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ON THE UNIQUENESS OF SEQUENTIAL
LIMITS OF QUASICONFORMAL MAPPINGS

MATTI VUORINEN

1. Introduction.

In this paper we shall complete some earlier results about the existence of
angular limits of quasiconformal (qc) mappings [10], [11]. We shall discuss the
following two uniqueness problems related to the boundary behavior of a qc
mapping f:R% — R".

ProsLEM 1. Suppose that f has an angular limit « at 0 and b, € R%, b, — 0,
f(b) — B. When is a=f?

ProBLEM 2. Suppose that a,, b, € R, a,, by — 0 and f(a,) — o, f(b) — .
Under which conditions is a=f?

Concerning Problem 1 we shall show that o=, if the sequence (b))
approaches 0 in a way not “too” tangential in the sense of Corollary 4.5 and
Remark 3.10 and if the sequence (b,) satisfies an isolation condition.
Concerning Problem 2 we shall show that a=8, if 3" o(a, b)) ~"=00, and if
the geodesic segments (in the hyperbolic geometry of R" ) joining the points a;
to the points b, are uniformly isolated. Here ¢ is the hyperbolic metric of R%.

The proofs are based on the application of the modulus method and on a qc
counterpart [10,6.5] of a result due to Bagemihl and Seidel [1, Theorem 1] in
the case of normal meromorphic functions. Some preliminary results are given
in Section 2. In Section 3 the existence of some tangential sequences of points is
proved. The main results are in Section 4. It is possible that the main results,
applicable to the conformal mappings of the complex plane, are new in this
particular case as well.

2. Preliminary results.

In this section we shall list some preliminary lemmas, which deal with the
modulus of a path family or the hyperbolic geometry. Throughout the paper
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we shall employ the relatively standard notation and terminology in Viisila’s
book [8].
2.1. For x e R, n=2, and r>0 let
B'(x,r) = {zeR": |z—x| < r},
§" Y(x,r) = 0B"(x,r), B"(r)=B"(0,r),
s"~'(r) = 0B"(r), B"=B"(1), and S"' =0B".

The standard coordinate unit vectors are e,,...,e, If x € R" and b>a>0,
we write

R(x,b,a) = B"(x,b)\ B"(x,a) and R(b,a) = R(0,b,a).

For the definition and basic properties of the modulus M(I') of a curve
family I', the reader is referred to [8]. If E,F,G = R" then A(E, F;G) is the
family of all non-constant paths y:[0,1] — G with y(0) € E, y(1) € F, and
y(@) e G, te (0,1). If ¢ € (0,7/2),

C(p) = {xeR": (x]e,) > |x|cose} .

The notation c(t,u,v) means that c(t,u,v) depends only on t,u, and v.

2.2. THE CONTINUUM CRITERION. Let x € R" and C = R” be compact. Then [4]
M(x,C)< o0, if there exists a non-degenerate continuum Kc<{x}U (R"\ C)
with x € K and M(4(K, C,R"\ C))<oco. Otherwise M(x,C)=o0. For E < R",
beR" and t>r>0 let

M,(E,r,b) = M(4(S""'(b,1), B"(b,r) N E; R"),
M(E,r,b) = M, (E,r,b).
The lower and upper capacity densities of E at b are defined, respectively, by

(cf. [6], [10])
cap dens (E,b) = lim inf M(E,r,b),

r—=0

cap dens (E,b) = lim sup M(E,r,b) .

r—=0

2.3. REMARKsS. (1) Let C = R" be compact. It follows from [6,2.15] or
[11,3.8] that cap dens (C,0)>0 implies M (0, C)= o0.

(2) Let E={re (0,1): S""*()NC+}. Then jEdr/r=oo implies M (0, C)
=00 by [8,109].
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(3) From a result of Martio and Sarvas [6, p. 773] it follows that there are
sets C with M(0,C)=o00 and cap dens (C,0)=0. The set

C = | B'"(277,277)u {0}
j=3
satisfies these conditions if the dimension n= 3. The proof follows, if we apply
(2) and [8,6.4,7.5,7.9] (cf. [6]).
2.4. HyperBoLIC GEOMETRY. The hyperbolic metric ¢ in
R"+ = {x:(xl,. . .,X,,) e R" : Xn>0}
has the element of length dg=|dx|/x,. If x € R, and M >0, we write
D(x,M) = {zeR% : o(z,x) < M}.
A basic fact is that the hyperbolic balls are euclidean ones, and for instance
2.5 D(te,, M) = B"((tcosh M)e,, tsinh M)

for t>0and M >0. Let x,y € R",.. As in the case n=2 [2, Theorem 6.3.1 (ii)] we
have the formula

Ix —yI?

