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GENERALIZED CLASSES OF GROUPS,
C-NILPOTENT SPACES
AND “THE HUREWICZ THEOREM”

DACIBERG LIMA GONCALVES*

Introduction.

The purpose of this work is to introduce a category of spaces more general
than the category of nilpotent spaces, where we still have nice theorems like the
relative Hurewicz theorem. This more general category is described in terms of
a fixed family of groups, called class, and the action of r, (X) on n,(X), where X
is a topological space. This notion of class is a generalization of the definition
of a class of abelian groups, given by Serre in [9] and a Serre class of nilpotent
groups given by‘P. Hilton, and J. Roitberg in [5].

In part I, we define the axioms which a class C must satisfy, and prove some
results which are relevant to part 1L

In part II, we define the category of C-nilpotent spaces, where C is a
generalized class of groups. )

In part III, we prove the relative Hurewicz theorem module a class C of
groups for C-nilpotent spaces. The relative Hurewicz theorem, which we prove
here, generalizes results of [1], [3], and [5]. In particular, we would like to
point out Corollary 3.4 of [5].

We would like to thank the referee for many useful comments, which
contributed greatly to its clarity.

I. Generalized class of groups.

Let Ab be the category of abelian groups and N the category of nilpotent
groups.

DerINITION 1.1. A family C of groups is called a class of groups if it satisfies
the following property: Given 0 > 4 - B—» C— 0,2 short exact sequence
of groups, then A,C € C if and only if BeC.
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Now let us consider the following axioms:

AxioM 1. H,(n,Z) € C, » >0 for all = € C where Z, the integers, is regarded
as the trivial n-module.

Axiom IL. If m, 4 € C, where A is a n-module, then H,(r,A) € C, *>0.

Axiom III. If 4 € C is abelian, then @ A € C where the direct sum is taken
over any indexing set.

DEFINITION 1.2. A class C is called acyclic if it satisfies the Axiom I.

DErINITION 1.3. A class C is called complete if it satisfies the Axiom III.

It is easy to see that C N Ab is a class of abelian groups and CNN is a Serre
class of nilpotent groups. (See [9] and [5] for the definitions of class of abelian
groups and Serre class of nilpotent groups, respectively.)

It is unknown whether there is a class of abelian groups which is not acyclic.
(See [9].) We do not know whether there is a class which is not acyclic, and
also whether there is a class which does not satisfy the Axiom II above.

PROPOSITION 1.4. If C is complete then C satisfies the Axiom II.

PROOF. Let us consider the bar construction B(r) associated with the group
. (See [7], for more details about the bar construction.) Then we have for each
n20 that (B(m) ®z(,) A4), is a direct sum of A’s indexed by the set a1 x ... x 7.

So (B(n)@z[,,] A), € C, for all n. By definition of class there follows that
H,(rn,A) e C.

ExaMPLEs OF CLass 1). Let us take for each abelian class C of groups S(C),
the smallest class of groups which contains C. It is easy to see that if C, is the
abelian class of all abelian groups, then S(C,) is the class of all solvable groups.
If C, is the abelian class of all finite abelian groups, then S(C,) is the class of all
finite solvable groups. If C; is the abelian class of all finitely generated abelian
groups, then §(C,) is not the family of all finitely generate solvable groups,
because a subgroup of a finitely generated solvable group is not in general a
finitely generated group. This remark was made by the referee.

2) The family of all finite groups is a class.

3) Let R be a non-empty subset of the set of all primes. We say that n € R if
n is a product of primes in R. We say that a group G is a R-torsion group if for
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every x € G there exists n € R such that x"=1. The family of all R-torsion
groups is a class.

Now let us show that if we start with a class C of abelian groups, then S(C)
preserves some properties of C.
Given an abelian class C, let us call F,(C)=C. Suppose we have defined

F,_,. Let F, be the family of all groups which are extensions by two elements
of F,_,.

ProrositioN 1.5. U2, F;=S(C).

Prook. It suffices to show that U2 | F;is a class and U, F,=S(C), because
the fact that U, F; is a class implies in

s

F, 2 S(C).

i=1

That U2, F,= S(C) follows easily. For F; =S(C). Suppose by induction that
F,_, =S(C). By the definition of F,, the fact that S(C) is a class, and by the
induction hypothesis, we have that F,=S(C). So, U, F,=5(C).

Now let us show that U%, F;is a class. Let 0 > N - G —- Q — 0 be a
short exact sequence. If N, Q € U2, F,, then there is i, such that N,Q € F;.
So,GeF; ,,cUx, F,

Let G € U, F,. So, G € F;, for some iy. If iy =1, then N and Q also belongs
to F,, by the hypothesis. Let us assume that the result is true for i, <n and
G € F,. By definition there exists Ny,Q, € F,_; such that

0>N,»G—0Q, -0

We have the following exact sequences:

N
N,+N G G
2 1 — 0
) 0— N, —>N1—+N+N1——>
o oL MtN G 6

- — —
N N N+N,

By the induction hypothesis and (2), we have (N+N,)/N, € F,_,. Since
N,NNcN,, we have N,NN € F,_,. Therefore by (1), N € F,. By the
induction hypothesis and (2), G/(N+N,) € F,_;. But Ny —» (N, +N)/N is
onto, so (N, +N)/N € F,_,. By (3) there follows G/N € F,. So Ux,F;is a
class.
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If n € S(C), let us call the filtration degree of = the first integer n such that
n e F,(C).

