsion-free Jonsson w,-generated
modules. An integral domain D admits a torsion-free JOnsson wy-generated
module if and only if D is a 1-dimensional local domain such that the integral
closure of D is a rank-one discrete valuation ring that is a finite D-module. In
Theorem 2.9 we determine to within isomorphism the family of all torsion
Jonsson w,-generated modules over a Priifer domain.

The examples of Section 3 indicate certain restrictions on what can be said
about the structure of a quasi-local domain D that admits a faithful Jonsson
wy-generated torsion module. Such a domain D need not be Noetherian, for
example, and even for a Noetherian domain D, no restriction can be placed on
the (Krull) dimension of D. We conclude with an example that shows (in
contrast with the situation for w,) that for each regular cardinal o> w,, there
exists a domain D with infinitely many maximal ideals such that the quotient
field K of D is a torsion-free Jonsson a-generated D-module.

All rings considered in this paper are assumed to be commutative and to
contain an identity element; all modules considered are assumed to be unitary.

1. Jonsson o-generated Modules.

We begin with a proposition and a corollary that are valid for an arbitrary
infinite cardinal o.

PRropOsSITION 1.1. Let M be a Jonsson o-generated module over the ring R, for
o an infinite cardinal.

(1) If N is a proper submodule of M, then the quotient module M/N is again a
Jonsson a-generated module over R.

(2 If N, and N, are submodules of M such that M=N, + N, then either
M=N, or M=N,. In particular, M is indecomposable and has no maximal
submodules.

(3) If r € R, then either rM =M or rM = (0).
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(4) Ann M is a prime ideal of R.

Proor. Statements (1) and (2) are clear from the structure of quotient
modules and the fact that if o, and o, are cardinal numbers less than o, then o,
+0o, <o. Thus, if Ny and N, are proper submodules of M with generating sets
of cardinality o; and o,, then N, + N, has a generating set of cardinality o, + o,
<o so that N, +N,+M.

For statement (3), consider the R-module homomorphism ¢,: M — rM,
@, (m)=rm. If rM is properly contained in M, then rM is not a Jonsson o-
generated module. But by (1), we must then have rM = (0), which proves (3).

It follows from (3) that if x,y € R—Ann M, then M =xM =yM, and hence
M=xyM. Thus xy ¢ Ann M, and Ann M is prime in R, as asserted in (4).

COROLLARY 1.2. Let I be a Jonsson a-generated ideal of the ring R, for o an
infinite cardinal. Then I? = (0) and I is contained in each regular ideal of R.

Proor. If x € R and xI # (0), then by Proposition 1.1, xI =1 so that I <= (x).
In particular, for x,y € I we must have xy=0 since otherwise we would have
I=xI=(x), and I would be principal.

REMARK 1.3. We note that Proposition 1.1 implies that the only rings R that
admit a faithful Jonsson o-generated module are domains. Moreover, since a
vector space over a field is never a Jonsson a-generated module, we see from
Proposition 1.1 that a O-dimensional ring does not admit a Jonsson o-
generated module.

According to the terminology of [3, Example 17, p. 245], the infinite cardinal
o is said to be regular if a ;. o; for each nonempty family {o;},.; of cardinals
with |I|<a and o, <o for each i. As noted by Simis in [15], this condition is
equivalent to the statement that there is no cofinal set of cardinality less than o
in the set of ordinals preceding the first ordinal of cardinality o.

We remark that for each regular cardinal o, JOnsson a-generated ideals exist.
In fact, if ¢ is the first ordinal of cardinality o, then there exists a valuation ring
V whose set of nonzero prime ideals, ordered under reverse inclusion, is order-
isomorphic to the ordered set of ordinals preceding ¢, and a standard
argument shows that if K is the quotient field of V, then K and K/V are
Jonsson a-generated modules over V [9, p. 797]. For M=K or K/V, one then
obtains by passage to the idealization of V and the V-module M a Jonsson a-
generated ideal of a ring R [14, p. 2]. We note that this in fact gives for « a -
regular cardinal a Jonsson o-generated module or ideal for which the
submodules are linearly ordered under inclusion—that is, a chained module.
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For o an irregular infinite cardinal, it is easy to see that there does not exist a
chained module M that is a Jonsson a-generated module. For M would have a
generating set A4 with |[4|=0 and 4=U {A,-| i € I} where |4;|=0;<a and |I| <o.
Hence A4; would generate a proper submodule M, of M. If x; e M — M, then
M;S Rx,;, so {x;};c; is a generating set for M of cardinality |I| <o. From our
next result we conclude, moreover, that a Jonsson o-generated module for o an
irregular infinite cardinal (if such €xists) must of necessity be a torsion module.

