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MODELS OF FINITE GROUP ACTIONS

RICHARD H. HERMAN! and VAUGHAN F. R. JONES!

Introduction.

In this paper we continue work begun in [7]. There we dealt with actions of
Z, on UHF C*-algebra and showed that a certain model action was
characterized by its behaviour on central sequences. Here we call this property
R, (see below). The more general finite group situation is what we address
here and in doing so the role of £, becomes clearer. Indeed it appears more
indispensable in this paper than it did in [7] and is crucial for our vanishing
cohomology results. As in [2, 7] much of the work is done in the algebra A®
(=1°(Z,A)/co(Z, A)) and A, (={(x,: Vx € A4, lim,,  |[x,, x]| =0}). We then
transfer the results back to the C*-algebra A via various technical lemmas.
What we show is that “property &, characterizes an action of the finite group
G as the tensor product of Ad of the left regular representation with it itself an
infinite number of times” (call it sg).

To reach this result we combine the techniques of [7] and [8] together with
results of Ocneanu [10] and Sutherland [14]. Matrix units which behave well
under the action of G are found in Section 1. For this we need to pass to cocycle
twisted actions of G. The main result appears in Section III, Theorem 3.6. As a
corollary we obtain that s; absorbs, by tensoring, any approximately inner
action of the group G on a simple unital C*-algebra. Finally in Section IV we
show that, for 4 a UHF C*-algebra, if G acts on A in such a manner that it
remains outer in the II; representation, then the fixed point subalgebra, 4, is
the closed linear span of its projections.

Most of the results hold true only under the standing assumption that A is a
simple unital C*-algebra which is isomorphic to its tensor product with a
UHF C*-algebra of type |G|* and that the automorphisms in question are
approximately inner. Indeed one of the final results requires 4 to be AF. Some
of the lemmas are true otherwise and we have pointed out where the standing
assumption enters. All C*-algebras considered here are assumed to be
separable.

We would like to express our gratitude to Klaus Schmidt and David Evans
for invitations to visit Warwick where much of this work was accomplished.
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I. 2-Cohomology.

The main goal of this section is to find equivariant matrix units for a cocycle
perturbation of our original action. That is we shall find a cocycle g — v, and
|G| x |G| matrix units e, , such that

Ad vy (e ) = €p g -

To do this it will be necessary to consider cocycle twisted actions (see [14]).
We say that (y, u) is a cocycle twisted action if y is a map from G — Aut (4) and
U, is a family of unitaries indexed by G such that

Yeln = Ad Ug nY gh

and

*) Ug wlhgnx = )’g(“h,k)“g, hk

with the normalization u, ,=1 if either g or h=1.

There is an easy way to perturb cocycle twisted actions to others. We choose
any family of unitaries t,t,=1 and form j,=Adt,y, with corresponding
cocycle i, , =1ty (tp)u, ptf-

ReMaARK 1.1. Note that if « is an action, then perturbing (a, 1) by a cochain ¢,
one obtains an action (&, 1) exactly when t, is a 1-cocycle.

We begin by noting the result of perturbing twice. A chain rule exists.
LEMMA 1.2. If (7, 4) is the perturbation of the cocycle twisted action (y,u) by the
cochain v, and w, is another cochain, then the result (¥, 1) of perturbing (§, ) by

{w,} is the same as the result of perturbing (y,u) by the cochain {wyv,}.

Proor. This is just a simple calculation.

Our method for proving vanishing cohomology will be the following
adaptation of Shapiro’s lemma.

Lemma 1.3, Suppose (y,u) is a cocycle twisted action and that there are
projections {e,} in A, Y, ge,=1 with [ug ,, e, ]=0 for all g, h, k, and y,(e,) = eg.
Then if v,=3 ¢ G Uy weqn the v,'s are a unitary cochain, and if (7, 4) is the result of
perturbing (y,u) by v,, i, ,=1.

Proor. That the v,’s are unitary is clear. By definition
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7 i * %k
U p = (Z ug.aega)yg<z Up, v€np ug,h(Z €ghcligh,c | -
aeG beG ceG

Since the e;’s commute with the u, ,’s, this becomes

" —_— * *
ug,h - z ug,aYg(uh,b)ug,hugh,cegaeghbeghc .
a,b,c
Now since the e,’s are orthogonal, the only contributions in the sum occur
when b=h"'a and c=h""a and then the cocycle relation for u, , gives

* * —_
ug,a)’g(uh,h"'a)ug,hugh,h‘la =1.

