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THE BOUNDED MODEL FOR
HYPERBOLIC 3-SPACE AND A
QUATERNIONIC UNIFORMIZATION THEOREM

WILLIAM ABIKOFF*

In 1971, Lars Ahlfors lectured at the Mittag-Leffler Institute and introduced
me to a simple and elegant method using quaternions for computing the action
of Mobius transformations on the upper half-space model of 3, the 3-
dimensional hyperbolic space. After substantially completing this work I
traced the origins of Ahlfors’ exposition, but not his methods to Fueter [5].
There is some overlap between Fueter’s results, but again not his methods, and
the results given here. On seeing a preprint of this paper, Ahlfors informed me
that Dennis Hejhal had discovered an earlier and more general form of the
quaternionic representation in Vahlen [12], Vahlen uses Clifford algebras
to represent the orientation-preserving hyperbolic motions as Mdobius
transformations. Many of the results given here may generalize to n-
dimensional hyperbolic space using the Vahlen representation. Further
investigations along the lines initiated by Vahlen are being conducted by
Ahlfors.

As best I can discern, Fueter was unaware of Vahlen’s work ; but Vahlen also
seems to have been unaware of Clifford’s earlier work which, via the Klein
model, gives a representation of the motions of hyperbolic space.

As in the case of Fuchsian groups, it is often preferable to utilize a bounded
model for #3. Bounded models allow us to obtain elementary estimates for the
convergence of automorphic forms and give qualitative and quantitative
information on group actions.

Here we show that quaternionic actions may also be utilized to describe the
action of orientation-preserving motions on the unit ball model of »#3. Of
lesser importance currently is that the method has application to #4.

We also extend several standard results from the theory of Fuchsian or
Kleinian groups to general discrete groups of motions of #>. These results are
originally due to Poincaré in the Fuchsian case. In addition we utilize the
bounded model group action to define Poincaré @ series and interpret their
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quotients as automorphic quaternion-valued functions on the orbit space of
the group. This immediately leads to a quaternionic uniformization theorem.

The fundamental result in n-dimensional conformal geometry is the
theorem of Liouville as generalized by Gehring and ReSetnjak (see [7]) which
states that when n=3 every conformal transformation is a MGobius
transformation; i.e. is a composition of inversions in spheres. The
generalization removes all differentiability assumptions. We shall make
decisive, hidden and terminological use of this theorem.

I would like to thank Troels Jargensen for several helpful conversations and
Werner Fenchel who informed me of several results and methods mentioned in
Section 4.

1. The group action in the bounded model.

We denote by H the skew field of quaternions and use the usual
identification with R* and basis elements 1=(1,0,0,0), i=(0,1,0,0),
j=(0,0,1,0) and k= (0,0,0,1). We consider the upper half of 3-space R3*
as w=z+yj with zeC, y e R*. Ahlfors’ arguments, as given in [1] (or
using the results contained herein), show that the Mobius transformation
z+> (az+)(cz+d)~ ' may have its action extended to R3* by simply writing
w i (aw+b)(cw+d) ™. This extension is conformal and is the orientation-
preserving isometry group of #° modelled on R3*.

We shall need to know that

) je=¢j forceC,
the conjugate of w=a+ib+ jc+kd for a,b,c,d e R is

2) w = a—ib—jc—kd
and
3 wol = w/lw|?.

The absolute value or modulus of a quaternion is multiplicative. Also we define
Ww=a—ib—jc+kd.
For A4,B,C,D € H with (AC~'D—B)C#0, set
y:A-A
w > (Aw+B)(Cw+D)™!
where H=H U {oo}.

LeEMMA 1. y is a conformal diffeomorphism of S*.



THE BOUNDED MODEL FOR HYPERBOLIC 3-SPACE ... 7

Proor (The elegance of this argument clearly shows the hand of Lars
Ahlfors.) If C=0, y is trivially conformal, so we may assume that C+0.

ywW)(Cw+D) = Aw+B

and
yWHCW +D) = AW +B.
Therefore
YWIC(w—w)+[y(w)—yW)][Cw + D] = A(w—w)

or

W) —y(W)I[Cw' + D] = [A—y(W)Cl[w—wT] .
Thus
4) dy- (Cw+D)dw)™ ' = A—y(w)C
or
(&) ldyll-ICw+ D] lldw]| ™" = [|A=y(w)C] .
We compute the right hand side of (4),
6 A—y(w)C = [AC™'D-B][Cw+D] 'C.
Hence
¢ lA—yw)Cll = |AC™'D—B| |Cw+D||~*|C]| .

