A FIXED POINT THEOREM FOR C*-CROSSED PRODUCTS WITH AN ABELIAN GROUP

GUY HENRARD

Abstract.

Let G be an abelian group and $[A, G, \alpha]$ a C*-dynamical system. We define a C*-algebra $B_u(A, G)$ (by giving generators), independent of the action α , and an action θ of G on $B_u(A, G)$ so that the C*-crossed product $G \times A$ is the fixed point algebra in $B_u(A, G)$ for the action θ .

Introduction.

Let (\mathcal{M}, G, α) be a W*-dynamical system. It was proved by M. Takesaki [11], generalized or proved in another way by T. Digernes [3, 4], U. Haagerup [5] and A. Van Daele [13] that the W*-crossed product $G \underset{\alpha}{\times} \mathcal{M}$ is the fixed point algebra in $\mathcal{M} \otimes B(L^2(G))$ for the action $\theta = \alpha \otimes \operatorname{ad} \lambda$, where $B(L^2(G))$ is the Von Neumann algebra of bounded linear operators on the Hilbert space $L^2(G)$ and λ is the right regular representation of G on $L^2(G)$. In the case of abelian groups this fixed point theorem can be seen as a consequence of the following two theorems:

- 1) \mathcal{M} is isomorphic to the fixed point algebra of the W*-crossed product $G \underset{\alpha}{\times} \mathcal{M}$ for the dual action $\hat{\alpha}$, [9], [11], [13].
- 2) The duality theorem: $\hat{G} \times G \times \mathcal{M}$ is isomorphic to $\mathcal{M} \otimes B(L^2(G))$, where \hat{G} is the dual group of G, [9], [11], [13].

If $[A, G, \alpha]$ is a C*-dynamical system, then the duality theorem of Takai is available [10]. However a fixed point theorem for C*-crossed products is not obtained in this way as, unless G is discrete, the C*-algebra A is not imbedded in the C*-crossed product $G \underset{\sim}{\times} A$. When G is compact (\widehat{G} is discrete), $G \underset{\sim}{\times} A$ is the fixed point algebra in $A \otimes \mathscr{K}(L^2(G))$ for the action $\theta = \alpha \otimes \operatorname{ad} \widehat{\lambda}$, where $\mathscr{K}(L^2(G))$ is the C*-algebra of compact operators on $L^2(G)$. This is a consequnce of the duality theorem of Takai and a theorem of Landstad [8]. So, for compact groups the analogy to the W*-case is complete. For non-abelian compact groups this fixed point theorem is proved by A. J. Wassermann [14].

Received August 30, 1982.

If $[A, G, \alpha]$ is a C*-dynamical system with an abelian group G we define a C*-algebra $B(A, G, \alpha)$ so that $G \times A \subseteq B(A, G, \alpha) \subseteq M(\hat{G} \times G \times A)$, where $M(\hat{G} \times G \times A)$ is the multiplier algebra of the double crossed product $\hat{G} \times G \times A$ [8], $[\tilde{9}]$. We prove that $B(A, G, \alpha)$ admits the bidual action $\hat{\alpha}$ and that $\hat{G} \times \hat{A}$ is the fixed point algebra in $B(A, G, \alpha)$ for the action \hat{a} . By using the same isomorphisms as in the duality theory of Takai, $B(A, G, \alpha)$ is transformed to an algebra, B(A, G), independent of α . In this way we get a fixed point theorem for the C*-crossed product $G \times A$. The action θ on B(A, G) is the transformed action of \hat{a} by the isomorphisms mentioned above. This action is in general not continuous on B(A, G) but for uniformly continuous C*-dynamical systems [9, 8.5] we can define a C*-subalgebra $B_{\mu}(A,G)$ of B(A,G) on which θ is continuous. If G is compact the theorem coincides with the known theorem of Landstad, Takai and Wasserman. Unless G is compact the C*-algebras B(A, G)and $B_u(A, G)$ are not tensorproducts of A with an operator algebra on $L^2(G)$; so in general this fixed point theorem has very little analogy to the Von Neumann case. Therefore, those C*-dynamical systems for which analogy is almost complete will be described in a forthcoming paper.