PRrOPOSITION 1.6. Let C be an acyclic class of abelian groups which satisfies the
Axiom I1. Then S(C) is also an acyclic class which satisfies the Axiom 1L

Proor. By hypothesis H,(n,Z) e C, +>0 and H,(n,4) € C for n,4 € C.
Let us assume that H,(n,Z) € C, *>0 for n € F,(C) and H,(n,A) e C for
ne F,(C)and A€ C. If G € F,,(C), we have = short exact sequence

0->N—->G—>Q—0, where NNQeF,.

By the Lyndon-Hochschild-Serre spectral sequence, we have

H,(Q,H,(N,Z)) = H,(G,2Z)
and

H,(Q,H,(N,A4) = H,(G,A).
By the induction hypothesis we have

H,(Q.H,(N,Z)) e C; p+q+0 and
H,(Q,H,N,A)eC.

So, H,(G,Z)eC, x>0 and H,(G,A)eC. Since U, F;=S(C) by

Proposition 1.5, we have S(C) acyclic and satisfying the Axiom IL

ProposiTION 1.7. If © is a finitely generated abelian group and A € C is
abelian, then H ,(n,A) € C.

ProOF. Let us prove by induction on the number n of generators of . If
n=1, then n=Z or n=2Z,, where Z,, is the cyclic group on m elements. For
n=2Z, we have the well known resolution of Z as Z [n]-module

0 Z[nr] > Z[n] - Z - 0.

So H,(m, A) is the homology of the complex 0 — A <45 4 — 0, where d
depends on the action of = on A. But certainly H,(rn, A) € C for all i=0. If
n=2Z,, we have the following known resolution of Z as- Z[n]-module:

o Z[n] Attt i) A2t Z[n] > Z > 0

(for more details about these resolutions see [7].)

Suppose the result is true for all groups 7 with less than n generators. Let ©
have n-generators and a, be one of the generators. We have the following short
exact sequence
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0—-<ay)—>n— -0

a

where (a,) denotes the subgroup generated by the element a,. The quotient
n/<a, > has less than n-generators. Call N=<a,) and n/<a,>=0. If we use the
Lyndon-Hochschild-Serre spectral sequence in homology with respect to the
above exact sequence, we have:

Ei-q = Hp(Q9Hq(N»A)) = H*(ﬂ,A) .

But H,(N,A)e C because N is cyclic. By the induction hypothesis,
H,(Q,H,(N,A) e C.

By a routine argument, E}°, € C. But E}, forms the associated graded of
certain filtration of H,(r, A). So, H,(n, A) € C.

Given a class C we denote by €,y the smallest abelian class which contains
the abelian class CNAb and the abelian class F’ of all finitely generated
abelian groups. Let us call Fi=(CNAb)UF’ and F, all the abelian groups
which are extensions of two groups of F,_;.

ProposiTION 1.8. U, Fi=C\,y.
Proor. Similar to that of Proposition 1.5.
Suppose that C is acyclic and satisfies the Axiom IIL

ProposiTioN 1.9. If n € Cup, and A € CNADb, then H, (n,A) e C. If nis a
finitely generated abelian group and A € Cpy, then H ,(n, A) € C sv- If the action
of @ on A is trivial, A € Cyy, and n € C, then H ,(n, A) € C, x>0.

Proor. The second part is basically the Proposition 1.7. For the first part, let
n € Cap. By proposition 1.8 it suffices to show that the result is true for each
n € F, If n € F) then the result is true because either C satisfies the Axiom II
or by Proposition 1.7. By a routine induction argument the result follows for
n € F., for each n. The third part is similar to the first one.

Let 7, G be groups. Suppose we have an action of = on G, thatis,amap 0: n
— Aut (G) which is a homomorphism. Recall from [6, p. 67] the definition of
I'(G) and I'"(m).

In chapter III we will define when a homomorphism ¢: H — G is a C-
isomorphism. When H and G are abelian groups, this definition will coincide
with the classical one from [9]. So, we feel free to use the notion of C-
isomorphism as long the groups involved are abelian.
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DerFInITION 1.10. We say that & is C-nilpoteni if I'"(n) € C, for some integer n.
The C-nilpotency degree is r if I'"(n) ¢ C but I'"*!(n) € C, which we denote by
nil 7.

