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ON C*-ALGEBRA EXTENSIONS RELATIVE
TO A FACTOR OF TYPE II

GEORGE A. ELLIOTT and HIDEO TAKEMOTO
Abstract.

The commutative semigroup of strong equivalence classes of unital
extensions of the norm-closed two-sided ideal of an infinite semifinite
countably decomposable factor by a separable unital C*-algebra which is the
direct limit of a sequence of C*-algebras with continuous trace is a group. The
identity of this group is the class of any trivial unital extension. In the case that
the quotient C*-algebra is the direct limit of a sequence of finite-dimensional
C*-algebras, and the factor is of type II, this group consists of a single element.

1. Introduction.

Let M be an infinite semifinite countably decomposable factor and denote
by I the norm closure of the ideal of elements of finite rank. Let A4 be a separ-
able unital C*-algebra. In [5], Brown, Douglas, and Fillmore introduced the
commutative semigroup Ext,(4,I) of strong equivalence classes of unital
(essential) extensions of I by A. This consists of the unital embeddings of 4 into
M/I, up to unitary equivalence by the image in M/I of a unitary in M, with the
sum of extensions 7, and t, defined as the class of u;t,uf +u,7,uf where u,
and u, are the images in M/I of isometries in M whose range projections are
orthogonal with sum 1. If a unital embedding of 4 into M/I is the image of a
unital embedding of 4 into M, we shall say that it is trivial.

Brown, Douglas, and Fillmore showed that Ext,(4,]) is a group, with
identity the class of any trivial unital extension, if M is of type I and 4 is
commutative. If M is of type I, this was shown by Fillmore in [7].

In the case that M is ot type I, it was shown by Voiculescu in [12] that for
arbitrary (separable) A the class of a trivial unital extension is unique, and is an
identity for the semigroup Ext, (4,]). It was shown by Choi and Effros in [6],
using an idea of Arveson in [1], that if 4 is nuclear then Ext, (4,1) is a group.
For a unified exposition of these results, see [2].

While we cannot extend the result of Voiculescu in full generality to the case
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that M is of type II, we can take a step beyond the result of Fillmore, by
dealing with C*-algebras with continuous trace (not just commutative ones),
and also with direct limits of sequences of such C*-algebras.

The result of Arveson, Choi, and Effros holds with the same proof in the case
that M is of type II. In the absence of the analogue of Voiculescu’s theorem, the
result must be stated as follows: if 4 is nuclear then for any unital extension
there is another unital extension such that the sum is trivial. This of course says
that Ext, (4,) modulo the trivial classes is a group.

We can compute the group Ext, (4, ) if 4 is the direct limit of a sequence of
finite-dimensional C*-algebras. In the case that M is of type I, this was done by
Pimsner and Popa in [10] and Pimsner in [11] (for a different generalization
of this see [8]); the answer is Ext (K,4/Z,Z), where Z is embedded in Ky4 as
multiples of the class [1] of the unit of A. In the case that M is of type II, the
group is zero.

2. THEOREM. Let A be the C*-algebra direct limit of a unital sequence
A, — A, — ... of unital C*-algebras with continuous trace. Then there is a
unique element of Ext, (A,I) which is the class of a trivial extension, and this
element is an identity for the semigroup Ext (A, I).

Proor. We must show that if ¢ € Ext, (4, ), and if T € Ext, (4, I) is the class
of a trivial extension, then

o+t =0.

It is sufficient to prove that if ¢ and t are as above, then there exists
o € Ext, (4,I) such that

c=0+71.

Indeed, then, as in [12], we may take in place of 7 a trivial extension 7’ for
which

’

’+1 =1,
and then
o+1 = (0+t)+t =0 +(T+1) =0d+17 =0.

(' may be taken, as in [12], to be the class of the extension defined by the
orthogonal sum of infinitely many copies of a unital splitting of t, i.e., the sum
u,nu¥+u,nu+ ... where m is a unital splitting of 7 and u;,u,,... are
isometries in M with uuf¥+uu¥+...=1) '

In other words, it is sufficient to prove that if ¢ and 7 are unital embeddings
of A in M/I, with t trivial, then there exists a proper isometry v € M/I such
that vv* commutes with o(4), and
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v¥av = 1.

We shall begin by establishing two basic facts about extensions of I by 4,
(instead of A).