For the theory of C*-algebras and their crossed products we refer to the book of G. K. Pedersen [9]; for the abstract harmonic analysis we refer to the books of E. Hewitt and K. A. Ross [7].

I wish to express my gratitude to my supervisor Alfons Van Daele for giving both the idea of this paper and many suggestions. I wish also to thank Dorte Olesen and Gert K. Pedersen for their warm hospitality during my visit, where I had a chance to have some discussions on the subject. Finally I thank my colleagues at the Mathematics Institute of Leuven for their interest.

1. Notation and preliminaries.

Throughout this paper G will denote a locally compact abelian group and \widehat{G} its dual group. If A is a C*-algebra we denote by $C_c(G,A)$, $C_0(G,A)$, $C_u^b(G,A)$, $C_u^b(G,A)$, $C_u^b(G,A)$, the sets of continuous functions from G to A, with compact support, vanishing at infinity, bounded uniformly continuous, bounded. If \mathscr{H} is a Hilbert space we denote by $L^2(G,\mathscr{H})=\mathscr{H}\otimes L^2(G)$ the Hilbert space of square integrable functions from G to \mathscr{H} . If A is a C*-algebra of operators on the Hilbert space \mathscr{H} and y is in $C^b(G,A)$ we denote by m_y the operator on $L^2(G,\mathscr{H})$ defined by $m_y\xi(t)=y(t)\xi(t)$, where $\xi\in L^2(G,\mathscr{H})$ and $t\in G$. Then, $\|m_y\|=\|y\|_\infty$ where $\|y\|_\infty$ is the sup-norm of y. We denote by λ the left regular representation of G on $L^2(G,\mathscr{H})$: $\lambda_s\xi(t)=\xi(s^{-1}t)$ where $\xi\in L^2(G,\mathscr{H})$ and $s,t\in G$. The representation λ induces a representation of $L^1(G)$ on $L^2(G,\mathscr{H})$ which is also denoted by

$$\lambda: \lambda_f \xi(t) = \int \xi(s^{-1}t) f(s) ds$$

where $f \in L^1(G)$. $\tilde{\lambda}$ is defined by $(\tilde{\lambda}_t \xi)(s) = \xi(st)$. We denote by V the unitary representation on \hat{G} on $L^2(G, \mathcal{H})$ defined by $V_{\sigma}\xi(t) = \langle t, \sigma \rangle \xi(t)$ where $\sigma \in \hat{G}$, $\xi \in L^2(G, \mathcal{H})$, $t \in G$ and $\langle t, \sigma \rangle$ is the image of t by the character σ . If $f \in L^1(G)$ and $\sigma \in \hat{G}$, we denote by f_{σ} the function in $L^1(G)$, so that $f_{\sigma}(s) = \langle s, \sigma \rangle f(s)$, where $s \in G$. If μ is a bounded measure on G, we denote by $\hat{\mu}$ the (inverse) Fourier transform of

$$\mu \colon \hat{\mu}(\sigma) = \int \langle t, \sigma \rangle \, d\mu(t)$$

where $\sigma \in \hat{G}$.

An action α of G on a C*-algebra A is a homomorphism of G into the group of automorphisms of A, Aut A. The action α is continuous if for each $a \in A$ the map $s \mapsto \alpha_s(a)$ is continuous; α is uniformly continuous if the continuity is uniformly on the unit ball of A. A triple $[A, G, \alpha]$ of a C*-algebra A, a locally compact group G and a continuous action α of G on A is called a C*-dynamical system [9].