DEeFINITION 1.11. We say that 6: 7 — Aut (G) is C-nilpotent if I'"(G) € C, for
some integer n. The C-nilpotent degree is r if I',(G) ¢ C but I',*'(G) e C,
which we denote by nil, G.

PRrOPOSITION 1.12. Let C be an acyclic class which satisfies the Axiom 11,
n e Cand 0: = — Aut (A) a C-nilpotent action, with A abelian. If C is complete
or A/(I'3(A)) € Cpy then H, (n,A)e C, *>0 and A — H,(n, A) is an C-
isomorphism.

Proor. This is an evident generalization of Corollaries 1.2. and 1.4. of [3], as
it was remarked by the referee.

ProrosITION 1.13. Let C be an acyclic class which satisfies the Axiom II,
n a C-nilpotent group, I''(m)/["**'(n) finitely generated for i<nil (n) and
0: m — Aut (A) a C-nilpotent action. If C is complete, then H(m, A) € Cay,
i>0. If A € Cpy, then Hy(n, A) € Cpp, i20.

PROOF. Let us prove that if the result is true for H,(I"n, A), than it is true
for H;(n, A). The case where C is complete is left to the reader.
Let us consider the short exact sequence:

0— an—wt——»rnTn—>0.

We have
H,(n/T*n, H (I'*n, A)) = H,(n, A).
If H(I 2n, A) € C 5y, by Proposition 1.9, we have that
H,(n/T*n, H(I'*n, A)) € Cpy .

So, it is true for n=2.

By a routine induction argument, we can prove for all n.

Since I""(n) € C for some n, by Proposition 1.12, H,(I'"n, A) € Cap. So the
result follows.

Remark. If 4 € C in the proposition above we can in fact conclude that
Hi(n, A) € C, under assumption that In/I"*!n € Cy,
Let ¢: G —» K be a group homomorphism and suppose that
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H,(G,Z)—> H,(K,Z)isa C-isomorph'ism with respect to some class C where
homology is taken with trivial local coefficient Z.

ProposITION 1.14. Let C be an acyclic class which satisfies the Axiom 11, K
and G C-nilpotent groups, 8: K — Aut (A) a C-nilpotent action and I'K/I"* 'K,
I''G/I''*1G belong to C,y. If C is complete or

A

I—Y—IAECAb for iS._l’lilKA,

then ¢ ,: H, (G, A) —» H (K, A) is a C-isomorphism.

Proor. The proof is by induction on nilg A. If nily A=0, then 4 € C. So by
the remark after the Proposition 1.13, we have that H_(G,A4) e C and
H, (K, A) € C, thus proving the proposition. Suppose the result is true for all
groups where nilg 4 <n. Let 6: K — Aut (4), where nilg A=n.

From the sequence:

0 I'i(4)— A

A

we get

A A
Hm,,l(G,I,—%(Z) — H,(G,T'%A) - H,(G,A) — H,,,(G, I A> — H,_,(G,TkA)

iy

A ;
H,,,H(K,m> — H,(K,T%A) > H,(K,A) — H,,,(K,r—iz) - H,_,(K,T%A) .

By the induction hypothesis, the second and the fifth vertical arrows are C-
isomorphisms. Since the action of K on A/T %A is trivial, we can use the
Kiinneth formula. Now from the fact that C is complete or C satisfies the

Axiom II and
I, A
}TK";(TZ € CAb for léﬂllKA N

the first and the fourth vertical arrows are C-isomorphisms. Therefore the
result follows.

II. C-nilpotent spaces.
Let C be a class of groups as defined in Part I, and X a space.
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DEFINITION 2.1. X is called a C-nilpotent space if (X, x,) is a C-nilpotent
group, and the action of #, (X, x,) on 7,(X, x,) is also C-nilpotent for all x, € X
and n21.

Let (Y,X) be a pair. (Y,X) is called a C-nilpotent pair if n,(X,x,) is C-
nilpotent and the action of =, (X, xo) on =m,(Y, X,x,) is C-nilpotent for all
Xo € X and n=2.

Let0 — 4 — B — C — 0 be a short exact sequence of n-modules, where A,
B, and C are abelian groups.

PROPOSITION 2.2. Suppose that C is complete or = is a finitely generated C-
nilpotent group. If the m-action on A and C are C-nilpotent, then the n-action on
B is also C-nilpotent.

Proor. We certainly have that I''B — I':C is surjective for all n. So let us
assume, without loss of generality, that C e C. If not, there is an integer n such
that I',C € C and we have the sequence:

0> ANT"B— I"B— I"C— 0,

where I';C € C and the action on ANT"B is C-nilpotent.

