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GORENSTEIN RINGS WITH
TRANSCENDENTAL POINCARE-SERIES

RIKARD BOGVAD

1. Introduction and definitions.

The word “ring” is used throughout the paper as shorthand for “unitary,
commutative, local and noetherian ring”.

For a ring (R, m), with maximal ideal m and residue class field k=R/m, the
Poincaré-series is defined as

Pr(z) = dim, (TorR (k, k))z'
iz0
It was conjectured that this generating function would turn out to be a rational
function for all rings; this hope, however, was recently crushed by David Anick
[1], [2]—through Clas Lofwall-Jan-Erik Roos [10]—who constructed
artinian rings (R,m) with m®=0 and transcendental Poincaré-series. For easy
reference let us call those of the rings that Lofwall-Roos construct in Theorem
3 of [10] (they are described in section 4), that have transcendental Poincare-
series, something, beasts say.

The aim of this paper is then to use beasts to construct artinian Gorenstein
rings, also with transcendental Poincaré-series. In [7] Gulliksen noted that, if
(R,m) is artinian, taking the trivial extension (defined below) RaE(k), where
E(k) is the injective hull of k= R/m, produces a Gorenstein ring. Since it is well-
known [7] that

Pram(2) = Pr(2)/(1—2zP¥(2))
(where P¥(z) = Y dim, (Torf (k, M))Z))

iz0

for an arbitrary trivial extension RaM, determination of Pg,g) boils down to
finding the value of

PE¥(2) = ¥ dim, (Extk (k R)Z ,

iz0
by virtue of the natural isomorphism

TorR (k, E(k)) = (Ext%(k,R)).
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Since the exponent of a beast is low, only 3, it turns out to be rather easy to
determine Ext} (k,R); the techniques of Lofwall [9] and Roos [12] are
available, and indeed, for all beasts R, RoaE(k) has transcendental Poincare-
series. As a byproduct of the proof I also obtain that these rings have
transcendental Bass-series 3, , o dim, (Extk (k, R))z' and moreover it is possible
to show the existence of a smooth, closed, simply connected manifold M such
that the Poincaré-Betti-series of its loopspace QM—Z,godimQ H,(QM, Q)7
is transcendental.

Some more definitions:

If M is a positively graded module, over some field k, its Hilbert series is .
defined by

Hy(z) = ) dim Mz .

i20

The graded dual of M is the graded module M* defined by
(M*); = Hom, (M_,k) .

The trivial extension RaM of R by an R-module M is the ring defined
additively as R@® M and multiplicatively by

(rom)(r',m’) = (rr',rm’ +7'm) .

Note that R and RaM have a common residue classfield.

I would like to thank Clas Léfwall and Jan-Erik Roos for their help. The
latter suggested the problem and avenue of proof, also due to him is the
inclusion of the whole zoo. Also I would like to thank Stephen Halperin for
showing me the topological application.

2. An exact sequence.

As I mentioned in the introduction, the problem is to determine Ext} (k,R)
(or at least its Hilbert-series), or more generally to try for Ext} (k, M) as an
Ext§ (k, k)-module.

The most elementary approach seems to be to use long exact sequences such
as the one induced by:

0—socM - M— M/socM — 0

and this is the content of Lemma 1 and 1’ below. ,

The following lemma is suggested by Theorem 1 in Roos [12]; it gives the
Yoneda-action of Ext} (k, k) on Homg (k, M) as a subset of Ext% (k, M)—M an
arbitrary R-module. '
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LEMMA 1. There exists natural mappings o and B such that the following
sequence is exact:

0 — Homyg (k, M) ® Homg (k, k) X» Homg (k, M) £ Homyg (k, M/soc M) —
— ... L Exty™! (k, M/soc M) %> Homg (k, M) ® Ext} (k, k) -
Y, Exty (k, M) £> Ext} (k, M/soc M) — ...
where ® is ®, and Y the Yoneda product.
The proof is. entirely similar to that of Theorem 1 in Roos [12]; it uses the
isomorphisms
Homy, (k, M) ® Exty (k,k) = Homy (k, séc M) ® Ext} (k, k) =~ Extg (k,soc M)
and the long exact sequence induced by 0 — socM —- M — M/socM — 0.
If B=Ext} (k, k) then by the naturality of the Yoneda product the lemma can
be reformulated as: ‘
LEMMA 1'. To every R-module M there exists an exact sequence of B-modules:
(1) 0— s7'(Sy) — s~ '(Ext} (k, M/soc M)) — Homg (k, M)® B 1>
Y, Extf(k,M) > Sy — O,
where |

Sy = |1 Exty (k, M)/(Homg (k, M) Ext} (k, k))

nz

(=

and s~ (M) of a graded module M is the same module'push‘ed up one step, that is
(s7 M), =M,_,.