Hence i, , =3 ,e,,=1.

a“ga
We now give a C* algebraic version of a result of C. Sutherland [14].

THEOREM 1.4. Let G be a finite group, A a unital C*-algebra and let (y,u) be a
cocycle twisted action of G on A. Suppose A possesses a partition of unity {e,}
such that y,(e,) ~ e, for every g,h € G. Then y admits a perturbation of the form
@ D).

PRrOOF. For each g € G there is a unitary v, such that vy, (e,)vy =e,, v, =1
[5, Lemma 1.8]. Let (§,4) be the result of perturbing y by the cochain {v,}.
Then j,(e,) =e,, so that

igih(ek) = €gpx = Ad ag,h');’gh(ek) = Ad ag,h(eghk) .

Hence [, ,,€,] =0 for any g, h, k. Hence by lemma 1.3, (7, %) has a perturbation
of the form (3, 1). Finally by Lemma 1.2, (y,u) has a perturbation (7, 1).

We shall use Theorem 1.4 to prove the following.

THEOREM LS. Let A be a unital C*-algebra with |G| x |G|*> matrix units {f;;}
and suppose a: G — Aut A is an action such that a (f,,)~f,, for all g € G. Then
if {e,,4} are matrix units indexed by G in { f;;}"", « may be perturbed by a 1-cocycle
v, so that Ad v, (e, ) =€z gh

ProoF. Begin by noting that a,(f},)~f,, implies the existence of unitaries, t,,
such that Adt,a(f;)=f; In particular Adt,a (ey)=es s If 7,=Y4cGemm
then Ad r,t,a (e, o) =€, o If (v, u) is the perturbation of « by the cochain {r,t,},
then, as in the proof of 1.4, we have [u, ,,e, ,]=0for all g, h,a,b € G. Thus (y,u)
may be viewed as a cocycle twisted action of G on the commutant {e, ,}". But
the hypotheses of Theorem 1.5 allow us to apply 1.4 to conclude that (y, u) may
be perturbed by a cochain x, in the commutant {e, ,}' to (,1). In particular
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7(€n, i) =€gn, g Now by 1.2, (7, 1) is a perturbation by some cochain {v,} of (a, 1).
Finally it follows from Remark L1 that {v,} is a cocycle.

REMARK. One might be tempted to conclude that Theorem L5 is valid with
only |G| x |G| matrix units in A. This is not true as seen by the following
counterexample. Let G=Z, x Z, and A= M/(C). The Pauli spin matrices o,
form a nontrivial projective representation of G in M,(C) and hence G acts on
M,(C)=M,(C)®M,(C) by a,=Ad (6,®1). Here 4 has a basis of |G| x|G]|
matrix units. But we claim that « cannot be perturbed by a cocycle so that
Ad v,0, (e 1) = g4, o For the crossed product A x ,G is a factor ([8, 7.4.4 and
2.2.2]) so that any cocycle is a coboundary. This would mean that the action «
would be conjugate to the action coming from Ad of the regular representation
which is not the case.

II. Equivariant matrix units.

In this section we show how to find equivariant matrix units assuming the

existence of approximately equivariant matrix units. The result will be used
later on in obtaining our final structure theorem.

First we need a simple lemma.

LeEMMA IL1. Let g — y, be a unitary one-cocycle for the actiong — a, on A. If
ly,—Ill<d< l/i then y,=za (z*) for a unitary operator z with |z—1I|| <é.

PrOOF. If we let x=1/|G| X, ), the x is seen to be invertible (its numerical
range is a proper subset of the right half-plane). A simple calculation shows
that o, (x)=ygFx. If we take the unitary z in polar decomposition of x, then we
get y,=z0,(z*). Moreover, |z—1I| <d. (For the estimates see [1, Lemma 2.3
and the remarks on the top of p. 172].)

DEFINITION. An action « of the finite group G will be said to have property
R, if there is a central sequence of partitions of unity {e]} indexed by G such
that lim,_, [l (e}) — gl =0.