Now, we claim that the action of 7 on B has the same C-nilpotency degree of
the action of = on A. The proof is by induction. If the C-nilpotency degree is
zero, then the result follows easily. Let us assume that the result is true when
the C-nilpotency degree is less than n. Let us consider the following diagrams:

0 — 0
! i
I''B - T*C -0
} !
0 — A — B — C -0
! l 1 1
H,(n,C) —» Hoy(n, A) — Ho(n, B) > Ho(n,C) — 0
! ! !
0 0 0
0->T?4-TI?B—> FZB—>O
r:a
2
H,(n,C) — —-Ic-o,

4 |
where the map H,(n, C) — I';B/T';A is given by the diagram above.
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By the remark after the Proposition 1.13, H,(r,C) € C. So, I';B/T’ 24eC.
By the induction hypothesis, I';B has C-nilpotency degree n—1. So, B has
C-nilpotency degree n and the result follows.

Now we will extend this result. Suppose we have a central extension

045 G2 H-0.

Suppose we have actions, w,, w,, and w; of m on A, G, and H, respectively, such
that i and p are compatible with the n actions.

If 0:n— Aut(G) is an action, we will assume that we have an
homomorphism ¢: G — = such that g,g,g"'=0(¢(g))g,, forall g,g, e G. If G
is abelian then ¢ is the trivial homomorphism. The reason for this hypothesis
comes from [10, Theorem 12, 385].

From now let C be an acyclic class and = a C-nilpotent group. Let us also
assume that either C is complete or C satisfies the Axiom Il and I''n/I"*'nis a
finitely generated group for i<niln.

PROPOSITION 2.3. If w, and wy are C-nilpotent, then w, is also C-nilpotent.

Proor. Following the same steps as in Proposition 2.2, we will assume
without loss of generality, that H € C.
We have the following commutative diagram:

G-2> H
o) Lo
=7

where gg, g2 '=w,(0,(@)g:, hhih™' =w;s(@,(h)h;, by hypothesis. So
[G,G]<TI? and we can see that

G Gab
r:6 = I7Gy’

IR

where G,;, denotes the abelianized group of G.
Now, we have the following commutative diagrams where every row and
every column are exact:

(1) , H,H,Z) -2 4225 Gy > Hyp —> 0
2 0— imf, - A —>imf, >0
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3) 0— im6, » G,y — H,, — 0
0 - 0
! !
r’ gy - r’Hy -0
1 !
4 0— A — G - H -0
! 1 !
HO(n9A) d Ho(n,Gab) - HO(n9Hab) - 0
1 1 1
0 0 0

The sequence (1) is the low-dimensional homology exact sequence. See [11].
The sequences (2) and (3), of course, are obtained from (1).
Now call N the kernel of the map

Ho(m, A) > Ho(m, Gyp) -
We will show that N € C. We have:
Hy(m,im6,) - Hy(n,A) — Hy(n,im8,)
H,(m,Hay) — Ho(m,im6,) > Ho(r, Gyp)

from the sequences (2) and (3), respectively.
The map Hy(n, A) — H(m, G,p) is the composite of the following two maps:

Hy(n, A) > Hy(n,im 6,) > Ho(m, Gyp) .
So we have:
Ho(n,im6,) > N — im (H,(n, Hop) — Ho(r,im$,)),

But H,(H,Z)e C implies im0, e C. Furthermore, H 1(m,Hy) e C, by
Proposition 1.13. So, N € C.
Now by a routine argument we have:

re
r’4

n

0-TI24 - I’G -

-0

r’c
4

N - —I?H->0.

Therefore, I'’G/I'24 € C. Call ¢: I'’G — = the restriction of the map ¢,
which factors through I'’G/T'2A. So by the induction hypothesis I'2G also has
C-nilpotency degree n—1 and the result follows.
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COROLLARY 24. If X <Y are both C-nilpotent, then (Y, X) is a C-nilpotent
pair.

ProOF. m,(X) is C-nilpotent by hypothesis. Now let us consider the long
exact sequence in homotopy of the pair (Y, X):
Ty(X) = m,(Y) = 7, (Y, X) = 7, (X) = 7,4 (Y) .

It is well known that this sequence is a sequence of 7n;-modules. So, let us
consider the short exact sequence of 7, (X)-modules

0 — im (n,(X) — =n,(Y)) > =,(Y,X) — Ker (n,_,(X) > n,_,(Y)) > 0.

In order to show that n,(X) acts C-nilpotently in =,(Y, X), we use the above
sequence and Proposition 2.2 for the case n>2 and Proposition 2.3 for n=2.

PROPOSITION 2.5. Let A € C be abelian. Then H (K(A,m)) e C, >0 and
mz=1.

Proor. See Lemma 2.17 of [6, p. 69].

PROPOSITION 2.6. If T acts C-nilpotently on A and B, then 1 acts C-nilpotently
on A® B and on Tor (A, B), where A and B are abelian groups.

Proor. It is a routine argument using induction on the C-nilpotency degree
and Proposition 2.2.

ProposITION 2.7. If 0: = — Aut (A) is C-nilpotent then 7 acts C-nilpotently on
H,(K(A,m)) for all m=1, where A is an abelian group.