Let $[A, G, \alpha]$ be a C*-dynamical system and \mathscr{H} a Hilbert space so that A acts non-degenerately on \mathscr{H} . Denote by Π_{α} the representation on $L^2(G, \mathscr{H})$ of $C_c(G, A)$ with the $L^1(G, A)$ -norm defined by

$$\Pi_{\alpha}(y)\xi(t) = \int \alpha_{t^{-1}}(y(s))\xi(s^{-1}t) ds$$

where $y \in C_c(G, A)$, $\xi \in L^2(G, \mathcal{H})$ and $t \in G$. If $a \in A$ and $f \in C_c(G)$ we denote $\Pi_{\alpha}(a, f)$ instead of $\Pi_{\alpha}(a \otimes f)$. It is known that if G is amenable (abelian groups are) the C*-crossed product $G \underset{\alpha}{\times} A$ is isomorphic to the C*-algebra of operators on $L^2(G, \mathcal{H})$ generated by $\{\Pi_{\alpha}(y) \mid y \in C_c(G, A)\}$ [9], [10]. If $a \in A$, we denote by $\Pi_{\alpha}(a)$ the operator on $L^2(G, \mathcal{H})$ defined by:

$$\Pi_{\alpha}(a)\xi(t) = \alpha_{t^{-1}}(a)\xi(t)$$

where $\xi \in L^2(G, \mathcal{H})$ and $t \in G$. Π_{α} is a faithful representation of A into the multiplier algebra of $G \underset{\alpha}{\times} A$, denoted by $M(G \underset{\alpha}{\times} A)$ [1], [8], [9]. The action of \widehat{G} on $G \underset{\alpha}{\times} A$ defined by ad V is called the dual action and denoted by $\widehat{\alpha}$.

In the following sections $[A, G, \alpha]$ will be a C*-dynamical system and \mathcal{H} a Hilbert space so that A acts non-degenerately on \mathcal{H} .

2. The C*-algebras B(A, G) and $B_{\mu}(A, G)$.

2.1. DEFINITION. We define the C*-algebra B(A,G) as the C*-algebra of

operators on $L^2(G, \mathcal{H})$ generated by operators $m_y \lambda_f$ where $y \in C^b(G, A)$ and $f \in C_c(G)$. We denote by $B_u(A, G)$ the C*-subalgebra generated by operators $m_y \lambda_f$ where $y \in C_u^b(G, A)$ and $f \in C_c(G)$.

We first state a relation between the defined C*-algebras and $A \otimes \mathcal{K}(L^2(G))$.

2.2. LEMMA.

$$A \otimes \mathcal{K}(L^2(G)) \subseteq B_u(A,G) \subseteq B(A,G) \subseteq M(A \otimes \mathcal{K}(L^2(G)))$$

PROOF. If $a \in A$ we denote by y_a the constant function a from G to A. If $f, g \in C_c(G)$, then $a \otimes m_f \lambda_g = m_{\nu_a f} \lambda_g$ belongs to $B_u(A, G)$. As $A \otimes \mathcal{K}(L^2(G))$ is generated by elements of the form $a \otimes m_f \lambda_g$, the first inclusion is proved. The second inclusion is clear by definition, so it suffices to prove the last one.

For $y \in C^b(G, A)$, $a \in A$ and $f, g, h \in C_c(G)$ one has:

$$m_y \lambda_f(a \otimes m_g \lambda_h) = m_y(a \otimes \lambda_f m \lambda_{gh})$$
.

As $\lambda_f m_g \lambda_g$ can be approximated by elements of the form $\sum_i m_{f_i} \lambda_{g_i}$ $(f_i, g_i \in C_c(G))$, we have that $m_y \lambda_f (a \otimes m_g \lambda_h)$ is approximated by elements of the form $\sum_i m_{y_i} \lambda_{g_i}$ $(y_i \in C_c(G, A))$. As these elements belong to the closure of $(C_c(G, A), C^*(G)) = A \otimes \mathcal{K}(L^2(G))$ it is proved that $m_y \lambda_f$ is a left multiplier of $A \otimes \mathcal{K}(L^2(G))$. In a similar way $m_y \lambda_f$ will be a right multiplier and as B(A, G) is generated by operators $m_y \lambda_f$ $(y \in C^b(G, A), f \in C_c(G))$, the lemma is proved.