THEOREM 1.4. Let D be an integral domain with quotient field K. If M is a
torsion-free Jonsson a-generated D-module, then M =K.

Proor. By part (3) of (1.1), M is divisible and hence a vector space over K.
Part (2) of Proposition 1.1 shows that M is indecomposable as a D-module,
and hence M is also indecomposable as a K-module, and this implies that
M=K.

We are indebted to David Lantz for the elegant proof of Theorem 1.4 given
above.

REMARK 1.5. If D is an integral domain with quotient field K and if for some
infinite cardinal o, K is a Jonsson o-generated D-module, then for each
overring V of D properly contained in K, it is easy to see that K is also a
Jonsson a-generated V-module. By taking V to be a valuation overring of D
properly contained in K, we realize K as a chained V-module that is also a
Jonsson o-generated V-module. It follows that o is a regular cardinal. Thus,
from Theorem 1.4 and Proposition 1.1 we conclude that if o is an irregular
cardinal, then the only possible Jonsson a-generated module M is a torsion
module. For we may assume that M is a faithful module and then of necessity
it is a module over an integral domain D; and if M is not torsion and N is the
torsion submodule of M, then M/N is.a torsion-free JOnsson o-generated D-
module so that M/N =K, the quotient field of D. But as we just observed, this
implies that o is a regular cardinal.

We consider next the question of what rings R admit a Jonsson ;-
generated module. Results of [2] and [8] are useful in this connection.
Following the terminology of [2], we call a module M a (**)-module if M
cannot be expressed as the union of a countable strictly ascending sequence M
<M,<...<M,<... of submodules; we denote by & the class of rings R
such that each (**)-module over R is finitely generated (clearly a finitely
generated module is a (**)-module for any R). Theorems 4.2, 4.7, and 4.10 of
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[2] show that &% contains the subclasses of Noetherian rings, finite-
dimensional chained rings and W*-rings; Theorem 6.1 of [8] shows that #
also contains each ring R such that (1) R has Noetherian spectrum, (2) d.c.c. for
prime ideals is satisfied in R, and either (3) each ideal of R is countably
generated or (4) each ideal of R contains a power of its radical.

If o is an infinite cardinal, we say that o is countably inaccessible from below if
0%y, 0; for each nonempty countable family {o;},.; of cardinals o;<o.
According to this terminology, w, is countably accessible from below, while
each infinite cardinal with an immediate predecessor (in particular, w,) is
countably inaccessible from below.

THEOREM 1.6. If the cardinal o is countably inaccessible from below, then any
Jonsson a-generated R-module M is a non-finitely generated (**)-module. Hence
if R is in the class &, then R admits no Jonsson o-generated module.

Proor. If M; <M, < ... is a strictly ascending sequence of submodules of
M, then each M, has a generating set of cardinality o;<o. Thus, N=Y2, M,
has a generating set of cardinality Y2, o; <o, so that N £ M. It follows that M
is a non-finitely generated (**)-module.

RemMark 1.7. If we let 4 denote the class of rings R such that R admits no
Jonsson w,-generated module, then by Theorem 1.6, # =%. We remark that
this inclusion is, in fact, proper. For if R is an infinite product of copies of a
field, then by [2, Example 2.4], R ¢ #. However, R is 0-dimensional, so by
Remark 1.3, R € 9.

The next result shows that, in the notation of Remark 1.7, the class ¢
contains each ring satisfying d.c.c. on prime ideals.

THEOREM 1.8. Assume that D is an integral domain and o. is an infinite cardinal
that is countably inaccessible from below. If D admits a Jonsson o-generated
module M, then D does not satisfy d.c.c. on prime ideals.