Proor. If the C-nilpotency degree is zero, then the result is true by
Proposition 2.5. Let us assume that the result is true when the C-nilpotency
degree is less than n. We have the fibration

K(2A,m)— K(4,m)

l
K(A/T2A,m) .

By the Serre’s spectral sequence, we have:
H,(K(A/T2A, m), H (K(I'24,m))) = H,,,(K(4,m)).

Since A is abelian we have homology with trivial local coefficients. By the

Kiinneth formula, the induction hypothesis and Proposition 2.6., the result
follows.

Math. Scand. 53 — 4
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REMARK. If m=1 and A is not abelian the situation is more complicated.
Now we will describe a C-nilpotent space in a different way.
Let X be the univeral cover of X.

ProPOSITION 2.8. X is C-nilpotent if and only if n,(X) is C-nilpotent and the
action of mn,(X) on H,(X) is C-nilpotent.

Proor. We follow the same steps as Lemma 2.18 of [6, p. 70]. Suppose X is
C-nilpotent. So, n,(X) is certainly C-nilpotent. To show that =, (X) acts C-
nilpotently on H_(X), it suffices to show that m,(X) acts C-nilpotently on
H,(X,), where X, is the kth stage of the postnikov system of X. The result is
certainly true for k=1. Suppose the result is true for k=n. Then we have

K(TE"+1(X),n+1) - Xn+l

!
b’¢

n

The E*-term of the Serre’s spectral sequence is H,(X,, H, (K (m, 4 (X),n+1))).
Since we have trivial local coefficients, by the induction hypothesis,
Propositions 2.6 and 2.7 we have that =, (X) acts C-nilpotently on H,(X,, ).
So, the result follows.

Now suppose 7, (X) is C-nilpotent and the action of =, (X) on H =,=(1)~( ) is C-
nilpotent. Since H,(X)=n,(X)=n,(X), we have that the action of ,(X) on
m,(X) is also C-nilpotent. Let us suppose by induction that the action of 7, (X)
is C-nilpotent on H,(X*), where X* is the k-connective cover of X. So, ,(X)
acts C-nilpotently on x,(X). Let us consider the fibration.

K(m X, k—1) — X**!

l
Xk

By using the Serre’s spectral sequence we find that n, (X) acts C-nilpotently on
X**1, So, the result follows.

Now let us consider X a regular cover X, where 7, (X)=mn,, n,(X)=n.
ProprosiTION 2.9. 7 acts C-nilpotently on H ().
Proor. Let r be the C-nilpotency degree of n. Then it follows that

I';*1(m) € C. Let us consider the Lyndon-Hochschild-Serre spectral sequence
associated with the short exact sequence:
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0— I'HH(mo) = mp — -0

__To
r, (m)
Exzt q = p(nO/F;+ l(710)’ Hq(r::ﬂ(no))) .

Since H,(I'," ! (r,)) € C for ¢ 20, we have E , € C for g>0 by Proposition 1.9.
But 7 acts nilpotently on my/I",*!(n,), so it acts nilpotently on

Hp("o/r;“("o)) = Ei,o

So the result follows.
ProposITION 2.10. If X is C-nilpotent then m, is C-nilpotent and the action of
n/ny on H(X) is also C-nilpotent.

Proor. It is clear that n, is C-nilpotent because = is C-nilpotent.
From the hypothesis that I''n/I"*'= is finitely generated, it is not hard to
see that I'no/I"*'n, € C oy Now let us consider the Serre’s spectral sequence:

EX, = H,(n, H,(X) = H,(X).

To show the result it suffices to prove that m/m, acts C-nilpotent on
H,(no, H q()? ). The proof is by induction on the C-nilpotent degree of n, on
H(X).

Suppose it is zero. Then the result is trivial because, by Proposition 1.9,
H,(mo, H, X)ecC.

Now suppose the result is true if the C-nilpotency degree is less than n. Let
the C-nilpotency degree of m, on H,(X) be n. We have:

H,X)

— T2 —
0= IL,(H(R) = Hy(X) = 1y =

-0
a sequence of my-modules. Then we have

H,(mo, T2,H (%)) > H,(mo, Hy(X)) > H,(no, Hy(X) T3, H, (X)) .

mo " 4

The action of n/n, on H, (e, F'2H q(X )) is C-nilpotent by induction hypothesis.
Since m, acts trivially on H (X)/I2(H,(X)), by Kiinneth formula and
Proposition 2.6, it suffices to show that = acts C-nilpotently on H , (n,). But this

is true by Proposition 2.9. Therefore the result follows.

III. The relative Hurewicz theorem.

Now we will prove the relative Hurewicz theorem.
Let C be a class as defined in part L
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DEFINITION 3.1. Let ¢: K — G be a homomorphism of groups. We say that
¢ is C-surjective if there is a normal subgroup G, of G where G, € C such that
the image of the composite map

K -2 G - G/G,
has the following property: there exists a series of normal subgroups
im (pop) = K, < K, € ... € K,, = G/G,
and
Ki+1
Ki

eC, i=0,1,...,m—1 where K; = p"}(K).