Thus using (5) and (7) we obtain

_ laCc™'D-B)C|||ldwl _ lldwi

It is then immediate that y is conformal at each point. By Liouville’s theorem, y
is locally, hence globally the restriction of a M6bius transformation, hence is a
diffeomorphism of S*.

Set

R A B
7 = (C D) for A,B,C,DeH.

We denote by Gl (2, H) the set of invertible 2 by 2 matrices over H. The simple
determinant condition for invertibility when the ground ring is commutative is
not valid here. Invertibility is determined by the solvability of the four linear
equations given by $(§)" ! =Id. If



8 WILLIAM ABIKOFF

oy (A B
&y = (C, D,)

then
A = (A-BD™'C)!
B = (C-DB '4)™!

(&) B o
C = -D'C(A-BD"'O)!
D = —B '4(C—DB 'A)™!

provided that these terms make sense. If the product ABCD =0, i.e. at least one
entry is zero, either AD#0 or BC %0 suffices to insure invertibility. Thus in
examining (9) we may assume that ABCD +0. Note that

(A-BD™'C)C™'D = AC™'D-B

or (A—BD7!C)™! exists if and only if AC !D—B=#0. Similarly
(C—DB 'A4)~! exists under precisely the same conditions. This gives us
the generalization of the determinant condition, namely either AC™'D—B+0
or AD+0 and C=0. (See also Section 4.)

LeEmMMA 2.
@ : Gl (2,H) — Conf, H
Yy

is a group epimorphism. Here Conf, H is the group of directly conformal self-
maps of H=S*

Proor. That @ is a homomorphism is a direct computation. To see that it is
surjective, observe that it is a simple consequence of Liouville’s theorem that
Conf, H is the semi-direct product of the group of similarities of H=E* and
the group of order two generated by y,: w — w™!. The dilations of E* clearly
lie in Im @ = &(Gl (2, H)). We must only show that each rotation y € SO (4), i.e.
the rotations about zero, lies in Im¢®. For p,q e H having norm one,
-w > gwp~ ! is obviously a rotation and lies in Im &. Conversely, if y € SO (4)
and y(1)=q~?, then gy is a rotation of E* fixing 0 and 1, hence is a rotation of
3-space belonging to the 3-dimensional connected Lie group SO (3). The group

{w pgywp™' | peH,|pl=1}

is also a 3-dimensional connected Lie group of directly conformal maps of H
which fix 0 and 1. It follows that each y € SO (4) is of the form w — qwp™?!,
hence lies in Im @ which completes the proof.
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The Cayley transform is the map

riwe jw—jw+j!

(1)

Clearly y satisfies the conditions of Lemma 1. Its inverse ' has matrix

with matrix

j 1
NP 2 2
r_Jj
2 2
THEOREM 1.
xoConf, R3*oy~! = Conf, 43
where

A3 = {x eH: "x”<1a X=(x1,xz,x3,0)} N

Proor. Suppose w=a+ib+ jy. Since the norm is multiplicative, it follows
that

a’+ b2+ (y—1)?

Il = b e

precisely when y>0. Direct computation also shows that y(w) has no k
component.

Pure matrix multiplication yields

CoROLLARY 1. The directly conformal group of A® is the set of maps

(10) xofox ™ t:wis (aw+b)(bw+a)~!
where
. (AB
y = (C D)eSL(Z,C)
and
(11) a = 3[(A+D)+j(B-C)]

(12) b = i[(C+B)+j(A-D)] .
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An obvious consequence of the preceding corollary is

COROLLARY 2. The group of orientation— preserving isometries of #°,
denoted Isom, 3, is parametrized by a sublocus of the quaternionic hyperbola
llal|® = ||b}|*> =1 of the form given by equation (10) with a and b given by equations
(11) and (12).

PROOF. y: w > (aw+b)(bw +d)~! is conformal by Lemma 1 since the con-
dition for conformality is the same as the condition for invertibility of j. Di-
rect computation shows that ||a||? — || b||?> = 1. Further ||dy|| = K|/dw|/|bw+a||*
where K=|(ab~'a—b)b|. If K=1, then y is a Poincaré isometry. To verify
that indeed K =1, we note that y|d4°> is a diffeomorphism, hence

J dA = J IYI2dA = 4n .
s a4’
Let R=||5"1d|, then

(13 4n = f Iyi*d4 = K2||5||'4‘[ lw=b""a||~*dA .
a4 oa?

In spherical coordinates, assume, by rotation of 43 if necessary, that b~ '3 lies
on the vertical axis. Then

2r (n 3
F-1sp-4 _ sin ¢ dpd
(14 LA, Iw=b"a)"*dA L L (R*+1— 2R cos )’

_ 4n
T (RP-1)?