(2.6) cosho(x,y) = 1+ .
2x,y,

The geodesic curve joining a € R% to b € R% lies on an circular arc through
a and b, perpendicular to JR". Making use of this fact one calculates

27N o(e,, (sin @)e, + (cos a)e,) = log tan (g +%>

for o € (0,m/2). The closed geodesic segment joining a to b is denoted by
Jla,b].

2.8. LEMMA. Let a,b € R", J=J[a,b], M>0, and let D(J, M)=U,;D(x, M).
Then there is a quasiconformal mapping f:R" — R" such that fD(J, M)= B" and
K(f) < ¢(n,M,o(a,b) < d(n,M) < .

Proor. By performing an auxiliary Mobius transformation, if necessary, we
may assume that a=e,, b=te, t=¢exp g(a,b). Let
B, = B"((ucosh M)e,,usinh M), u>0.
From (2.5) it follows that
D(J,M) = B, U (R(t,1) N C(ayy)) U B, ,
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where aM=;;5tan (sinh M). Therefore
B, = D(J,M) = B"((tcosh M)e,, (t —1)cosh M + sinh M) .
The proof follows now from [7, 2.4, 2.7].
29. LEmMMA. Let p>0,a,b € R with g(a,b)>2u, and let I (a,b,p)
=A(D(a, u), D(b, u); R"). There exists a positive constant c(n, ) such that
M(T (a,b, ) 2 c(n,pela,b)' .
If 9=09(a,b)=4u, then

2 sinh (g/4)

1-n
e
M(I(a,b < 4l = ; A =
(I'(a,b,p) = w, 1<2+A> ; exp sinh

Proor. By performing an auxiliary Mobius transformation, if necessary, we
may assume that a=e, and b= (exp¢(a, b))e,. From (2.5) it follows that

§""'(lah) N C(x,) = D(a,p),
§"71(bl) 0 Cl,) = D(b,p),

Sy
Sz

I

where a"=atan (sinh y). Hence by [8, 7.7]

b 1-n
M(I(a,b,)) = M(A(S,,8;; RY)) 2 mn—1(81)<]08 Ll‘)

lal

mn—l(sl)Q(a’ b)l .

I

Let

c(np) = m,_(S,) = w,_, f "sin""20d0 .
0
For the upper bound we note that by (2.5) and [8, 7.5], we get

@Y1 _ cosh u)‘ "

M(r (a, bs #)) é Wy -y (log sinh U

The desired estimate follows from this upper bound by straightforward
estimation, since g(a, b) =4 u.

In the following result we consider the hyperbolic geometry in a 2-
dimensional plane.

2.10. LEMMA. Let o € (0,7/2), M >0, and define

d = min{|x,| : xeR%,0(x,e;) 2 M and x, = 1+x,tana}.
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Then
= ((tan? a+2A4)"* —tana)/A4 ,
where

= (1+tan?0)/(coshM —1).

Proor. By (2.5) it suffices to find the common points of x,=1+Xx, tano and
S'((cosh M)e,,sinh M). The absolute value of the negative root of the
corresponding equation is d.

3. On tangential sequences of points.

In Section 4 we shall consider some sequences in R”, which approach 0 in a
tangential way and satisfy, in addition, an isolation condition and a particular
divergence condition. In the present section we shall show that such sequences
exist, and indicate how such sequences can be generated.

Throughout the paper h:(0,c) — (0,00), ¢>0, will be an increasing C?-
function with the properties

31 @) >0, () >0 for te (0,0,
G- lim h(t) = 11m K@) =0,
=0+

Let (b,) be a sequence in R with

(32) {bk = fu th(te, woe ST N AR,

O<tyy Sty <c, limg =0.
We shall consider the following isolation condition
(3.3 obp,b) =2 M >0 for j*k,

and the divergence condition

(3.4 Z (ht/t )"t = o0

3.5. A SUFFICIENT CONDITION FOR (3.3). Let (b,) be a sequence as in (3.2). By

(3.1) we have
by — byl > [tk_tk+l:|2
h(tdh(try) — [ (o)

In view of (2.6) a sufficient condition for (3.3) is
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t,—1t
3.6 A = lim inf *—**1 5 0
(36) o

3.7. ExampLE. (1) Let h(t)=t'**, 0>0,t>0, and t, =k~ Y% k=1,2,.... Now
> h(ty)/t,=00 and

b= levr _ ko= (k+1)" 1
h(tk) k—(l +a)/a

1
= k(1—(k/(k+ 1))1/“) — p
as k — oo. Hence, by (3.6), the sequence b, = (t;, h(t,)) satisfies (3.3) as well.