First, in the language of [3] (Definition 6.6), every point of A1 is pull out-
able. In the case that M is of type II, we define this as follows. If 4 € Al, that is,
A is the unitary equivalence class of a morphism of A, onto M,C for some n
=1,2,...,embed M,C unitally in M/I and consider the composed morphism
A; — M/I. Note that, as M is of type II, any two unital embeddings of M,C in
M/I are strongly equivalent. The strong equivalence class of the morphism
A, — M/I therefore depends only on 4; denote this class by A,,. Weshall say that
A is pull-out-able (with respect to M) if for any o € Ext,(4,,]), 6 +Ay=0.

The proof that any 4 € 4, is pull-out-able in the case that M is of type II is
similar to the proof in the case that M is of type I, given in the first half of the
paragraph following 6.7 of [3]. This proof is designed for weak equivalence
rather than strong, but is easily modified for strong (and, furthermore, by the
remark preceding 5.3 of [3], and in view of 6.8d of [3], does not even need to
be so modified). We note that the case A, is commutative, to which the general
case is reduced, is now to be deduced from 2.9 of [7], rather than [S].

The second basic fact about A, is as follows. For any unital embedding
n: A, — M, any finite projection f in M, any finite subset S of A4,, and any
£¢>0, there exist a finite projection g in M with g=>f; a finite-dimensional sub-
C*-algebra C of gMg containing g, and a unital morphism ¢: n(4,) — C such
that, for each a € n(S),

lga—agl < ¢,
llgag—e(a@)| < €.

To prove this, first note that it suffices to prove the same statement with n(4,)
replaced by a larger sub-C*-algebra of M. We shall prove the statement with
n(A,) replaced by a larger separable C*-algebra with continuous trace, D, with
totally disconnected spectrum, chosen as follows. Since n(4,) is unital with
continuous trace, its weak closure m(4,)’ is a finite direct sum of finite
homogeneous von Neumann algebras of type I, and is therefore the algebra
generated by its centre and a finite-dimensional sub-C*-algebra D,. Choose a
separable approximately finite-dimensional sub-C*-algebra D, of the centre of
n(A,)” containing the centres of n(4,) and of D, and denote by D the algebra
generated by D, and D,. Then D is a C*-algebra, n(4,)< D, D has continuous
trace, and the centre of D, D,, is separable and approximately finite-
dimensional. We shall use that D, is the C*-algebra generated by a single
selfadjoint element h.

Let f be a finite projection in M, S2 a finite subset of D5, and ¢, >0. We shall
show that there exist a finite projection g=fin M commuting with D, a finite-
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dimensional commutative sub-C*-algebra C, of gMg commuting with gD,
and a surjective morphism g,: D, — C, such that, for each d € S,,

lgd—dgll < ¢,
llgdg — o (D < & .

Since h is approximately contained in a finite-dimensional sub-C*-algebra of
D,, it follows that h is approximately contained in a finite-dimensional sub-C*-
algebra of D containing D,. Denote by g the smallest projection in M
containing f and commuting with this finite-dimensional algebra. Then g is
finite, and g approximately commutes with h. In particular, since the elements
of S, are approximately polynomials in h, g approximately commutes with S,.
Furthermore, since ghg + (1 — g)h(1 — g) is close to h, each point of the spectrum
of ghg is close to some point in the spectrum of h. Therefore, ghg is close to a
selfadjoint element h' of {ghg}” such that the spectrum of k' is finite and is
contained in the spectrum of h. This defines a surjective morphism g, from D,
onto a finite-dimensional subalgebra C, of {ghg}”, a subalgebra commuting
with gD, since ghg does, such that gdg is close to g,(d) for all d € S,. Thus, if
the commutative finite-dimensional subalgebra of D, chosen above
approximates h sufficiently well, we have |gd —dg| <¢,, |lgdg —e,(d)|| <¢&, for
all d € S,. In particular, if a central projection e of D, belongs to S,, and ¢, £1,
then g and e both commute with g,(e), and [ge—g,(e)ll <1, so g,(e)=ge.