Proor. We assume, to the contrary, that D satisfies d.c.c. on primes. Without
loss of generality, we also assume that M is faithful. We consider first the case
where M is a torsion module. Then if S=D—{0}, we have Mg=(0). On the
other hand, M+ (0) implies My#+ (0) for some maximal ideal Q of D. We
choose a prime ideal P minimal among primes T such that M, (0). We
consider Mp as a Dp-module. Take x € P, x+0, and take m € Mp, m+0. By
choice of P, Ann (m) is contained in no prime of Dp properly contained in PDp.
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Hence Ann (m) is primary for PDp and x € |/ Ann (m). Thus, if H(x") is the
submodule of Mp annihilated by x*, then

O <cHX<SHX)CS ... and Mp= |JHEY.
k=1

Moreover, x*M = M implies x*M p= Mp, so that Mp> H(x*) for each k. Let H,
be the inverse image in M of H(x*) for each k. Then M > H, for each k and
M=U, H,. For each k we choose a generating set S, for H, of cardinality
o <o. Since US>, S, generates M, we have

oo
o= o,
k=1

contrary to the assumption that o is countably inaccessible from below. Thus,
M a torsion module is impossible.

If M is not a torsion module, then the torsion submodule N of M is a proper
submodule of M and M/N is a torsion-free Jonsson o-generated module. By
Theorem 1.4, M/N = K, the quotient field of D. Hence K/D is a faithful torsion
Jonsson o-generated module, contrary to what was proved in the preceding
paragraph. We conclude that D does not satisfy d.c.c. for primes, as asserted.

In relation to the proof of Theorem 1.8, we remark that, conversely, if K/D is
a Jonsson a-generated D-module, then K is also such a module. For a proof,
note that it is clear that K has a generating set of cardinality o, but no
generating set of smaller cardinality. Let N be a nonzero proper submodule of
K and let n be a nonzero element of N. The mapping x — n~'x is a D-module
automorphism of K. Since n"'N 2D, then n"*N/D, and hence n"'N, has a
generating set of cardinality less than o. Thus, N also has such a generating set,
and this completes the proof.

2. Jonsson m,-generated modules.

Theorems 1.6 and 1.8 show that the rings normally encountered in
commutative algebra admit no Jonsson w,-generated modules. The situation,
of course, is quite different for w,; for example, the p-quasicyclic group Z (p*) is
a Jonsson mg-generated Z-module. (Theorem 2.9 shows that the p-quasicyclic
groups are, in fact, the only torsion Jonsson w,-generated modules over Z; cf.
[6, Example 4, p. 105].) In this section we examine Jonsson m,-generated
modules.

ProPOSITION 2.1. If M is a faithful Jonsson mq-generated module over R, then
either M is a torsion module or M is torsion-free.
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Proor. Since M is faithful, Proposition 1.1 shows that R is an integral
domain. Let N be the torsion submodule of M and assume that N+ M. Then
N is finitely generated, and hence there exists a nonzero element r € R such
that rN = (0). Since M is faithful, rM = M. This implies that N = (0), forif n € N
and if m e M is such that n=rm, then m is also a torsion element of M.
Consequently, m € N and rm=n=0. This completes the proof of Proposition
2.1.

RemARk 2.2. For o an arbitrary infinite cardinal, if M is a faithful Jonsson o-
generated R-module and N is the torsion submodule of M, then xN =N for
each nonzero x € R. It would be interesting to know if in general N=M or
N = (0)—that is, to answer the following question.

Must a faithful Jonsson o-generated module be either torsion or torsion-
free?

If M is a Jonsson w,-generated module over R, then replacing R by
R/Ann M, there is no loss of generality in assuming that M is faithful, and
Proposition 1.1 shows that R/Ann M is an integral domain. Thus we turn to a
consideration of faithful torsion Jonsson my-generated modules over an
integral domain.

ProposITION 2.3. Let M be a faithful torsion Jonsson w,-generated module
over the integral domain D. Let m be a nonzero element of M and choose x +0 in
D such that xm=0. Since xM = M, there exist elements m=m,,my,ms,... of M
such that m;=xm;,, for each i. Then

Dmy < Dm, < ... and M = | Dm;.

Moreover, if M(x') denotes the submodule of M annihilated by x', then M (x') is
Noetherian, i

M(x) < M(x*) < ..., and M = U M(x).