Using (13) and (14) we obtain
K? = ||B|*(R*—1)*.
But R=|||/|b] = llall/|b|, hence

liallz-~||b||2>2
K? = |b 4(—~———— =1

Since K=0 we are done.

An alternate proof, using the fact that isometric spheres meet 943
orthogonally, has been given by Andy Haas.

COROLLARY 3. If wy € 43, then the map

T D
: — b—(1 1hw)~1
VIW g e b (L4 bw)
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with wo= —a~'b maps w, to 0.

The proof of Corollary 3 is trivial but some care must be taken in the choice
of a and b to assure that y is an automorphism of 43.

COROLLARY 4. If y: w — (aw+b)(bw +d) ™! with a and b as above, then
d(0,7(0)) = Clog(|lall +libl)

where d is the hyperbolic distance and C depends only on the curvature of the
hyperbolic metric. C=1 for curvature —1.

Again the proof is a trivial computation. The result together with the
invariance of the hyperbolic metric under Isom, 5> has the immediate
consequence that a subgroup G of Isom, #3 is discrete if and only if it acts
properly discontinuously on 3. One should also compare this result with
some of the characterizations of the exponent of convergence of Poincaré series
in Sullivan [11].

2. The Ford region and the Poincaré estimate.

When we study the bounded model for #3 we may conjugate a discrete
group G of motions so that 0 is not a fixed point. As in the case of 2, we may
define the Ford fundamental region in the following manner. Each y € G has
an isometric sphere

IG) = {(we | lywl=1} and y(I@)=I1G"1.

Clearly the condition that ||y’(w)|=1 is equivalent to |dy(w)|=|dw| or
|lbw +d|| = 1. The interior of

F= [ ExtI@y)
yeG\{I}

is the Ford region for the action of G on #3. The standard proof (see Ford [4]
or Lehner [9] for details) shows that it is a fundamental region for the action of
G on 3.

An immediate consequence is the Poincaré estimate.

THEOREM 2. If G is a group of orientation preserving isometries of 7 in the
bounded model, then G is non-discrete if and only if either

(@ X, Ibl~S=00 where Y, is the sum over y € G\ G, or

(b) G, is non-discrete.
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Here G, is the subgroup of G fixing 0.

ProoF. Let us first assume G is discrete and G, ={1}. Then 0 € F and for
some ¢>0, B,(0)cF. Now

4n > volGB,(0) = Y J‘J‘ Iy’ W) do .
yeG JJ B,(0) .

Since ||y (W)l =|1B] "2|lw—b"'d|| 2 and |w—b"'d||>1—¢ we have

volGB,(0) = Y. || ~°|1—¢l~®vol B,(0)
1}

G\ {

or

00 > Zl} 6] ¢ .

G\ {

If Go+{1} and G is discrete we may find some B,(w,) lying in some
fundamental set F and repeat the above computation deleting all terms where
y € G,. Thus whenever G is discrete

> Ibl~¢ < oo
*

If G is not discrete then for any y € G there is a sequence y, — y. Write

* ok * %
Y"=<C.. *) and y=<c *).

Since ¢, — ¢, if ¢+0 (a) is valid. If c=0 and some c,+0 repeat the above
argument with y=y, and find a new sequence converging to y =y,. Otherwise
¢,=0 for all but finitely many n. But if ¢,=0, then y, € G, and G, is not
discrete.

When G is Kleinian of the second kind we may examine areas on 943
instead of volumes and obtain

THEOREM 3. If G is a Kleinian group of the second kind,

Y bl ™* < 00
*

For specific Kleinian groups of the second kind, Sullivan [11] has found
sharp estimates of the exponent of convergence of these groups which are given
in terms of the Hausdorff dimension of their limit sets. The above results may
be rewritten as conditions on the matrices y in SL (2,C) as follows:
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THEOREM 4. If G<SL (2,C),

A B
G = =
(o)
then we have

(i) X, (C+BP+|4-DP)3<oo if G is discrete.

(i) ¥, (C+B*+|A—D|»"*< o0 if G acts on #> as a Kleinian group of the
second kind.

(i) ¥, (C+BP*+|4—DI|*)~*=0,00 if G is nondiscrete or G=G, where G, is
the isotropy group of 0.

There is a partial converse to Theorem 4 (ii) (see also Beardon and Nicholls
[2] and Sullivan [11]).