We will now prove that the definition of the C*-algebras B(A, G) and $B_{\mu}(A, G)$ is independent of the particular representation of A as an operatoralgebra on a Hilbert space \mathcal{H} .

So let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces and A_1 and A_2 C*-algebras acting nondegenerately on \mathcal{H}_1 and \mathcal{H}_2 and suppose that φ is an isomorphism from A_1 onto A_2 . Denote by $\varphi \otimes 1$ the isomorphism from $A_1 \otimes \mathcal{K}(L^2(G))$ onto $A_2 \otimes \mathcal{K}(L^2(G))$ so that $(\varphi \otimes 1)(a \otimes T) = \varphi(a) \otimes T$ where $a \in A$ and $T \in \mathcal{K}(L^2(G))$ [12, IV.4.22].

If B is a C*-algebra, the left strict topology on M(B) is the topology induced by the maps $x \mapsto ||xb||$ where $x \in M(B)$, $b \in B$. The strict topology is the topology induced by the maps $x \mapsto ||xb|| + ||bx||$ where $x \in M(B)$, $b \in B$. It was proved in [2] that M(B) is the strict completion of B. The following lemma is well-known [2], [9, 3.12.3].

2.3. Lemma. If \mathcal{X}_1 and \mathcal{X}_2 are Hilbert spaces and B_1 and B_2 C*-algebras acting non-degenerately on \mathcal{X}_1 and \mathcal{X}_2 and if p is a surjective morphism from B_1 onto B_2 , then, by defining $\tilde{p}(x) = \lim p(xu_{\lambda})$ (the limit is taken in the weak

operator topology) where $x \in M(B_1)$ and $\{u_{\lambda}\}$ is an approximate unit in B_1 , \tilde{p} becomes a morphism from $M(B_1)$ into $M(B_2)$. Furthermore \tilde{p} is continuous for the left strict and the strict topology. If p is an isomorphism, then also \tilde{p} .

We denote by $\tilde{\varphi}$ the extension of $\varphi \otimes 1$ to an isomorphism from $M(A_1 \otimes \mathcal{K}(L^2(G)))$ onto $M(A_2 \otimes \mathcal{K}(L^2(G)))$.

2.4. PROPOSITION. $\tilde{\varphi}$ is an isomorphism from $B(A_1,G)$ ($B_u(A_1,G)$) onto $B(A_2,G)$ ($B_u(A_2,G)$) so that $\tilde{\varphi}(m_y\lambda_f)=m_{\varphi\circ y}\lambda_f$, where $y\in C^b(G,A)$ ($C_u^b(G,A)$) and $f\in C_c(G)$.

PROOF. Take $y \in C^b(G, A)$ and $f \in C_c(G)$. If $\{T_\lambda\}$ is an approximate unit in $A_1 \otimes \mathcal{K}(L^2(G))$, then $m_y \lambda_f T_\lambda$ converges to $m_y \lambda_f$ in the left strict topology on $M(A_1 \otimes \mathcal{K}(L^2(G)))$; so $\tilde{\varphi}(m_y \lambda_f T_\lambda)$ converges to $\tilde{\varphi}(m_y \lambda_f)$ in the left strict topology on $M(A_2 \otimes \mathcal{K}(L^2(G)))$ (Lemma 2.3). As $(\varphi \otimes 1)(T_\lambda)$ is an approximate unit in $A_2 \otimes \mathcal{K}(L^2(G))$ we have that $m_{\varphi \circ y} \lambda_f (\varphi \otimes 1)(T_\lambda)$ converges to $m_{\varphi \circ y} \lambda_f$ in the left strict topology on $M(A_2 \otimes \mathcal{K}(L^2(G)))$. So it suffices to prove that for $T \in A \otimes \mathcal{K}L^2(G)$

$$\tilde{\varphi}(m_{\nu}\lambda_{f}T) = m_{\varphi \circ \nu}\lambda_{f}(\varphi \otimes 1)(T).$$