PROOF. Since x'm;=0 while x'~'m;=m=+0, we have Dm, <Dm, < . ... Hence
U2, Dm; is a submodule of M that is not finitely generated, so that M
=U, Dm; Moreover, m;e M(x)—M(x'"!) implies that M(x')<M(x?)
< ..., and hence that

M= ,.Q M(x) .
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THEOREM 2.4. Assume that M is a faithful torsion Jonsson w,-generated
module over the domain D. There exists a maximal ideal P of D such that P
=|/Ann (m) for each nonzero m of M. Moreover, each D/Ann (m) is an Artinian
ring and

©) = N {Ann(m) | O+me M} = E)l pi.

If H, is the submodule of M annihilated by P', then the sequence {H}{2, properly
ascends and M=U> | H,.

Proor. For m,n nonzero elements of M, Proposition 2.3 implies that
Ann (m)<]/Ann (n), and by symmetry we conclude that |/Ann (m)=]/Ann (n).
Let P be the ideal [/Ann (m); we show that P is a maximal ideal of D. Choose
yeD—P, xe P—{0}, and let N be the submodule of M annihilated by x.
Since x € P and since M is faithful, (0)<N < M. Hence N is finitely generated.
We prove that yN =N. By Proposition 1.1, yM =M, so if t € N, then there
exists s € M such that t=ys. Then 0=xt=xys, and y ¢ P implies that xs=0 so
that s € N. Therefore yN =N, and since N is finitely generated, there exists
d € D such that (1 —dy)N=(0) [12, Theorem 76]. Then N = (0) implies that
1—dy e P, so D=P+Dy and P is maximal in D as we wished to prove.

The assertions in the second sentence of Theorem 2.4 follow easily from the
proceeding paragraph. Thus, D/Ann (m) is Noetherian, since D/Ann (m) and
Dm are isomorphic D-modules, and D/Ann (m) is zero-dimensional since
P=]/ Ann (m) is maximal in D. Whence D/Ann (m) is Artinian. The equality

©) = N {Ann(m) | O+me M}

holds since M is faithful, and (0)=, P, since the ideal P/Ann (m) is nil-
potent for each nonzero m € M.

The inclusion H;SH,,, is clear, and Proposition 2.3 shows that M
=U2, H;. Moreover, H; is properly contained in M since ) =P'M=+P'H,
= (0). Finally, the definition of H; is such that an equality H;=H;,, would
imply H;=H,,,, and hence

a contradiction. Consequently, H,<H,,,, and this completes the proof of
Theorem 2.4.

Let the notation and hypothesis be as in the statement of Theorem 2.4. We
remark that it is possible to extend the scalar multiplication between D and M
to a scalar multiplication between Dp and M in such a way that M is a Dp-
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module. To wit, for m e M and d/s € Dp, we define the product (d/s)-m to be
dm,, where sm; =m. The product is well-defined since multiplication by s
defines a D-automorphism of M. And M as a Dp-module has precisely the
same submodules as does M as a D-module; the proof amounts to showing that
if me M—{0} and if s € D— P, then m € Dsm, and this statement is true since
(s) is comaximal with Ann (m).

We note the following general result concerning the structure of Jonsson w,-
generated modules. The proof is straightforward and will be omitted.

ProprosITION 2.5. Let M be an R-module that can be expressed as the union of
a countably infinite strictly ascending sequence {M}2, of Noetherian
submodules. The following conditions are equivalent.

(1) M is a Jonsson w,-generated module.
(2) Each proper submodule of M is contained in some M.
(3) If x; e M—M,, then {x;}3>, generates M.

Armendariz in [1] has proved some interesting results about what we term
Jonsson m,-generated modules. In [1], a module M is said to be almost
Noetherian if each proper submodule of M is Noetherian. Thus, an almost
Noetherian module that is not Noetherian is the same as a Jonsson -
generated module in our terminology. From [1, Theorems 2.1 and 2.2] we have
the following definitive result concerning the structure of torsion-free Jonsson
wy-generated modules.

(2.6) If D is an integral domain with quotient field K and if D admits a
torsion Jonsson w,-generated module, then M~ K, D is a 1-dimensional local
domain, and the integral closure of D is a rank-one discrete valuation ring that
is a finite D-module. Conversely, if D is a 1-dimensional local domain such that
the integral closure of D is a rank-one discrete valuation ring that is a finite
D-module, then K is a Jonsson w,-generated D-module.