If E, are the projections in A4, represented by {ej}, then o (E,)=E,,. If
G=1Z, this is the same as the property %, of [4] and [9].

THEOREM I1.2. Let o be an approximately inner action of the finite group G on
the C*-algebra A having property & .. Then for any £¢>0 there is a >0 such
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that if {f, .} are matrix units in A with ||o,(fy 1) —fon g/l <O, then there are
matrix units {e, ,} with

O‘g(eh.k) = €gh, gk and “eg,h_fg,h" <e.

Proor. By a result of Glimm [5], we may find unitaries w, such that
Wit (fo.Ws =fon g @and [w,—1| controlled by 6. This means that if &
=Ad wa, and x, , =w,x, (w,)Wg, then (&, x, ,) is a cocycle twisted action on the
commutant B of the f, ,’s. Also ||x, ,— 1| is controlled by 6. By £, and a little
approximation, we may choose a partition of unity {e,} in B with ||&(e,) — e,
as small as we like. Moreover by [Ibid] we may then find unitaries ¢, with
t,a,(ety =e,y, and |t,— 1|| small. But then if (B,u, ,) is the result of perturbing
(& xg,4) by tg,[uymel=0 and |lu, ,—1| is controlled by 6. Thus if b,
=2 heg Ug negn then |v,—1]| is controlled by é and if B, @i, ) is the result of
perturbing B by v,, then as in Lemma L3, i, ,=1. But by Remark L1, this
means that y,=v,t,w, is an a cocycle and |y, — 1| is controlled by 6. Also since
t, and v, are in B, Ad y, o, (f4 o) = fen o« NOow use Lemma I1.1 to choose a unitary
z with [ z—1]| controlled by é and za,(z*)=y,. Then put e, ,=z*f, ,z.

III. Conjugacy of #_, actions.

The importance of property %, is that it implies stability of the action «
on A, as shown in the next lemma.

Lemma IILL. If o is an action on A with property R, and {V,} is a unitary
cocycle for the action of G on A, then there is a U € A, such that Ua, (U¥)
=V

o

Proor. By property £, we may choose a partition of I in A, such that
a,(E,) = E,,. By choosing a subsequence [2] we may further suppose [V}, E,]
=0for all h,g e G. Let U=}, ¢ V,E,.

LemMA II1.2. Let A and a satisfy the standing assumptions. In addition assume
that it is an AF-algebra. There exist |G|* x |G|* matrix units {F, ;} in A, with
ag(Fu)~F11-

Proor. We have already made use of this idea in [7] although it was not
made explicit there. That |G|?> x |G|* matrix units exist in A, is clear from the
assumptions on A. Given a central sequence of matrix- units {e{}}, clearly
{og(ef?)} is also central. Since a, is approximately inner clearly {a,(e{7)} is
equivalent to {e{P}. Using the fact that 4 is AF we pick first a finite
dimensional subalgebra M,; and then choose n so large (say n=n,) so that
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{e""} and {a,(e{})} are nearly in M. There are then two sets of matrix units in

, near to {e{P} and {a,(e{})} respectively, which are equivalent in Mj. This
last equivalence provides an equivalence for {e{7} and {o,(e{?)} by an element
nearly in M{. In particular e{’) ~«,(e{?}) by an element near to M{. Picking an
increasing nest {M,} of finite dimensional subalgebras and a subsequence of
the {e(?} with increasingly better commutation properties, we obtain our
result.

THEOREM II1.3. Let A be an AF algebra with A and a satisfying the standing
assumptions. Suppose that a is an action of G on A with property R.. Then there
is a unitary representation V, of G on A® such that a,(V,)= -1and AdV,=a,
on A A%,

Proor. This proof follows exactly the calculation of [8, Theorem 4.3.1]. One
forms the semi-direct product G><G and makes use of the results of Section I,
which are available to us as 4, contains |G| x |G|> matrix units. Suppose that
W, are chosen (by approximate innerness) in A* such that Ad W,=a, on
A< A%, then

% (W)X (W) = ap(Wity-1(X)W)

ag(akg_l(x))
== W kg—IXW:,‘g‘

b4

so that a, (W) € W,,-14,,. We may then use II1.2 and 1.4 to replace the use of
[8, Corollary 4.1.7] and IL.1 to replace the use of [8, 3.1.3].