If T is of the form $a \otimes m_g \lambda_h$, where $a \in A$, $g, h \in C_c(G)$, then by Lemma 2.2 we know that for each $\varepsilon > 0$ there exists an element of the form $\sum_{i=1}^n b_i \otimes S_i$ with $b_i \in A$, and $S_i \in \mathcal{K}(L^2(G))$ so that

$$\left\| m_{y} \lambda_{f}(a \otimes m_{g} \lambda_{h}) - \sum_{i=1}^{n} b_{i} \otimes S_{i} \right\| < \varepsilon$$

and

$$\left\| m_{\varphi \circ y} \lambda_f(\varphi(a) \otimes m_g \lambda_h) - \sum_{i=1}^n \varphi(b_i) \otimes S_i \right\| < \varepsilon.$$

As

$$\tilde{\varphi}\left(\sum_{i=1}^n b_i \otimes S_i\right) = \sum_{i=1}^n \varphi(b_i) \otimes S_i,$$

the proposition is proved.

Let θ denote the action $\alpha \otimes \operatorname{ad} \lambda$ of G on $M(A \otimes \mathcal{X}(L^2(G)))$. By an analogous argument as in the preceeding proposition one can prove the following lemma

2.5. LEMMA. For each $t \in G$, the restriction of θ_t to B(A, G) $(B_u(A, G))$ is an automorphism of B(A, G) $(B_u(A, G))$ so that

$$\theta_t(m_v\lambda_f\xi)(s) = \alpha_t(y(st))\lambda_f\xi(s)$$

where $y \in C^b(G, A)$ $(C^b_u(G, A)), f \in C_c(G), \xi \in L^2(G, \mathcal{H})$ and $s \in G$.

So we get the following proposition

2.6. Proposition. θ is an action of G on the C*-algebras B(A,G) and $B_{\mu}(A,G)$.

2.7. REMARKS.

- i) If G is a compact group, then $B_u(A, G) = B(A, G) = A \otimes \mathcal{K}(L^2(G))$. So in the compact case we get the bidual system $[A \otimes \mathcal{K}(L^2(G)), G, \alpha \otimes \text{ad } \tilde{\lambda}]$.
- ii) If α is a uniformly continuous action (i.e. $s \mapsto \alpha_s(\cdot)$ is continuous uniformly on the unit ball of A), then it is easy to check that θ is a continuous action on $B_u(A, G)$ and so $[B_u(A, G), G, \theta]$ is a C*-dynamical system.
- iii) In general, the action θ is not continuous on $B_u(A, G)$ as can be seen from the following example. Take $G = \mathbb{R}$, $R = C_u^b(\mathbb{R})$ and α is translarion. Define for each $t \in \mathbb{R}$ the following function $f_t \in C_u^b(\mathbb{R})$:

for
$$t \ge 2$$
, $f_t(s) = \begin{cases} 0 & \text{if } s \in (-\infty, 1 - 1/t] \\ t(s - 1) + 1 & \text{if } s \in [1 - 1/t, 1] \\ 1 & \text{if } s \in [1, +\infty) \end{cases}$

for t < 2, $f_t = f_2$.

If $t_1, t_2 \in \mathbb{R}$, then $||f_{t_1} - f_{t_2}|| \le |t_1 - t_2|$, so the function $t \mapsto f_t$ belongs to $C_u^b(\mathbb{R}, C_u^b(\mathbb{R}))$. However the function $t \mapsto \alpha_t f_{st}$ is not continuous uniformly for $s \in \mathbb{R}$.