In view of Armendariz’s result (2.6), it is natural to ask what rings R admit a
torsion Jonsson my-generated module. As noted in Remark 1.3, such an R
must have positive dimension, and Theorem 2.4 shows that R must have some
Noetherian-type qualities such as the existence of a non-idempotent maximal
ideal. In Section 3 we give examples of non-Noetherian rings R that admit
faithful Jonsson m,-generated modules. We prove next that torsion Jonsson
w,-generated modules exist over any Noetherian ring of positive dimension.

Math. Scand. 52 — 4
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THEOREM 2.7. The Noetherian ring R admits a torsion Jonsson w,-generated
module if and only if dim R +0.

Proor. As noted above, it suffices to show that R admits a Jonsson
w,-generated module if dim R+0. Let P be a maximal ideal of R of positive
height. By passing from R to R/Q =D, where Q <P is a prime ideal such that
there are no primes properly between Q and P, we may assume that R=D is
an integral domain and that P is a maximal ideal of D of height one. Let
K be the quotient field of D and let V be a valuation overring of D with center P
on D. We claim that K/V is a Jonsson w,-generated D-module. To verify the
claim, let D* be the integral closure of D. If P* is the center of Vin D*, then P*
is of height one. It follows that D}«=V, so V is rank-one discrete, and D*/P*
=ky, the residue field of V, is a finite algebraic extension of D/P [14, (33.10)].
Let v denote the valuation on K associated with ¥ and having value group Z.
Choose 0,,...,0, € D* such that the residues of 8,,...,0, in k, generated k,
over D/P,and a y € D* such that v(y)=1. Let D'=D[#0,,...,0,,y], and let C be
the conductor of D in D'. Note that C = (0) since D’ is a finite D-module. Let P’
denote the center of ¥V on D'. If Py,..., P, are the minimal primes of C in D’
other than P, we can multiply y by an element of (P; N ... N P;)— P’ so that
some power of the product is in C—that is, we may assume without loss of
generality that y € D’ is such that v(y)=1 and a power of y, say ', is in C. For
any x € K—V with v(x)= —m, we establish the following statement.

(2.8) The D-submodule of K generated by V and x contains all elements of K
of v-value = —m+i.

To prove (2.8), consider any z € K—V with v(z) =2 —m+i. Then v(z/x)=s2>1.
Let u=z/x)", so that v(u)=0, and consider the residue of u in k,. Since D'/P’
=k,, there exists 6 € D’ so that u— 6 has residue 0 in k,. Hence v((z/xy*)—0)>0
and v(z/x —0y*)>s; moreover the fact that y*6 € C implies that z € V+ Dx if
and only if z; =z—xy*0 € V+ Dx. Since

v(zy) = v(X)+v(z/x—y0) > —m+s = v(2)

and since each element of K of nonnegative v-value is in ¥+ Dx, a proof by
induction establishes (2.8).

It follows immediately from (2.8) that {(V+Dy ")/V}{Z, is a strictly
ascending sequence of Noetherian D-submodules of K/V such that

KV = Q (V4 Dy™"/V

and each proper submodule of K/V is contained in some (V+ Dy ")/V.
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Consequently, K/V is a Jonsson w,-generated D-module by Proposition 2.5.
This completes the proof of Theorem 2.7.

Using Theorem 2.4 and the results of Armendariz in (2.6), it is possible to
determine to within isomorphism the class of all Jonsson w,-generated
modules over a Priifer domain D.

THEOREM 2.9. Assume that D is a Priifer domain and let { P}, be the family of
maximal ideals of D such that the powers of P; properly descend. For each i, let Q;
=072, Pi, let V;=Dp/Q,Dp, and let K; be the quotient field of V;. Let {P},.;
denote the subset of {P;};.; consisting of those P; for which P; is the unique
maximal ideal of D containing Q,. Then, to within isomorphism,

{Ki/Vi}ier U {K}jey

is the family of Jonsson wy-generated modules over D.

Proor. Using (2.4), the paragraph following the proof of (2.4), and (2.6), it is
routine to verify that each K;/V; and each K is, in fact, a Jonsson w,-generated
D-module. We remark that Q; is the annihilator of K;/V; and Q; is the
annihilator of K.