We say that ¢ is C-injective if Ker (¢) € C.

We say that ¢ is C-isomorphism if ¢ is C-injective and C-surjective.

ReMARrk. If G is nilpotent and K is a subgroup of G, a series of normal
subgroups always exists, see [8] for more details.

PROPOSITION 3.2. Let ¢: K — G be a homomorphism of C-nilpotent groups. If
H,(K) — H,(G) is C-surjective, then ¢ is also C-surjective.

Proor. Since K and G are C-nilpotent, there exists an integer n such that
I (K), I'"(G) e C. So, let us consider the groups K/I'"(K), G/I'"(G) and

_ K G
O = A
Ky r(G)
We have that K/I'"(K), G/I'"(G) are nilpotent groups.
Now let us consider the following commutative diagram:
H, (K) -2 H,(K/T"(K))
(PAl l‘l’s
H,(G) L= H,(G/T"(G))

Since P, is an epimorphism and ¢, is C-surjective, then ¢ is also C-surjective.
Now by Theorem 3.1. of [4] the map

K G
? ™K~ TG

is C-surjective in the sense of nilpotent classes. But I'(G) € C, so the result
follows by definition of a C-surjective map.
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Let us consider the following situation. Let 8: © — Aut (G) an action, where

7 and G are groups, not necessarily abelian, and ¢: G — n a homomorphism
which satisfies

gg.g ' = 0(p(g)g,, forall g,g, € G as in part 1I .
Now let C be a class which is complete or 7 is finitely generated.

PROPOSITION 3.3. Suppose that m and the action 6:n — Aut(G) are C-
nilpotent. If G/T'%(G) € C then G € C.

PRrROOF. Let us assume for the moment that the result is true when G is
abelian.

From the short exact sequence

— I? -G —— >
0 rz(G) G Fi(G) 0
we get
G F,z,(G) G .
o A 2(F§(G)> ~ ey he-H ‘(F“(G)>

which is the low dimensional homology sequence. See [11].

By the equation gg,g~ ! =0(p(g))g,, it follows I';(G)2[G, G]. So from the
sequence (1) above we obtain

a6\, 06 | IO
2(ri(G)> [6.I2G)] [GG)

But G,y is abelian and satisfies the hypothesis of the propositon. So G,, € C.
Since

H,(G/T3(G) eC,
it follows that

HON
Grien

From the fact that I'*(G)2[G, I'2(G)] it follows that

I(G)
e

Since I'2(G) has C-nilpotency degree one less than the C-nilpotency of G, by a
routine induction argument, we conclude that I 2(G) € C and therefore G € C.
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So it remains to show the result for G abelian. The proof of this case is easier
and we omit it.

ProposiTION 3.4. Let ¢: K — G be C-surjective. Then H 1(K) > H (G) is
also C-surjective.

PRrOOF. Let G, € C be the normal subgroup of G given by the definition of a
C-surjective map. Then we have the short exact sequence

0—>G1—>G~>6Gl~—+0

and from it we obtain

—— — H,(G H,[— 0.
G619~ (G) -
Since G, € C we have G,/[G,,G] € C. It follows that H,(G) — H,(G/G,) is a
C-isomorphism.

Now we claim that H,(K,) » H,(G/G,) is C-surjective, where the K/s,
i=0,...,n are given by the definition of a C-surjective map.

If i=n the result is certainly true. So, let us assume that it is true for i> J.
We have

0 K;— Kj+,—+h—>0.

j
But H,(K;,,/K) eC. So H,(K; - H,(K;,,) is a C-surjective map. By
induction, H,(K;,,) - H,(G/G,) is also a C-surjective map. So, H,(K,)
— H,(G/G,) is a C-surjective map. Now we have the diagram:

H,(K) %> H,(G)
(011, l‘lh
H,(Ko) ** H,(G/G,)

We have that ¢, is an epimorphism and ¢, is a C-surjective map. So, ¢,0¢, is
also a C-surjective. map. But ¢, is a C-isomorphism. So, ¢, is a C-surjective
map.

Remember that C is a class of groups which satisfies the Axiom II.
Furthermore we will consider that if C is not complete, then X and Y are of
finite type.

Let #,(Y,X) be the quotient of =,(Y,X) by the action of =,(X), h, the
Hurewicz map =,(Y,X) — H,(Y,X) and h, the factorization of h, through
(Y, X).
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PROPOSITION 3.5. Let Y and X be C-nilpotent spaces. If m;(Y, X) € C, 1 <i<n,
nz2, and n,(X) — n,(Y) is a C-surjective map, then

h,: ®,(Y,X)— H,(Y,X)

is a C-isomorphism.

Before proving this proposition let us state the main theorem and prove it
from Proposition 3.5.