(2) Let h(t)=t(log1/t)~, t € (0,c), where ¢>0 is chosen so that (3.1) is
fulfilled, and let t,=2"*"°8k <¢. Now Y h(t,)/t,= 00 and
b= tksq _ ]og2(logk)[l__2—klog((k+1)/k)—log(k+1)] RS
h(t)

and t,,,/t;, > 0 as k — oo. Thus both (3.3) and (3.4) are satisfied. The
sequence s, =2~ * < satisfies also conditions (3.3) and (3.4). Observe however
that, s, /s, » 0.

3.8. THE ITERATION ¢, ,, =t,—Ah(t,). Fix h as in (3.1), A>0, and ¢, € (0,¢)
such that t—Ah(t)>0 for all ¢t € (0,t,]. Let t,,,=t,—4h(ty) € (0,t,) and b,
=t,e; +h(t)e, k=1,2,.... For this sequence (b,) the number A4 in (3.6) has a
positive value 472, and hence (3.3) is satisfied. We next show that

lim sup (b, by 4 ,) < 00.
In fact, h(t,, )2 h(t)(1—AH (z,)) by (3.1) for K'(t;)<1/A and further

by byssl? _ B(1+H (1))
h(th(tesy) —  1—H(5)
Hence lim sup g(b,, b, . ;)< ar cosh (1 +4%/2) by (2.6) and (3.1).

3.9. LeMMA. If (t,) is as in 3.8, then 3 h(t,)/t, = oo.

Proor. Clearly

Ah(ty) = hmherr o J."‘ ﬂ

L+ Li+a teas

Since t, — 0 and ¢t ,,/t, — 1 by (3.1), the proof follows.

A set E = R", with 0 € E is said to be non-tangential at 0 if E = C(¢) for
some ¢ € (0,7n/2). Otherwise E is tangential at 0.
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3.10. REMARKS. (1) Let (a*) be a non-tangential sequence at 0, lim a*=0. Then
there exists a constant u> 0 such that a*/|a*| = u> 0 for all k, where a* is the nth
coordinate of a*. In particular, ¥ a*/|a*|=o00. Due to (3.1)

h(td/te = by/ti ~ by/Ib

for large k, when (b*) is a sequence as in (3.2). Hence we can consider the
divergence condition (3.4) to be some sort of generalization of the non-
tangentiality condition. More specifically, (3.4) requires that the sequence be
thick enough for the given h, since not all sequences of the form (3.2) satisfy
(3.4) as can be easily shown.

(2) Let A>0, (by) as in (3.2), and let a, € D(b,, A), a,=s,v,+ e,
v, € S""1NAR". Then we get by (2.5) the following generous estimates

Ik - h(tk)e_A > h(tk)_ Oy h(ty)

= = s C— ’
S~ tet+h(tysinhA T Ct, Sk ty

IIA

where C=2e". Hence (b,) satisfies (3.4) if and only if (a,) does. In conclusion,
small changes of locations of the points b, have no effect on the validity of (3.4).

We shall now show that there are sequences (b,) satisfying (3.3) and (3.4),
when n=3. If a e R write T(a)={x € R" : x,=a}.

3.11. LEMMA. Let h be as in (3.1) and let 0<t,,, <t,<c, limt, =0, 3 h(t)/t,
=00 and @(b,b)=a>0 for k=+j, where b,=t,e,+h(t,)e; € R%. Then there
exists a sequence (c) in UT, T;=T(h(t)), where c,=su,+h(s)e,
u, € S2NOR3, with ¢, — 0 and g(c;,c;)Za for k=+j and such that

™Ms

(h(s)/s;)* = oo

1]

ji=1

Proor. From (2.5) it follows that there exists a constant d >0 and an integer
jo such that for j 2 j,, there are at least N;2dt;/h(t)) points b}, i=1,...,N,, in T;
with |bi|> =17 + h(t))* and with (b}, b%) = a for k +i. Arrange the points (b) into
a sequence (c,) with |¢; 4] € (0,|c,[], cx=sutx + h(si)es, u € S2NOR3. For each
r2j, there are at least dt,/h(t,) terms in the sequence ((h(s;)/s;)?) having the
value (h(t,)/t,)*. Thus

{E (h(sd/si)? 2 d Y, ht))t, = .
k=1

rZj,

In view of 3.8 the following lemma is seen to be a generalization of Lemma
39.
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3.12. LEMMA. Let a,= (s, h(s,)) € R be a sequence as in (3.1) and (3.2) such
that o(ay, a,.,)<2C for all k=1,2,.... Then X h(s)/s, = 0.