Conversely, let M be a Jonsson wy-generated module over D and let Q
= Ann (M). Then M is a faithful Jonsson w,-generated module over D* =D/Q.
If M is torsion-free as a D*-module, then (2.6) shows that D/Q is a rank-one
discrete valuation ring and M is isomorphic to the quotient field of D/Q. Hence
Q=0 for some j € J and M =K; in this case. On the other hand, M a torsion
D*-module implies, by Theorem 2.4, that there exists i € I such that Ann (x) is
P-primary for each x € M\ {0}. Since D is a Priifer domain, then 0 =Q, and
there exists no prime ideal of D properly between Q; and P; [7, Chapter 23].
The paragraph following the proof of (2.4) shows that M is a faithful Jonsson
wo-generated module over (D/Q)p 9, =V; We show that M=K,/V, in this
case. Thus, let x be a generator for the maximal ideal of V;. Choose elements m
=m,,m,,... in M as in Proposition 2.3; that is, m+0, xm=0, and m;=xm, , ,
for each i=1. Then

M= U Vm
j=1
and it is straightforward to show that the mgpping m; — x "/ +V, admits a
unique extension to a V-module isomorphism of M onto K;/V;. This shows
that M~K,/V, and hence the proof of Theorem 2.9 is complete.

We remark that in Theorem 2.9, K;=Dy /Q;Dy , and
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K/V; = (Do/Q:Dg)/(Dp/Q:Dp) = Dg/Dp, .

Thus if D is a Priifer domain, then each Jonsson w,-generated D-module has
the form L/N, where N and L are D-submodules of the quotient field of D. It
would be interesting to know whether this is still true for D an arbitrary
integral domain. The examples we give in Section 3 of Jonsson w,-generated
modules all have this form. It can be seen that for D a rank-two valuation ring
with principal maximal ideal P, height-one prime Q=12 P", and quotient
field K, the Jonsson wy-generated D-module Dy/D is not isomorphic to K/N
for any D-submodule N of K. Thus it is necessary, even in describing the
Jonsson m,-generated modules over a Priifer domain D, to allow L to be a
proper D-submodule of K.

3. Some Examples.

The examples in this section are intended to serve two purposes. First, they
indicate certain limitations on what can be said about the structure of a quasi-
local domain (D, P) such that D admits a faithful torsion Jonsson w-generated
module. In particular, Example 3.1 shows that D need to be Noetherian, and
the class of examples included in Example 3.3 is large enough to show that
even for D Noetherian, no restriction on the dimension of D is possible. The
second purpose served by the examples is to indicate some methods for
constructing Jonsson wg,-generated modules other than those already
encountered in the paper.

ExaMPLEs 3.1. Assume that D, and D, are quasi-local domains with quotient
field K. Let M; be the maximal ideal of D; and assume that there exists a
subfield k of K such that D,=k+ M, for each i. Assume that D, is a rank-one
discrete valuation ring, that D, £D,, and let D=k + (M, N M,). Then D,/D is a
faithful Jonsson w,-generated D-module.

Proor. Pick x € D, —D,, let v be a valuation on K associated with D,, and
assume that v(x)=t<0. To prove that D,/D is a Jonsson w,-generated D-
module, we show that the hypothesis and condition (2) of Proposition 2.5 are
satisfied for the sequence {(D+ Dx’)/D}2, of submodules of D,/D. As a first
step in this process, we show that D+ Dx' <D+ Dx'*! for each i and that D,
=U2, (D+ Dx%). Toward this end, we prove the following assertion.

(32) If re D, if s e D, —D,, and if v(s) <v(r), then r € D+ Ds.

To prove (3.2), consider first the case where s is a unit and r is a nonunit of
D,. Then r/s € M, and since v(r/s) >0, r/s € M, as well. Hence r € Ds in this
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case. On the other hand, if s is a nonunit of D,, then we can replace s by the
unit s, =s+1 without affecting the hypothesis or the conclusion since s, €
D, —D,, v(s)=v(s;) and D+ Ds=D + Ds,. Similarly, if r is a unit of D,, thenr, =
r—u € M, for some nonzero element u of k, and replacing r by r, yields the
desired conclusion. This establishes (3.2).