It follows immediately from what was shown in the preceding paragraph
that for any finite projection fin M, any finite subset S of D, and any ¢>0,
there exist a finite projection g in M with g=7, a finite-dimensional sub-C*-
algebra C of gMg containing g, and a surjective morphism ¢: D — C such
that ||ga—agl|l <e, llgag —e(a)l| <e for all a € S. Just choose g as above, with ¢,
sufficiently small, and with S, such that S is contained in the algebra generated
by S, and D,, and such that each central projection of D; belongs to S,, and
take for C the subalgebra generated by C, defined above and by gD,, and for ¢
the unique extension of g, from D, to D which on D; coincides with
multiplication by g. (Note that if ¢, <1 then g,(e)=ge for all'e e D,ND,.)

This establishes the two basic facts about A, (or 4,, or 4,,...) that we shall
need. Now let ¢ and t be unital embeddings of 4 in M/I, with t trivial, and let ©
be a unital splitting of 7. Denote the preimage of a(A4) in M by B, choose a
dense sequence (a,) in A4, and choose a sequence (b,) in B with b, +I=0(a,).

By the second basic fact established above, applied to A4,,4,,... and
S;S4,,8,SA,,... where S, is a finite set containing elements strictly within
distance 2% of a,,...,a, k=1,2,..., there exist an increasing sequence

g1S8 S ..



ON C*-ALGEBRA EXTENSIONS ... 249

of finite projections in M, with supremum 1, finite-dimensional sub-C*-
algebras C, cg,Mg,,C, S g,Mg,,... withg, € C, g, € C,,. . ., and surjective
morphisms ¢,: A,, = Cy, ¢,: 4,, = C,,... such that, for all a € n(S)),

lgra—agil < 27
lgagi—awn (@l < k71
We remark that we do not need that the sequence 4,, 4,,. . . is increasing; the

only assumption we need on the separable unital C*-algebra A is that any

finite subset can be approximated by elements of some unital sub-C*-algebra
with continuous trace. Thus, the class of separable unital C*-algebras to which
A may belong is closed under taking direct limits.

By the first basic fact established above, for each k=1,2,. .. there exist an
infinite projection p, in M commuting modulo I with the preimage B,, in M of
o(A,)=M/I, a finite-dimensional sub-C*-algebra C, of p,Mp, containing p,,
with C,NI=0, and an isomorphism 6,: C, — C, such that for all b € B

pibp— 00" b+ D el .

It follows that there exists an orthogonal sequence (f}, f5,...) of finite
projections in M (with f, <p,) such that 1 = f, is infinite in M, f, commutes
with C,, the map f,0,: C, — f,C, is determined by a partial isometry u, in M,
ie.,

* — L J—
Uit = 8o Wy = fi,
uFd.(cu, = ¢, ceCy,

and for each b belonging to a fixed finite subset of B which maps onto
o(S)Sa(A,) and contains elements strictly within distance 27 of b,,...,b,
(recall that b; maps onto a(a;)),

hbf; =fibhi =0, 1 £j<k,

I fibfi—fbewo B+ Dfill < k7T
We now have the following chain of inequalities, whenever 1<i<k, where
b € B,, is chosen as above close to b;:

lu by, — ukbu, | < 27,

lugbu, —uFb00 b+ Dyl < k1,

urb00 ' (b+Du, = go~ ' (b+1),

lew ' b+ D—gim(o ™ (b+D)gill < k71,



250 GEORGE A. ELLIOTT AND HIDEO TAKEMOTO
Igen(o ™ (b+D)gi—gen(o ™  (bi+D)gill < 275,
e Y(b;+D) = q;.

Hence by the triangle inequality, for 1<i<k,

luFb,— gim(a)gell < k™1

We also have, for 1 i<k,
lgim(a) —m(@)gl < 3-27% < 27%%2,
IABSI < 27% Wbl < 278 1sj<k.

Finally, set g, — g, =€, k=1,2,..., where go=0. Then } i, ¢,=1in M, and
if 1Zi<k, setting u,e, =v, we have

loFbv,—em(a)el < k™1,
lexn(a)—m(a)e ]| < 27**3427%+2 < 27k*+4
"v:bivj" <27k "Ufbiuk" <27k 1gj<k.