Proor. Fix A>0 and ¢, € (0,s,) such that the sequence t, ., =t,— Ah(t,), b,
= (t,, h(t,)), satisfies g(b, b, ) <C (cf. 3.8). Choose a subsequence (sk) of (s;)
such that

2C = olaxya,,) = 4C
for all j=1,2,.... For each g, there is b; such that
e(ay, b)) < C.
It follows that b; +b; for j+k. We estimate

00 d;41—1

Z z h(ty)/ty

j=1 k=i

00 = k; h(t)/tx

IIA

S Giyes—iph(t,)t, -
ji=1

For the last inequality note that h(t)/t is increasing by (3.1). From (2.5) it
follows that i;,, —i;<N=N(C) for j=j, where j, is chosen so that h'(t) is
small enough for ¢t € (0, tiio) (cf. Lemma 2.10). From the above estimates it
follows, in view of 3.10(2), that
Z h(sy/si 2 Z h(sy)/si, = const Z h(t;)/t;, = o0
JjzJo izjo

as desired.

3.13. CoROLLARY. Let a,= (s, h(s,)) € R% be a sequence as in (3.1) and (3.2)
such that g(ay, ay+,)<2C. Then there exists a subsequence (s,) of (s)) such that
e(ay,a,,, ) — 0o and 3 h(s,)/s, = oo.

4. The main results.

For the basic properties of quasiconformal mappings the reader is referred
to [8]. The next lemma is well-known ([8, 17.13], [11, 4.6]).

4.1. LemMa. Let f:R"%, — R" be a qc mapping, E; = R", 0 € E;, and suppose
that the limits

lim f(x) =0, j=12

x—0,x€eE;
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exist. Then o, =0, if M(I'(r))=00 for all r>0, where
I'(r) = A(E, N B"(r),E, N B"(r); R",) .

The following lemma indicates a connection between the continuum
criterion and the isolation and divergence conditions in Section 3.

4.2. LemMA. Let (by) be a sequence in R", satisfying (3.1-(3.4). Then
M(A(E,C(¢); R%))=00 for all ¢ e (0,n/2) and M(0,E)=00, where E
=UD(,,1).

Proor. From (3.1) it follows that for each ¢ € (0, 7/2) there exists an integer
k, such that

C(p) N (EN{0}) = & for k=k,,
Ek=Uj§k D(b;,1). To prove M(0, E)=oo it suffices to show that
M(4(E,,C(¢);R") = 00 for k=k, .
This sufficient condition for M (0, E)= oo follows from the proof of [9, 8.7].
Fix ¢ € (0,7/2) and k, 2k, such that h'(¢)<1/2 for ¢t € (0,¢; ]. Such a choice
is possible by (3.1). From (2.5) it follows that
B"(by, (1 —1/e)h(t,)) < D(by, 1) .

Applying Lemma 2.10 with tano=1/2 we see that there exists a number
A=A(M)<1—1/e, depending only on the number M in (3.3), such that the
projections of the balls B"(b,, Ah(t,)) on the (n—1)-dimensional plane x,=0,
call them A,, are pairwise disjoint for k = k,. Let I" be the family of all segments
parallel to the x,-axis joining ngkDAk to C(¢p). We obtain by virtue of [8, 7.2,
6.4, 6.7] and (3.4)

M(r) z Cl(fp,n)kzk te"my 1 (Ay)

1\

0

= clenM) T (hay ' = oo

k= ko

The proof is complete, since M (4 (Eko,C((p); R")= M(I') by [8, 6.4].

4.3. LEMMA. Let f: R", — R" be a qc mapping, let (a,) be a sequence in R",
with a, — 0, f(a,) — o and let M € (0,00). Then f(x) > o as x — 0, x € E,
E=U D(a,, M).

Lemma 4.3 is a qc counterpart of a result due to Bagemihl and Seidel [1,
Theorem 1] and it was proved in [10, 6.5].
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A mapping f: R, — R"is said to have an angular limit « at 0, if f(x) — a,
when ¢ € (0,7/2) and x — 0, x € C(¢).