3. A fixed point theorem for C*-crossed products.

- 3.1. NOTATION.
- i) We denote by $\check{\Pi}$ the faithful representation of A on $L^2(G, \mathcal{H})$ defined by

$$\check{\Pi}_{\alpha}(a)\xi(t) = \alpha_{t}(a)\xi(t) ,$$

where $a \in A$, $\xi \in L^2(G, \mathcal{H})$ and $t \in G$.

ii) If $y \in C^b(G, A)$ and $f \in C_c(G)$ and $f \in C_c(G)$ we denote by $\Pi_1^a(y, f)$ the bounded linear operator on $L^2(G \times G, \mathcal{H})$ defined by

$$\Pi_1^{\alpha}(y,f)\chi(s,t) = \alpha_s(y(t)) \int \chi(s,r^{-1}t)f(r) dr$$

where $\chi \in L^2(G \times G, \mathcal{H})$ and $s, t \in G$.

3.2. Lemma. $\check{\Pi}_{\alpha}$ induces an isomorphism $\check{\check{\Pi}}_{\alpha}$ from B(A,G) onto the C*-algebra

of operators on $L^2(G \times G, \mathcal{H})$ generated by operators $\Pi_1^{\alpha}(y, f)$ where $y \in C^b(G, A)$ and $f \in C_c(G)$. Furthermore $\tilde{\Pi}_{\alpha}(m_{\nu}\lambda_f) = \Pi_1^{\alpha}(y, f)$.

PROOF. This follows from Proposition 2.4 and the identification of $L^2(G(L^2(G, \mathcal{H})))$ by $L^2(G \times G, \mathcal{H})$.

3.3. NOTATION.

i) We denote by X the linear isometry of $L^2(G \times G, \mathcal{H})$ onto $L^2(G \times G, \mathcal{H})$ defined by

$$X\gamma(s,t) = \gamma(s,s^{-1}t),$$

where $\chi \in L^2(G \times G, \mathcal{H})$ and $s, t \in G$.

ii) If $y \in C^b(G, A)$ we denote by α^{-1} the function from G to A defined by

$$\alpha^{-1}y(s) = \alpha_{s^{-1}}(y(s))$$

where $s \in G$. Clearly $\alpha^{-1}y \in C^b(G, A)$.

iii) If $y \in Cb(G, A)$ and $f \in C_c(G)$ we denote by $\Pi_2^{\alpha}(y, f)$ the bounded linear operator on $L^2(G \times G, \mathcal{H})$ defined by

$$\Pi_2^{\alpha}(y,f)\chi(s,t) = \alpha_{t^{-1}}(y(ts)) \int \chi(s,r^{-1}t)f(r) dr$$

where $\chi \in L^2(G \times G, \mathcal{H})$ and $s, t \in G$.

3.4. Lemma. $X * \tilde{\Pi}_{\alpha}(B(A,G))X$ is the C^* -algebra of operators on $L^2(G \times G, \mathcal{H})$ generated by operators $\Pi_2^{\alpha}(y,f)$, where $y \in C^b(G,A)$ and $f \in C_c(G)$.

PROOF. Take $y \in C^b(G, A)$, $f \in C_c(G)$, $\chi \in L^2(G \times G, \mathcal{H})$, and $s, t \in G$. Then

$$X * \Pi_1^{\alpha}(\alpha^{-1}y, f) X \chi(s, t) = \alpha_s(\alpha^{-1}y(ts)) \int X \chi(s, r^{-1}st) f(r) dr$$
$$= \alpha_{t^{-1}}(y(ts)) \int \chi(s, r^{-1}t) f(r) dr$$
$$= \Pi_2^{\alpha}(y, f) \chi(s, t) .$$

So $X * \Pi_1^{\alpha}(\alpha^{-1}y, f)X = \Pi_2^{\alpha}(y, f)$ and as $y \mapsto \alpha^{-1}y$ is an isomorphism of $C^b(G, A)$ the lemma is proved.