CoroLLArY II14. There are matrix units {E,,} in A* with E, ,€ A
% (Ep i) =Egp o and Ad (X, E,p p) =2, on AS A%,

00

Proor. We have the existence of F, in 4, with a,(F,)=F,, (Property #,).
Passing to a subsequence we may suppose V,F,V¥=F,, with o,(V},)="V,,,-1
and AdV,=a, on AS A®. Let E, ,=V,,-1F,,

CoroLrrary IILS. If ay,a,,...,a, are elements of A and ¢>0 is given, then
there are matrix units e, , in A with ||[e, ,,a,]|l <& and
|Adry(a)—a.(a)ll < e fori=1,2,...,n

where Te™ 2 heG Coh i

ProOF. Combine IIL4 and IL.2.
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We now have the main

THEOREM 1IL.6. If a is an approximately inner action of the finite group G on
an AF C*-algebra A isomorphic to its tensor product with a |G| UHF algebra B
such that o has property R, then o is conjugate to so®id for some factorization
B® A, where sg is the infinite tensor product action of the regular representation
acting by conjugation on the |G| x |G| matrix algebra.

Proor. The argument of 5.3.3 of [8] goes through with the modifications
used in of [7] to obtain that « is conjugate to s;®id on some splitting
B® (B'N A) of A. But since the tensor product of the regular representation
with itself is conjugate to the tensor product of the regular representation with
a trivial representation of dimension |G|, we deduce that s; is conjugate to
s¢®id on B®B. Hence a is conjugate to s¢®id®id on BQ (BB N A)
=B®A.

CoroLLARry IIL7. If B is an approximately inner automorphic action of G on a
simple unital C*-algebra B and if A is the |G| UHF algebra, form the action
B®sg on BQA. We then have fQsg~id ® s¢.

Proor. This is identical with the corresponding result in [7], an additional
comment is, however, warranted. We are applying our Theorem I11.6 to the
algebra B® A and there is no assumption that B® A is AF. However this
assumption was only used in one place, viz. Lemma II1.2. It is apparent though
that f®s¢ has the required matrix units (as s does).

IV. The fixed point algebra.

A question which so far remains unanswered is whether or not the fixed
point subalgebra of an outer action of a finite group on an AF-algebra is again
AF. We show the following:

TueoREM IV.1. Suppose that A is a UHF C*-algebra and o is an outer action
of the finite group G on A. If a remains outer in the trace representation then the
fixed point subalgebra AS is the closed linear span of its projections.

Proor. That A€ is simple holds more generally [3, 13]. We claim that 4€ has
a unique trace. Since G x , 4 is simple 4% and G x , A are stably isomorphic
T12, 13], so it will be enough to know that G x , 4 has a unique trace. If u,
denote the unitary of the crossed product giving a, on A there is only one trace
7 extending the trace on A4 so that t(u,)=0 for all g € G\ {e}. If ¢ is another
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trace on G x , A it will suffice then to show that ¢(u,)=0, if h e G\ {e}. We
may thus restrict attention to the cyclic subgroup H of order n generated by a
given h € G\ {e} and restrict ¢ to Hx,A<G x,A. Since H is abelian we
consider the dual action & of H in Hx,A. But then (¢(x)+@(@(x)+...
+@(@"(x)))/(n+1) is the trace t|H x,A. Since a is outer in the tracial
representation 7 is a factor trace and so extremal [16]. Thus ¢(x)=1(x) for all
H x ,A and so ¢(u,)=0.

To complete the proof of the theorem it remains only to show [11] that A€
has a projection. For this we appeal to Elliot’s extension [3] of a result of
Connes [2]. Since a is outer, given ¢>0 we can find, under any projection e, a
projection fsuch that || fo,(f)|| <e. If we form f+a,(f)+ ... +o,(f)=x, we see
that x is a fixed element and x*>—x is small. That is, there is a gap in the
spectrum of x. A continuous function of x results in a projection in A°.

We remark that David Handelman [6] and Antony Wassermann [15] have
analyzed in detail the situation with regard to traces on the fixed point algebra.
We thank them for conversations about their work.
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