THE RELATIVE HUREWICZ THEOREM. Let C be an acyclic class, (Y, X) a pair
where X and Y are C-nilpotent spaces. If a) X, Y are of finite type and C satisfies
the Axiom 11 or b) C satisfies the Axiom 111, then the three conditions below are
equivalent for n>2 and the first two are equivalent for n>1.

a,) n,(X)— ny(Y) is a C-surjective map and n,(Y,X) e C for 1 <i<n,
b,) Hi(Y,X)eC, 15i<n,

¢,) m,(X)— n,(Y) is a C-isomorphism and H,(Y,%) e C,i<n, where Y and X
are the universal cover of Y and X, respectively.

If one of the three conditions above holds, then h,: 7,(Y,X) - H,(Y,X)isa
C-isomorphism.

PROOF. Let us prove that a, is equivalent to b, by induction. If n=2, a, is
equivalent to b, by Propositions 3.2 and 3.4. Suppose a,_, is equivalent to
b,_,. Now, let us prove that a, and b, are equivalent. Suppose that a, holds. By
Proposition 3.5, we have that 7,(¥, X) — H,(Y,X) is a C-isomorphism. The
fact that (Y, X) € C implies that (Y, X) € C. So, H,(Y,X) € C and b, holds.
Conversely, let us assume that b, holds. By Proposition 3.3 we have
n,(Y, X) € C, and thus a, holds.

The proof that a, and c, are equivalent is classical. There remains to be

proved that a, implies h, is a C-isomorphism. But this is exactly the Proposition
3.5.

In order to prove the Proposition 3.5, we will show:
ProPOSITION 3.6. Let Y be a C-nilpotent space of finite type. Then
H,(Y) e C,y, and n,,(Y) € Cy,, for n>0 and m>1, where Y is a regular cover

of Y.

PROOF. Let us assume that H,(Y) € C sy, for i <n,. We are going to show that
H, (Y) € C,p. We have the spectral sequence
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Hp(n/ROqu(Y)) = Hno(Y)a p+q=n,,
where ny=mn,(Y).

Since H,(Y)e C,, for g<n, by Proposition 1.13, E, € Cp, So,
Hy(n/no, H,,(Y)) € Cpp. Now by Propositions 2.10 and 3.3 it follows that
H, (Y) € Cpp If ny=0 the result is certainly true.

The fact that n,,(Y) € Cy,, for m>1 it is classical.

Now let us prove the Proposition 3.5. Let us assume that the hypothesis a)
holds. The case where b) holds is simpler and we omit it.
Since n>1 we have that

Ty (X) %> 7y (Y)
is a C-surjective map. By the definition of a C-surjective map we have
imp+G, =Ko K, ... K, =G,
where

K.'+1~Ki+1
—k_i-=—K_EC.

i

Now let us take the following tower of spaces

f'l

YO=Y

where n, (Y)=K,,_; and Y, is the cover space of Y,, which corresponds to the
subgroup K,,_;_, of K,,_.. Let f;: X — Y, be a map which makes the dia-
gram above commutative. Now we claim that H;(Y;.,) —» H;(Y) is a
C-isomorphism for all j. Taking the spectral sequence of the regular cover
we have:

Eg,q = Hp(Km—i/Km—i—l,Hq(Yi+1)) = Hp+q(yi) .

The Proposition 3.6 shows that H,(Y;,,) € Cpp, and consequently by
Proposition 1.12 it follows that E2 € C, p>0, and
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Hq(Yi+l) - HO(Km—i/Km-—i—lqu(Yi+l))

is a C-isomorphism. So H;(Y;,,) — H;(Y) is also a C-isomorphism.
Now let us consider the diagram
(Y, X) > H,(Y,, X)
! !
7,(Y,X) — H,(Y,X)

In order to show that h,: 7(Y, X) - H,(Y, X) is a C-isomorphism, it suffices
to show that h,: 7,(Y,, X) - H,(Y,,X) is a C-isomorphism, since the two
vertical arrows are C-isomorphisms.

Now let us consider the diagram

/'? V
s
XLy,

where Y is the cover of Y,, which corresponds to the subgroup im ¢. We claim
that p,: H,(Y) —» H,(Y,) is a C-isomorphism. For let us consider the

diagram
./ ?\
Y Y,

K(ime,1) » K(img+G,,1)
where Y is the universal cover of both Y and Y,,. Since G, is normal in G, then
G, is normal in im¢ + G, and

imp+G, = img
G, T~ G,Nimg ’

By the Lyndon-Hochschild—Serre spectral sequence associated with the
sequence

ime

we have that

H,(im¢) > H,(im ¢/(G, Nim ¢))
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is a C-isomorphism. For,
H,(im ¢/(G,Nim ), H (G, Nimg)) e C  for ¢>0
by Proposition 1.9. It is also true that
H,(m¢+G,) > H,((im¢ +G,)/G,)
is a C-isomorphism by the same argument as above. So, it follows that
H,(K(imo,1)) - H,(K(im+G,, 1))

is a C-isomorphism. Now let us consider the induced map between the two
spectral sequences from the above fibrations:

H,(im ¢, Hy(7)) = H,(im o+ Gy, Hy(¥).