3.5. Notation. i) We denote by U the linear isometry of $L^2(\hat{G}\times G, \mathcal{H})$ onto $L^2(G\times G, \mathcal{H})$ defined by

$$U\chi(s,t) = \int \chi(\tau,t)\langle s,\tau\rangle d\tau ,$$

where $\chi \in L^1(\hat{G} \times G, \mathcal{H}) \cap L^2(\hat{G} \times G, \mathcal{H})$ and $s, t \in G$.

ii) We denote by W the linear isometry from $L^2(\hat{G} \times G, \mathcal{H})$ onto $L^2(\hat{G} \times G, \mathcal{H})$ defined by

$$W\chi(\tau,t) = \langle t,\tau \rangle \chi(\tau,t) ,$$

where $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ and $\tau \in \hat{G}$, $t \in G$.

iii) If $y \in C^b(G, A)$ and $f \in C(G)$ we denote by $\Pi_3^a(y, f)$ the bounded linear operator on $L^2(\hat{G} \times G, \mathcal{H})$ defined by

$$\Pi_3^{\alpha}(y,f)\chi(\tau,t) = \iint_{t^{-1}}^{\alpha} (y(sr))U\chi(s,r^{-1}t)f(r)\langle \overline{sr,\tau}\rangle drds,$$

where $\chi \in L^2(\widehat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \widehat{G}$, $t \in G$. This is well-defined as can be seen from the next lemma; also $||\Pi_3^{\alpha}(y, f)|| \le ||y||_{\infty} ||f||_1$.

(iv) We denote by $B(A, G, \alpha)$ the C*-algebra of operators on $L^2(\hat{G} \times G, \mathcal{H})$ generated by operators $\Pi_3^{\alpha}(y, f)$ where $y \in c^b(G, A)$ and $f \in C_c(G)$.

3.6. Lemma. If $y \in C^b(G, A)$ and $f \in C_c(G)$ then

$$W^*U^*\Pi_2^{\alpha}(y,f)UW = \Pi_3^{\alpha}(y,f)$$
.

So

$$W^*U^*X^*\tilde{\Pi}_{\alpha}(B(A,G))XUW = B(A,G,\alpha)$$
.

PROOF. Take $y \in C^b(G, A), f \in C_c(G), \chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \hat{G}, t \in G$. We get

$$W^*U^*\Pi_2^{\alpha}(y,f)\chi(\tau,t) = \overline{\langle t,\tau \rangle} \iint \alpha_{t^{-1}}(y(ts))\chi(s,r^{-1}t)f(r)\overline{\langle s,\tau \rangle} drds$$

$$= \overline{\langle t,\tau \rangle} \iint \alpha_{t^{-1}}(y(sr))\chi(st^{-1}r,r^{-1}t)f(r)\overline{\langle st^{-1}r,\tau \rangle} drds$$

$$= \iint \alpha_{t^{-1}}(y(sr))UW^*U^*\chi(s,r^{-1}t)f(r)\overline{\langle sr,\tau \rangle} drds$$

$$= \Pi_3^{\alpha}(y,f)W^*U^*\chi(\tau,t).$$

So $W^*U^*\Pi_2^{\alpha}(y, f)UW = \Pi_3^{\alpha}(y, f)$, and the lemma is proved.

3.7. REMARK. As we have used the same isomorphisms as in the duality theory of Takai [9], [10] we have that $B(A, G, \alpha) \subseteq M(\hat{G} \underset{\alpha}{\times} (G \underset{\alpha}{\times} A))$ by Lemma 2.2. The action θ on B(A, G) is transformed into the bidual action $\hat{\alpha} = \operatorname{ad} V$. If $y \in C^b(G, A)$, $f \in C_c(G)$ and $t \in G$ we have that

$$\hat{\alpha}_t \Pi_3^{\alpha}(y,f) = \Pi_3^{\alpha}(y_t,f) ,$$

where $y_t \in C^b(G, A)$ is defined by $y_t(s) = y(st)$ if $s \in G$.