3. An application of Lemma 1.

Assume that M is an artinian module.
From Lemma 1’ one then obtains a finite complex, denoted by E(M):

. — s~ *(Homg (k, M/soc* M)® B) — s~ ! (Homg (k, M/soc M)® B) —
— Homg (k, M)®B — Ext§ (k, M) - 0,

if soc? M denotes {x e M : m’x=0} etc.

Put 4= (Exty (k,k)) —the subalgebra of B generated by the one-dimensional
elements. 4 is a Hopf algebra—it is primitively generated—and so B is a
faithfully flat extension of 4 ([11]). The maps in E(M) are defined as

(2) soc"M/soc" 'M®B 3 x®b > Y xx®T;b e soc" ! M/soc" *M®B,
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where x; denotes representatives for a basis of m/m? and T, is the dual basis of
Hom, (m/m? k) = Extk (k,k) .

The nice thing here is that these B-linear maps obviously come from A-linear
maps:

soc"M/soc" ' M® A — soc" ! M/soc" *M®A ,

with the same definition, by extending them by — ® 4 B. Altogether this means
that there exists a complex E ,(M) of free A-modules, such that exactness of
E 4(M) is equivalent with exactness of E(M).

. Of course, the complex is not exact in general. In case M =R, R a beast this
is true however and also in the following

PROPOSITION. The complex
3) 0— s '(B) > m/m*®B — Ext} (k, R/m?) — 0

is exact for all rings R, with the exception of those having A= (Extk (k, k)>
strictly commutative (which is equivalent to A being an exterior algebra).

Proor. Note that by the explicit formula (2) the kernel of the first nontrivial
map in E,(R/m?) is precisely soc A=Hom, (k, A). By Lemma 1’ it is then
enough to prove soc A =0 if and only if 4 is not strictly commutative. (Observe
~ that A4 is graded as a subalgebra of Extj (k,k). A graded algebra is strictly
commutative if ab= (—1)4824%€5hg and 4> =0 if dega is odd for all elements a
and b in the algebra.) Suppose a belongs to soc A.

The algebra A, as a cocommutative (see Gulliksen-Levin [14]), connected,
locally finite and graded Hopf algebra, is the enveloping algebra of a graded
Liealgebra: A= U (g). The graded version of Poincaré-Birkhoff-Witt’s theorem
(PBW) says:

If a k-basis of g is well-ordered, a k-basis for U(g) is given by all elements:
u=[Tuf" where u; <u, ... and ¢;=0, 1 if deg u, is odd and an arbitrary natural
number otherwise. (The difference in the exponents compared to the usual
PBW orginates in the existence in the case of a graded Lie algebra of a function
g 3 x — x? € g for deg x odd; which upon taking the enveloping algebra of g
coingides with the algebra square. For all this see Milnor-Moores paper [11])

Assume now that there exists an a such that a annihilates the augmentation
ideal of A (which is generated by the T) and let b=3 k,T,, k; € k. Then b*>=0.
For suppose b 40 and choose a wellordering of a k-basis of g such that b < b?
(possible since b and b? linear dependent implies here b*>=0) and such that
these two are smaller than the rest. Then bii is a new basiselement, for every
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basiselement @; and if bii =bo then ii=5. So bc =0 implies c=0, and Hence the
existence of a gives b>=0. Using (T;+ T))*=T? +[T, T;] + T? we then get that
all graded Lie commutators in 4 are zero. The converse, finding an a if 4 is

strictly commutative is left for the reader as an exercise. The proposition is
proved.

The condition of strict commutativity of 4 corresponds, in terms of the
underlying ring, to the following condition:

If R is the completion of R, and S/a — R a presentation of R as a quotient of
a regular ring (S, n) with the same embedding dimension as (R, m) (that is S/n
=R/m and dim (m/m?)=dim (n/n?), then acn®. (This follows easily from the
explicit study of A4 in Lofwall [9] or from Sjodin [13].)

Suppose now that R is a ring with m* =0 and soc R =m?. Then E 4(R) has the
form:

4) 0> s7%(A4) » s ' (m/m* @A) > m*®A — Extk(k,R) » 0.

Suppose further that R is a Gorenstein ring. Then Ext} (k, R)=k, and jt is easy
to see that this implies that (4) is exact at Ext}(k,R). If the embedding
dimension R is greater than 1 (so that R, as a Gorenstein ring cannot be of the
form S/n? for (S, n) regular) then the sequence is also exact at the beginning; by
its construction (see Lemma 1’) this suffices to make it exact as a whole. Thus
we have a resolution of k over B, and B has rational Hilbert series and global
dimension 2. In partitular the Poincaré series of R is rational. (If the embedding
dimension of R =1, the global dimension of R is infinite and its Poincaré series
1/(1-2).