Moreover, 32, v, is an isometry in M, with cokernel 1 —3732, v, 0¥ containing
1=, f, which is infinite. Denote the image of 332 v, in M/I by v. Then vis
a proper isometry in M/I, and for each i=1,2,...,

v¥o(a)y = v*(b;+ 1

( i v,""b,-v,‘> +1
= ( i e,gz(a,-)e,,) +1
K

=1

= (i e,‘n(a,.))+l

k=1
= n(a)+1
= 1(a;) .
By continuity,
v*c(ay = 1(a), aeA.
This implies in particular that vv* commutes with g(4) (see the proof of

Corollary 1, page 338 of [2]), and so the proof of the Theorem is complete.

3. THEOREM. Let A be a separable unital nuclear C*-algebra. Then for any
t € Ext, (4, I) there exists v € Ext, (4,I) such that T+’ is trivial.
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Proor. This follows from Corollary 3.11 of [6] (see also the Corollary of
Theorem 7 of [2]) applied with B=M and J =1, by using the idea of [1], as in
the case that M is of type I

4. COROLLARY. Let A be as in 2. Then Ext, (A, 1) is a group.
Proor. This follows from 2 and 3.

5. REMARK. The methods used above, slightly modified, yield analogues of 2
and 4 for extensions of I by a nonunital separable C*-algebra A which is the
direct limit of C*-algebras with continuous trace.

In this case, by 3.4 of [5], strong equivalence coincides with weak
equivalence, and hence by 3.15 of [5], we may suppose that A is stable. Then 4
is the direct limit of stable C*-algebras with continuous trace. Since a stable
C*-algebra with continuous trace and with totally disconnected spectrum is
trivial, and is hence a direct limit of unital C*-algebras with continuous trace,
the proof of 2 is applicable with only minor modifications.

6. THEOREM. Let A be the C*-algebra direct limit of a unital sequence
A; — A, — ... of finite-dimensional C*-algebras, and suppose that M is of
type 11. Then every unital extension of I by A is trivial.

Proor. It would be enough to show that if 1€ A, c4,eM/I, and
1 € B, €M maps isomorphically onto A, by the quotient map M — M/I, then
there exists B, M with B, < B,, mapping isomorphically onto A,. (With
le A,cA,c...Ac=M/I, one could just choose successively
B,=B,< ... <M mapping isomorphically onto 4, £4,<....) If the finite-
dimensional C*-algebra A, is not simple, however, this is not true.

The proof seems to require a less direct approach, using K-theory. The

argument consists of five steps. Let I — B — A be an essential unital extension
of I by A.

SteP 1. The induced sequence Kol — KB — KA defines an abelian group
extension of the group K,I (=R) by the group KyA.

This can easily be shown directly, using that any projection in M/I is the
image of a projection in M (Theorem 3.2 of [13]), so that any projection in A4 is
the image of a projection in B. What is needed—namely, that the sequence of
abelian groups
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is exact — can also be seen, as Brown has pointed out in the different situation
in which I is an approximately finite-dimensional C*-algebra ([4]), by
observing that in the six-term exact sequence

Kol — KoB — K4

1 !
KA « KB « K,I

of Bott periodicity, the groups K;4 and K,I are zero.

Step 2. The abelian group extension K,I — K,B — K4 defined above
splits.

To see this note that the subgroup K,I (=R) of KB is divisible. It is then by
Theorem 2 of [9] a direct summand of K,B.

Step 3. There exists a splitting map K,4 — K B for the abelian group
extension K,J — K,B — K,A4 which takes [1] into [1] (i.e., takes the class of
the unit of A4 into the class of the unit of B).

To see this, first choose by Step 2 some splitting map K,4 — K B. To geta
different splitting we must add a map from Ky4 to K,I, and it is sufficient for
us to show that there is such a map which is nonzero on [1] € KA. (Since Kyl
=R it follows that there is such a map which is arbitrary on this element.) The
existence of such a map K,4 — K,I follows from the facts that Ko (=R) is
divisible and that K,A is torsion free. (A maximal additive extension of a
nonzero map from Z< KA into K,I must then be defined on all of K,A.)

STEP 4. Any splitting map K,A — K B for the abelian group extension
Kol — KoB — KA is positive with respect to the natural preorder in K,A4
and K,B.

It is sufficient to show that if & is an element of KB such that the image of h
in K,A is nonzero and positive, then h is positive in K,B. After tensoring with
a suitable full matrix algebra of finite order, what we must show is that if e and
f are orthogonal projections in B with fe I and e ¢ I, then there exists a
projection f” € I equivalent to f with f’<e. That this is true for B follows, as
Bc M, from the fact that it is true for M.