THEOREM 5. If G<SL (2,C) is discrete and has a Dirichlet region of finite
volume, then

Y (C+B*+|4-DP)"% = o0.
*

Proor. Nicholls [10] has shown that the hypothesis of the Theorem implies
the existence of a constant B(G)>0 so that

B(G)
nON 2 o

where n(0,r) is the cardinality of points lying both in the orbit of 0 and
in the ball A, of Euclidean radius r about 0. If y € G satisfies y(0) € 4,, then
1—|y(0)]| =21 —r. However

1-y©))? = 1—|b/a|* = |lall =2
and
YOI = lal~* < 2(1-1y(l) = 2(1-7r)

when y(0) € 4,, 7: w — (aw+b)(bw+a)~! and |a||>— ||b||* =1. It follows that
for all but finitely many y € G, |y’'(0)||><4(1 —r)*> whenever y(0) € A,. Thus

v -2 < 4(1=r)B(G)
T oItz e
10)e4,

Letting r — 1, this sum goes to 00. The desired conclusion follows immediately
from the observation that
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YUBI7* =3 (Jal>~1)72 = o0
* *

3. Poincare series for Kleinian groups G.

When w € H we may define a tangent vector dw to H by identifying H with
R*. Similarly we may take the g-fold tensor product H?= ®4%_, H which is both
right and left multilinear. Similarly we may form H%-bundles E? over 4°= B, (0)
in Ri for i=3,4. A section F: 4 — E1is called a g-form for the discrete group
G <Isom, #3 if

(15) (Foy)(wly'(w)* = F(w)

for all y € G. By combining equations (4) and (6), we obtain a formula for dy in
terms of dw. It is worthwhile to note however that y acts as a transformation
of R*=C2 In that notation, the derivative of y is a matrix D, (w) and
dy=D,(w)dw. The chain rule then gives

(16) D,,(w) = D,(n(w)D,(w) .

Since y and 1 are assumed conformal, each D, factors as a positive real multiple
of the identity matrix composed with a special orthogonal matrix. A special
orthogonal matrix is, for our purposes, multiplication by a unit quaternion.
Thus the matrix D, in a left action on T4’ may be represented by a
quaternionic action satisfying the chain rule (16). By y'(w) we shall denote the
quaternion D,(w). An automorphic g-form is thus a tensor valued function
satisfying (15). |D,(w)| =|Cw+D|~? where y(w)=(Aw+B)(Cw+D)™'. We
may form the Poincaré g-series

0f(w) = % (fo) Wy W(IR1®...Q1)

q times
= % (fo)WH' W ... ®Y (W) .
By the chain rule and multilinearity

Sf(n(wWhn' (W) = Of (w).

Poincaré’s proof (see Lehner [9]) for the convergence of such series remains
valid for g=3. f covers a tensor valued form on 4/G.

If G is a Kleinian group and w, ¢ Gw, and ||w;| # 1, then for f;=(w—w;) "},
T(w)= ©f,/0f, is an automorphic, non-constant extended quaternion valued
function on 53, hence projects to a non-constant function T(w) on 43/G.

THEOREM 6 (Quaternionic uniformization). If T, and T, are as above, then
the map
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4* - A? = (HU{o0})?
w i (T, (w), T,(w))

is a quaternionic uniformization of A3/G.

Note that Fueter [6] obtained a similar result for the Picard group using
Eisenstein series.

4. Concluding comments.

Stereographic projection of the complex plane onto the unit sphere in R3
may be realized by composing the Cayley transform with complex conjugation
(see also Gormley [8]). Although at first glance this may seem odd, looking at
the unit sphere from the inside or outside involves an anti-conformal
transformation of the position of the observer.

In addition to informing me of the existence of Gormley’s paper cited above,
Werner Fenchel has found an elementary proof unifying the treatments of
Lemmas 1 and 2. In outline the proof follows. There are normal forms for
quaternionic Mobius transformations, namely

wiawd '4+bd™ '  if c=0
and
wiac ' —(ac”'d=b)(ew+d) ! if ¢£0.

Consequently, Im & is generated, as is Conf, H, by the map

yriwe w!

and by Euclidean similarities. This proof does not display the norm of dy which
we later need. However he also notes that Corollary 2 and the conditions for
invertibility of elements of GI(2,H) may be derived directly using Dieudonné’s
theory of determinants in skew fields [3]. I feel that the indicated integration
and computations are sufficiently elementary to warrant inclusion here.

The results presented in the second and third sections suggest that
hyperbolic 3 and 4-manifolds and orbifolds may possess algebraic geometric
structure over H. The main difficulties in developing this structure are
immediately apparent. Neither the algebraic nor the analytic machinery seems
well in hand.
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