This map is a C-isomorphism by Proposition 1.14. So H,(Y) - H (Y, is also
a C-isomorphism. As before, it suffices to show that #,(Y,X) —» H,(Y,X) is a
C-isomorphism. If n=2 we have n,(Y,X)=0. So by the classical Hurewicz
theorem (see [10, p. 395]) we have

(Y, X) = Hy(Y, X)

and we proved it. From now on, let n be greater than 2. Let us consider the
next stage of the Moore—Postnikov decomposition of the map f, i.e.,

such that
n,(X) — n,(¥) is onto ,
1,(Y) - n,(Y) is 11,
n,(X) — n,(¥) is an isomorphism ,

and n,(Y) - n(¥) is an isomorphism for i>2. Then the fibre of p: ¥ — Yis
just K(m, (Y, X), 1). Now let us consider the Serre’s spectral sequence associated
with the fibration

K(ny(Y,X),1) > ¥
|

Y
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E2 ,=H, (Y, H(K(r,(Y,X),1)) = H(¥,2). If q>0, then
H,(K(m,(Y, X),1)) € C because the class is acyclic. Call 4 =H,(K(n,(Y, X),1)).
Now we claim that H (Y, A) also belongs to C. To prove this, let Y, be the rth
stage of the Postnikov decomposition of Y. For ¥, 2K (n,(Y), 1), we have by
Proposition 1.13, that H ,(n, (Y), 4) € C. Suppose, by the induction hypothesis,
that we have proved that H,(Y,_,, A) € C. Let us consider the fibration

K(m(Y),r) - ¥,

!
Yr—l

Then we have the Serre’s spectral sequence

Hp(Yr—l’Hq(K(Tcr(Y),r)’A)) = H*(}_,,,,A) .

But H,(K(m,(Y),r),A) is the homology with trivial local coefficients. By
Proposition 3.6, n,(Y) € C‘Ab From this fact and by Kiinneth formula there
follows that H,(K(r,(Y),r), 4) € C. So, by a routine argument, H (Y,,4) € C.
As r goes to infinite, it follows that H ,(Y,, A) converges to H «(Y, 4), so we
have proved. - '
We conclude that p: H *(?) — H,(Y) is a C-isomorphism. Now let n=3.
We have =, (¥, X)=0, n,(¥, X)=0. So by the classical Hurewicz theorem,

7, (Y, X) =5 H, (Y, X)

is an isomorphism.
We have the diagram below

n3(X) — n3(f’) - 7t3(f’,X) — m,(X) - ”2(?)

l l ! ! !
m3(X) = 13(Y) = 13(Y, X) - m,(X) = 7n,(Y)

where the first, second and fourth vertical maps are isomorphisms and the fifth
is 1—1. So n5(¥, X) = n,(¥, X). Since H,(Y, X) is C-isomorphic to H;(Y, X),
we have the result for n=3.

From now on let n>3. Let us consider the fibration

&, %) - (1,X) - K1)

where, Y'X are the universal cover of Y, X, respectlvely, and nm, (X)2n, (V).
We have =, (Y X)=0, for i=1,2 and nJ(Y X)xn, (? X), for j>2. So
; (? X) e C, j<n. Let us consider the Serre’s spectral sequence

E2, = H,(n,H(Y,X) = H (¥, X).

If g<nthen H q(§, X) € C by the classical relative Hurewicz theorem module a
Serre class. By Proposition 1.13, we have EY, € C, for p>0 and g<n. So, it
follows that :
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Ho(m, H,(¥, X)) - H,(, X)
is a C-isomorphism. But
m(7, %) 2 H,(¥, %),

the Hurewicz map, is a C-isomorphism. We have the projection map which
induces an isomorphism

Py (%, %) > m (7, X).

If we compose py' with h, we get a map from n,,(?,)?) to H,,(I:/, X) which
satisfies

hyopy' (@™ 'B) = aoh,(py'(B),

for all @ € m,(X) and g € ,(¥, X). (See [2, Propositon 1.3]). Now according to
Proposition 1.4 of [2] we have that

Ho(m,n(¥, X)) — Ho(m, H,(¥, X))

is a C-isomorphism. So, 7,(¥,X) — H,(¥, X) is a C-isomorphism.

Remark. Examples of C-nilpotent spaces which are not nilpotent, can be
obtained by the following result: Given any group =, any sequence {4,},>, of
abelian groups and a sequence 0,: n — Aut (A4,), n=2, of homomorphisms
then there exists a space X such that n,(X)~n, n,(X)=A4,, for n>1, and the
action of n,(X) on n,(X) is 0,. See [10, Ex. A-3, p. 460].
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