STEP 5. Let ¢: KoA — KB be a splitting of KoJ — K,B — K,A4 which is
unital, i.e., takes [1] into [1]. Then there is a unital splitting 4 — B of the
extension of C*-algebras I — B — A4 which induces ¢.

Denote by
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¢,: KyA4, - KB

the composition of ¢ with the induced map K,4, — Ky4 (which may not be
injective). It will suffice to show that if n=1,2,... and if

lPn—l : An—l - B
is a unital morphism for which the given map B — A is a left inverse, where 4,
=C g 4, and such that the induced map K,A4,_, — KB is ¢,_,, where ¢,[1]
=[1], then there is an extension of ¥,_, to a morphism

Yn: 4, > B

for which the map B — A4 is a left inverse, and such that the induced map
KyA, — KB is ¢,. The closure of the common extension of /,¥,,. .. is then
a unital splitting 4 — B, inducing ¢: K,4A — K,B.

It is enough to consider the case n=2. Choose a maximal orthogonal set S,
of minimal projections in A,, and a maximal orthogonal set S, of minimal
projections in A,, such that every element of S, lies inside some element of S,.
Fix p € §,. Choose a morphism ¥ from pA,p to ¥, (p)My, (p) for which the
map M — M/I is a left inverse; necessarily, Y (pA,p) S B. For each g € S, with
g =p, the element ¢,[q] —[Yq] of K,B belongs to the kernel of KB — K,A4
and hence, by Step 1, to the image of K,I — K B. Since K,I =R, each such
@,[q]—[¥q] is either positive or negative. If ¢,[q]—[¥q] is negative, then,
since Yq € M\ I, yq may be decreased by a projection in I so that ¢,[q]
—[¥q]=0. Furthermore, this may be done simultaneously for all the
projections in S, equivalent in 4, to g, in such a way that y is still a morphism.
We may therefore suppose that ¢,[g]—[yq] is positive for each g € S, with
g <p. Since

Wil = o,lp] = @alpl = Y @,l4],
q€Syqsp

we have the decomposition

[t//m— > l/fq]= Y (@al—[vaq))

qeS5.q9sp qeS2,9Sp

in the positive part of the image of K,I — KB, and since any positive element
of this image is the image of the class in Kol of a projection in I, it follows that
g may be increased by a projection in I, for each g € S, with g < p, with class
©,[q]1—[¥q] in the image of Kol — K,B, in such a way that

Y Vg =vyp.

qeS;,qsp

Moreover, since the change is by projections of the same dimension in I for
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different q € S, which are equivalent to g in A,, also the partial isometries
between different ¥q’s may be extended so that y is still a morphism. We now
have

o,lal-[Wal =0, qeS,q<p.

Carry out the construction of § as above for each p € §,. Then we have a
morphism
y: Y, pA,p— B
pes,
~such that for each p € S,
z 'I’q = ‘I’lp ’
q€5595p

and for each q € S,,

©[q]-[yq] = 0.

It is now straightforward to construct a common extension of y and of /; to a
morphism , of all of 4, into B, necessarily inducing ¢,: K4, — KoB. We
make only the following remarks. If p, and p, are distinct elements of S, which
are equivalent in 4, then a common extension of Y and of ¥, to (p; +p;)4,(p,
4 p,) is unique. If p, and p, are elements of S, which are not equivalent in 4,,
and if ¢, and g, are elements of S, with g, <p, and g, < p,, such that g, and ¢,
are equivalent in A,, then

[¥aq,] = ¢:[q:] = 0.[49,] = [¥q.].

Hence if v is a partial isometry in 4, with v*v=gq, and vv*=gq,, and u is any
partial isometry in the preimage of v in ¥(q;)My (q,), then

[yq, —u*u] = [Yq,1-[u*u] = [Yq.]—[uu*] = [Yg,—uu*],
and so u may be extended by adding a partial isometry in I in such a way that

u*u=yq,, uu*=yq,.

7. COROLLARY. Let A be the C*-algebra direct limit of a unital sequence
A, > A, — ... of finite-dimensional C*-algebras, and suppose that M is of
type 1. Then Ext, (A,I) has only one element.

Proor. This follows from 2 and 6.
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