All this was proved in another way by Lofwall from results in [9]. Note that
the proposed Gorenstein rings RaE (k) of the introduction all have nilpotence
degree 4.

Let us now return to the complex (4). From the proof of the proposition it is
clear that the first homology group is Hom, (k, A) and actually it is also true
that the second is Ext} (k, A): Consider the start of a resolution of k over A
given by

L: kA« mm)*@A <~ m)*®A,
Where o is
(M)*@A 21, (m/m?)*@ (m/m)*® A 8" (m/m?)*® A .

Here u is the multiplication map m/m*®m/m* — m* and m is just
multiplication in 4 with (m/m?)* identified with Ext} (k,k). That this is a
beginning of a resolution is clear, since im (u*) just is the relations in degree 2
of 4, and these generate all relations, [9]. Now, after some calculations it is
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easy to see that E,(R)=Hom, (L, A) and since [ was the beginning of a
projective resolution of k over A this implies that

H,(E(R)) = Exti(k,4) i=0,1.

(Here ~ denotes the operation on a complex done by taking away the bottom
term.)

4. The number of the beast.

In [10], the beasts are created by first constructing their {Extk (k,k)> as an
explicit extension:

k- UM > A->U(f)—>k,

where h is an abelian Lie algebra and f is the product of two free finitely
generated graded Lie algebras (and some other conditions on the extension,
which guarantee that A is finitely presented etc.). Then standard techniques of
[9] makes it easy to find a ring R with Extk (k,k)=A. If such a ring has a
transcendental Poincaré series it is precisely what was called a beast in the
introduction. From the construction in Theorem 3 of [9], it then follows that h
must have infinite k-dimension. This will be used in the sequel.

First note that for a beast soc R =m?: Translate the existence of an element
x € m/m? annihilating m into a condition on A: the existence of an element
Te A, (the elements of degree 1 of A4) not involved in any nontrivial relation.
Then, by using that g, the underlying liealgebra of A4, as a vectorspace is the
direct sum of three Lie subalgebras and the freeness respectively abelianness of
these, it is easy to see that such an element cannot exist.

Obviously A is not an exterior algebra. Therefore the beginning of the
complex E(R) is exact and if we prove that Ext) (k, 4)=0 it follows that the
whole complex is exact (by the remark at the end of the preceding section and
since soc R =m? and so E 4(R) has the form of (4)). This will follow from the fact
that g contains an infinite dimensional abelian Lie subalgebra and will be done
in 2 steps.

Step 1. Suppose k - D — A — C — k is an exact sequence of graded
Hopf-algebras. Then there is a suitable spectral sequence:

E% = Extf (k,Ext} (k, 4)) = Ext} (k, A)

(see Cartan-Eilenberg [6, p. 349]). Suppose now that Ext} (k,D)=0. 4 is free
as a D-module, but we can not conclude directly that Extj (k, 4) =0 since the
D-rank of A is infinite. However it is possible to use the grading of A; since 4 is
a graded locally finite D-module there is an isomorphism
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(Ext} (k, A))* =~ Tor} (k,A*)

by Cartan [5] (note that Ext}, (k, A) has a natural grading stemming from the
grading of D).
Suppose {a;}i € I is a D-basis of A. Then

*
Da;N A, andso A* = Da;,N A
q q

iel,q q iel

A

I

(because of A4’s local finiteness)

@ (Da;N A Q—) (Da,)* .

iel,q

But Tor has no compunction about commuting with direct limits, and since
Tor} (k, D*) = (Exth (k,D)* = 0

it follows that Ext}, (k, 4)=0.
It is easy to see that this argument, and the spectral sequence, respect the

gradings induced on the homology modules by the gradings of the Hopf-
algebra. Thus we have proved

LEMMA. If k— D — A — U — k is an exact sequence of graded Hopf-
algebras, then
Extp (k,D) = 0 m<n
(Exth (k,D), =0  g=¢qo
implies
Ext% (k,A) = 0 m<n and
(Exty (k,4), =0  g=qo.

StEP 2. So the proof is reduced to showing Extf, (k, U(h))=0. Since h is
abelian, U (h) is the tensor product of an exterior algebra generated by the odd
degree elements in h, and a polynomial algebra on the elements of even degree.
For a finitely generated exterior algebra E

k if n=0, m=maxgq: E +0.
* n _ 4 q
). (Extg (k. E))n {0 otherwise

(here n denotes the homological grading, while m is the natural grading

mentioned above). For a finitely generated polynomial algebra on the other
hand
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k  if n=4 generators of P .

- n =
** Extp (k, P) {0 otherwise .

This is easy to prove by induction and the spectral sequence above. Since h is
infinite dimensional abelian, it contains either an infinite exterior algebra or an
infinitely generated polynomial algebra P. Suppose the last case is true; the
argument is nearly identical in the other case. Suppose Q is a finitely generated
polynomial subalgebra of P. Then the Lemma and (**) gives

Exth (k,P) = 0 if n< # generators of Q .