It follows from (3.2) that
D, = | (D+Dx)
i=1

and that D+ Dx'c D+ Dx'*!. The minimum of the v-values of elements of
D+ Dx' is v(x')=it, and hence x'*! ¢ D+ Dx'. Thus, the inclusion D+ Dx‘c
D+Dx'*! is proper. Statement (3.2) also implies that if N is a proper
D-submodule of D, containing D, then the set of v-values of elements of N is
bounded below, and hence N < D + Dx’ for some i. Thus, to complete the proof
that D,/D is a Jonsson w,-generated module, we need only show that
(D + Dx')/D is Noetherian for each i. It is clear that M, N M " is contained in the
annihilator of (D+ Dx')/D, and we show that (D+ Dx‘)/D is Noetherian by
showing that D/(M, N M%) is a Noetherian ring for each positive integer n.
Since D/(M,; N M%) is =zero-dimensional, it suffices to show that
(M0 M,)/(M;NM?%) is finitely generated. Assume that r;<r,<...<r, are
the values less than n that are realized as the v-value of an element of M; N M,
and choose y,,y,,. .. y, € M; N M, such that v(y;)=r, for each i. We show that

h
M, N M, = (M, N M)+ ) Dy,.
i=1
Clearly (M, N M%) contains each element of M; N M, of v-value greater than r,.
Assume that (M, N M,)"+Y"_, Dy; contains each element of M; N M, of v-
value greater than r,, and pick y € M, N M, such that v(y)=r;,. Then y/y;=a
+m, for some nonzero element a of k and some m, € M,. Therefore

y—ay; = myy;e M N M, and v(my) > v(y) =r;.
It follows that y—ay, € (M; N M%)+ 3" Dy, and consequently, y belongs to
this set as well. By induction, we conclude that

h
M, N M, = (M{NM3)+} Dy;,
1

and this completes the proof that D,/D is a Jonsson m,-generated module. To
see that D,/D is faithful, take d € D —{0}. For i sufficiently large, dx' ¢ D,, and
hence dx' ¢ D. Therefore D,/D is faithful, which establishes Example 3.1.
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If k is a field and {X,;}{2, is a set of indeterminates over k, then the field K
=k({X;}{°) admits independent valuations v, w such that v is rank-one discrete,
the valuation ring D, of v is of the form k + M, and the valuation ring D, of w
is of the form k + M, where M, is the maximal ideal of D,. If D=k + (M, N M),
then Example 3.1 shows that D,/D is a Jonsson w,-generated D-module. We
note that dim D=dim D,, and dim D, can be any positive integer or it can be
infinite. Moreover, if D, is chosen so that M, is unbranched (that is, so that M,
is the only M,-primary ideal) [7, p. 189], then no principal ideal of D is
primary for M, N M,. Thus, the assumption that a quasi-local domain admits a
faithful Jonsson wy-generated module does not imply that the domain is
Noetherian, and it imposes no restriction on its dimension. In the case where
D, is rank-one non-discrete, if B+ M, is any M,-primary ideal, then the
domain Dy=k+ B is quasi-local with quotient field K and in the domain D*
=k+ (BN M,), the residue class ring D*/(BN M,)" is non-Noetherian for each
n> 1. The approximation theorem for independent valuations can be used to
show that (BN M,)/(BN M,)"= B/B", which is not finitely generated.

The next example will be used to show that even in the case of a Noetherian
domain D, existence of a faithful non-finitely generated Jonsson w,-generated
module over D imposes no restriction on the dimension of D.

ExampLEs 3.3. Assume that D is an integral domain with quotient field K,
that (W, M) is a rank-one discrete valuation ring on K containing D, and that
W/M =D/P, where P is the center of W on D. Then K/W is a Jonsson w,-
. generated module over D.

ProoF. Let w be a valuation associated with W, and assume without loss of
generality that Z is the value group of w. Choose y € K of w-value 1, and
express y as r/s with r,s € D. Then w(r)—w(s)=1, so the additive subsemigroup
of Z* generated by w(r) and w(s) contains all integers =c for some positive
integer ¢ [13, Theorem 1.4.1]. We proceed to establish the following statement
(3.4) that is analogous to (3.2) in the preceding proof.

(3.4) If g e K—{0} and if w(q)=>b, then W+ Dgq contains each element of K
of w-value 2b+c.

For a proof, we note that W+ Dq contains each element of K of w-value =0.