4.4, THEOREM. Let f:R" — R" be a qc mapping, E cR", with cap dens (E,0)
>0and lim,_,g xcgf(x)=0o and let (b,) be a sequence in R"; satisfying (3.1)-(3.4)
and f(b) — B as k — oo. Then o.=p.

Proor. By [10, 4.4] f has an angular limit « at 0. The proof follows from
Lemmas 4.1, 4.2, and 4.3.

In the special case (cf. Remark 2.3) cap dens (F,0)>0, F=U D(b,, 1),
Theorem 4.4 follows from [11, 4.7].

4.5. COROLLARY. Let f:R", — R" be a qc mapping having an angular limit o at
0 and let (b,) be a sequence in R", satisfying (3.1)—(3.4) and with f(b,) — B as
k — oo. Then o= p.

4.6. REMARKS. (1) For sequences of the form b,=t.e, + h(t,)e, it suffices to
require Y h(t,)/t,=00 in 4.2, 4.4, and 4.5 instead of the stronger condition (3.4)
3 (h(t)/t)" ' =o0. This state of things is due to the fact that for a fixed
¢ € (0,7/2), there is a number u(M)<1—1/e (cf. (3.3) and (2.5)) such that the
curve families

Iy = A(C(9), B"(by,r); R(Iby] + 7y, Ibi —13)
where r,=u(M)h(t,), are separate for large k (cf. (3.1)), and M(I)
=const (h(t)/t,) [8, 10.2].

(2) It should be observed that the set E in 4.2 may be, in view of 4.6(1), so
small that cap dens (E,0)=0. In fact, let

1 -1
h(t) = t<log—t~>

b, = 2%, +h(2 %e,, n=3.

(cf. 3.7(2)) and

Then (b,) is of the form 4.6(1) and the conditions (3.1)—(3.3), X 2*h(2 %)= 00 are
satisfied. Let E={0} U (U.D(b,,1)). It follows from 2.3(3) that capdens (E,0)
=0.

4.7. REMARK. Gaier and Pommerenke [3] have proved that if {z } is any
sequence in B? with z, — 1=(1,0) and arg (z,— 1) — n/2, then there exists a
bounded conformal mapping f: B> — R? having a radial limit at 1 but such
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that {f(z,)} diverges. Hence we see that the assumption concerning the
existence of lim f (b,) does not follows from the other assumptions in 4.4 or 4.5.

Let (a,) and (b,) be sequences in R, with a, — 0, b, — 0 and such that for
some M >0

(4.8) oJpJy = 2M  for k=*h,
where J,=J[a, b,].

4.9. THEOREM. Let (a,) and (b)) satisfy the condition (4.8) and let f:R", — R"
be a qc mapping with f(a,) — o, f(b) — B as k — o0o. Then

Z o(a,b)! " = c©
implies o.=f.

Proor. By Lemma 4.3, lim inf ¢(a,, b,)<oo implies oo=p. Thus we may
assume g(a, by) — 00 as k — oo and, after relabeling if necessary, that g(ay, by)
> M for all k. By performing an auxiliary Mobius transformation if necessary
we may assume that o, f+00. By Lemma 4.3 there exists an integer k, such
that

SD(bi, M/2) = B"(B, | —BI/3)
and
fD(a, M/2) < B"(o,,|l0—pI/3) for k=k, .
Let
I, = A(D(ay, M/2),D(b;, M/2); D,) ,

where D,=U{D(x,M): x € J[a,b]}. By virtue of (4.8) the families I', are
separate and thus [8, 6.7]

M(F)2M<U Fk>§ My,
k=k, k=ko

where
r= A( J D(a,M/2), |J D(bk,M/Z);R'i»>-
kSko K=k,

From a symmetry property of the modulus [12, 2.21] and Lemmas 2.8 and 2.9
(or directly from the proof of 2.9) it follows that

M(T',) z colay, bk)l "
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for k=k,, where c=c(n, M). Since M(fTI')<oo [8, 7.5] this last lower bound
leads to a contradiction with the quasi-invariance of the modulus [8, 13.1].

4.10. REMARK. Let b, = (27% 27%%) € R%. Suppose that f: RZ — R2 is a qc
mapping having an angular limit o at 0 and such that f(b,) — B. Then f(a,)
— a, a,=|b,Je, and (4.8) holds. It follows from (2.7) that 3 ¢(a,, b,) ! =00 and
hence we conclude by Theorem 4.9 that o= f. Observe that the sequence (b,)
satisfies the conditions (3.1)-(3.3) but fails to satisfy (3.4) and hence the
assumptions in Corollary 4.5 are not satisfied.
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