Since there by assumption are Q’s with an arbitrary number of generators it is
clear that Extf (k, P)=0 and so, by the Lemma again Extf (k, U(h))=0.

In conclusion, we have thus proved the following theorem:

THEOREM. If R is a beast, Ext} (k,A)=0 and so E(R) is a resolution of
Ext¥ (k, R). This implies the relation

(Proey(2)™" = (Pr(Z2))"'—Z*Hg(-1/2),

(where Hg(Z) is the usual Hilbert-series of R), between the Poincaré-series of R
and RaE(k). In particular Pg(Z) is transcendental iff Prypw)(Z) is, and there
exist Gorenstein rings with transcendental Poincaré-series.

COROLLARY 1. All beasts have transcendental Bass series. (The Bass series of R
is just the Hilbert series of Ext} (k,R).)

5. A topological corollary.

The problem in algebraic topology analogous to the question of the
existence of Gorenstein rings with transcendental Poincaré-series, is whether
there exists a simple connected, smooth closed manifold M such that the
“Poincaré—Betti” series of QM (the loop space of M)

Hu(z) = Y dimg (H;(QM,Q))Z'
iz0

is transcendental. With the help of some references and the preceding
paragraphs we can now easily show that such manifolds exists. The proof uses
some facts from rational homotopy theory and an idea from Roos [12].

Given an artinian, graded Gorenstein ring R=3;,, R;, we can view it as a
locally finite, connected, commutative, graded differential algebra R® (CGDA)
by doubling the grading (i.e. putting Rf =R, , if i is even and R* =0 otherwise)
and setting the differential equal to the zero map. To CGDA’s S Bousfield—
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Gugenheim [4] construct corresponding topological spaces F(S), such that for
the de-Rham-Sullivan functor A from topological spaces to CDGA’s we have

S = A(F(S).

The sought manifolds will be constructed in this way, starting with the
Gorenstein rings constructed in the last section. Only 2 facts about the functor
F will be needed. First that H*(F(S))=S (as algebras) and so since R is a
Gorenstein ring, F(R®) is a Poincaré Q-duality space in the sense of Barge [3].
The other important fact is that F(S) is a formal space (see Halperin—Stasheff
[8]) and so (ibid. 8.13) the Eilenberg-Moore spectral sequence

E% = Exth(rs, (Q Q) = H,(QF(S),Q)

degenerates.

I want to use this fact to show that the Poincaré-series of R and the
Poincaré—Betti series of F(S) are rationally related and in particular, that the
second series us transcendent of the first is; at least in the case where R is a
trivial Gorenstein extension of a beast. This can be done in much the same way
as Roos [12] uses the degeneracy of the Eilenberg-Moore spectral sequence in
a similar case. I take the notation from and refer to [12] for a more detailed
exposition.

From the degeneration of the spectral sequence it follows that

1) Hps)(2) = Z Z dimgq(Exty«(p(s), Q) (Q Q)p+n)2"

0 p=0

(the grading on the Ext-groups is inherited from the homological grading on
H*(F(S),0)=5).

Suppose now that R is a beast over Q. It then has a natural grading, in
degrees 0 to 2, and we give

T = Ral(k) = Q+m/m* +m*+ (m*)* + (m/m*)*+Q .

The obvious grading on degrees O to 5. Then T° is also graded and we define
the double Poincaré-series as

Pre(x,y) = Y Y dimgq (ExtRe(Q Q)p)x")*
p20 q20

and correspondingly for graded R°-modules.

Then (1) above gives that Hp(pe(z)=Pr(z™',2), while obviously Pr(z)
=Pr(z1).

In [12] it is shown that Pr(z™!,z) and Pg(z,1) are transcendent for exact]y
the same rings R, under the condition that these are artinian with m 3=0.
Furthermore it is easy to see that if T=Ral(k) then
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Pr(x,y) = Pr(x,y)/1—xPK¥(x,y)

and that from the exactness of the complex E(R) in the last paragraph we
obtain the formula

PRO(x,y) = x?Hge(—y/X)Pge(x,) .

This means that

(Preaty(x,9) ™" = (Pr(x,)) ' = x*H(—y/x)

and by the result of Roos [12] mentioned at the beginning of this paragraph
we get that Pre,;(271, 2) is transcendent whenever Pg(z, 1) is, in particular in
the present case when R is a beast.

Thus we have a Poincaré Q-complex F(R°I(k)) of dimension 10 for every
beast. According to Barge [3, Théoréme 1], there exists smooth structures on it
and so we have proved the following corollary:

COROLLARY. There exists simply connected smooth closed manifolds whose
loop spaces have transcendental Poincaré—Betti series.
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