" Thus, assume that s=b+c and that W+ Dq contains each element of K of w-

value >s. Pick t € K of w-value s. By hypothesis, D contains an element d of w-

value s—b. Thus, w(t/dq)=0, so t/dqg=e+m for some e € D, m € M since W/M

=D/P. Then t—deq=dqm has w-value greater than s, and, is therefore in
W+ Dq. Consequently, t € W+ Dgq, and this establishes (3.4).
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To verify the assertions of Example 3.3, we choose y € P—{0} and let x
=y~ !, Then

We W+Dx < W+Dx? < ...,
and we show that the sequence {(W+ Dx")/W}2, satisfies the hypothesis and
condition (2) of Proposition 2.5. It follows from (3.4) that

K = | (W+Dx),
i=1

and the inclusion W+ Dx'< W+ Dx'*! is proper since iw(x) is the minimum of
the w-values of elements of W+ Dx'. Also, (3.4) shows that each proper
submodule of K/W is contained in some (W+Dx')/W. To show that
(W+ Dx')/W is Noetherian, we note that DN M" is contained in the annihilator
of (W4 Dx')/W for n sufficiently large, and hence it suffices to show that
D/(DNM") is a Noetherian ring; equivalently, we show that P/(D N M") is
finitely generated. To this end, let r, <r,<... <r, be the integers less than n
that are assumed as w-values of elements of P, and assume that
V1> V2 - -, Vu € P are such that w(y,)=r; for each i. We show that

h
P < (DNM"+Y Dy;.
1

Each element of P of w-value greater than r, is in (DN M")+ Y} Dy, Assume
that this is the case for each element of P of w-value greater than r;, and take
p € P such that W(p)=r,. Then p/y,=d+m for some d € D, m € M. Hence
p—dy,=my; is an element of P of w-value greater than r;, so p—dy;, and hence p,
belongs to (DN M")+ Y% Dy; This completes the proof that K/Wis a Jonsson
wo-generated module.

To obtain an example of the type alluded to before Example 3.3, let k be a
field, let n be a positive integer, and choose elements x,,...,x, € YK[[ Y]] such
that {x,}?_, is algebraically independent over k. Then

D = k[xlr . -’xn](xl,‘“,x,,)
is an n-dimensional regular local ring and
W = k[[Y]] N k(xy,...,x,)

is a rank-one discrete valuation overring of D such that D and W have residue
field k. By Example 3.3, k(x,,...,x,)/W is a faithful Jonsson w,-generated
module over D.

Let D be an integral domain with quotient field K. In contrast with the
situation for w, described in (2.6), we remark that for each regular cardinal
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o > w,, there exists a domain D with infinitely many maximal ideals such that K
is a torsion-free Jonsson o-generated D-module. To obtain such an example, let
F be a field of cardinality less than o, let t be an indeterminate over F, and let k
=F(t). It X is a set of indeterminates over k of cardinality o, then as in the
paragraph preceding Theorem 1.4, we can construct a valuation ring ¥V on K
=k(X) such that the set of nonzero prime ideals of V, ordered under reverse
inclusion, is order-isomorphic to the set of ordinals preceding the first ordinal
of cardinality o [9, p. 797]. Moreover, this can be done in such a way that V=k
+ M, where M is the maximal ideal of V. As previously noted, K is a Jonsson o-
generated V-module in this case. Let D= F[t] + M. The cardinality of the set of
maximal ideals of D is sup {w,,|F|} and we claim that K is a Jonsson o-
generated D-module. For a proof, we first observe that V is generated as a
module over D by F(t), a set of cardinality less than «. Hence, each proper V-
submodule of K can be generated, as a D-module, by a set of cardinality less
than o. By the same token, K can be generated as a .D-module by a set of
cardinality o, but by no set of smaller cardinality. Now let H be an arbitrary
proper D-submodule of K. We show that the assumption that VH = K leads to
a contradiction. Thus, choose m € M, m#%0. Then

K=mK=mVH< MH< DH = H,

contrary to hypothesis. Hence VH<K, so VH has a generating set of
cardinality less than o as a V-module. Since MH is a V-module, the proof above
shows that MH also has a generating set of cardinality less than o as a D-
module. Moreover, H/MH< VH/MH, and since V/M ~F(t) has cardinality
less than o, the vector space VH/MH over V/M also has cardinality less than o.
Hence H/MH, as a set, has cardinality less than o so that H as a D-module is
generated by fewer than o elements. This completes justification of our claim
that K is a Jonsson a-generated D-module.

By considering the torsion Jonsson o-generated D-module K/D in the
example above, we see that, also in contrast with the situation for @, in
Theorem 2.4, the set of zero divisors onsuch a module need not form a prime
ideal for o> wy.
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