It is now easily seen by the following lemma that $B(A, G, \alpha)$ contains $G \underset{\alpha}{\times} A$.

3.8. Lemma. If $a \in A$ and $f \in C_c(G)$ then

$$W^*U^*X^*\tilde{\Pi}_{\alpha}(m_{\alpha^{-1}y_a}\lambda_f)XUW = \Pi_{\hat{\alpha}}(\Pi_{\alpha}(a,f)).$$

PROOF. If $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \hat{G}$, $t \in G$, then $W^*U^*X^*\tilde{\Pi}_{\sigma}(m_{\sigma^{-1}\nu}\lambda_f)XUW\chi(\tau,t)$

$$= \Pi_3^{\alpha}(y_a, f)\chi(\tau, t) = \alpha_{t^{-1}}(a) \iint U\chi(s, r^{-1}t)f(r)\overline{\langle sr, \tau \rangle} drds$$
$$= \alpha_{t^{-1}}(a) \int \chi(\tau, r^{-1}t)f(r)\overline{\langle r, \tau \rangle} dr = \Pi_{\hat{\alpha}}(\Pi_{\alpha}(a, f))\chi(\tau, t) .$$

We will now prove that $G \underset{\alpha}{\times} A$ is the fixed point algebra in $B(A, G, \alpha)$ for the action $\hat{\alpha}$.

3.9. Lemma. If $y \in C^b(G, A)$, $f \in C_c(G)$ and $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$, then

$$\iiint \left\| \int \int \alpha_{t^{-1}}(y(s))U\chi(s,r^{-1}t)f(r)\overline{\langle sr,\tau\rangle} drds \right\|^2 dtd\tau \leq \|y\|_{\infty}^2 \|f\|_1^2 \|\chi\|^2.$$

Proof.

$$\iiint \int \alpha_{t^{-1}}(y(s))U\chi(s, r^{-1}t)f(r)\langle \overline{sr, \tau} \rangle drds \Big\|^{2} dtd\tau$$

$$= \iint \|(U^{*}m_{y_{t}}\lambda_{f}U\chi)(\tau, t)\|^{2} d\tau dt \quad (y_{t} \text{ is defined by } y_{t}(s) = \alpha_{t^{-1}}(y(s)) \quad (s \in G))$$

$$= \iint \|(U^{*}m_{y_{t}}\lambda_{f}U\chi)(\cdot, t)\|^{2} dt$$

$$= \iint \|(m_{y_{t}}\lambda_{f}\chi)(\cdot, t)\|^{2} dt$$

$$\leq \|y\|_{\infty}^{2} \|f\|_{1}^{2} \|\chi\|^{2}.$$

3.10. NOTATION. If $y \in C^b(G, A)$ and $f \in C_c(G)$ we denote by $\Pi_4^{\alpha}(y, f)$ the bounded linear operator on $L^2(G \times G, \mathcal{H})$ defined by

$$\Pi_{4}^{\alpha}(y,f)\chi(\tau,t) = \iint \alpha_{t^{-1}}(y(s))U\chi(s,r^{-1}t)\overline{\langle sr,\tau\rangle} drds$$

where $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \hat{G}$, $t \in G$. The preceeding lemma shows that this operator is well defined and that $\|\Pi_4^\alpha(y, f)\| \le \|y\|_{\infty} \|f\|_1$.

3.11. Lemma. If $y \in C_0(G,A)$ and $f \in C_c(G)$ then $\Pi_4^\alpha(y,f)$ belongs to $\widehat{G} \underset{\sim}{\times} G \underset{\sim}{\times} A$.

PROOF. If $y \in C_0(G, A)$, the y can be approximated (in the sup-norm) by elements of the form $\sum_{i=1}^n a_i \otimes \hat{h}_i$, where $a_i \in A$, $h_i \in L^1(\hat{G})$. By Lemma 3.9, $\Pi_4^{\alpha}(y, f)$ can be approximated by elements of the form $\sum_{i=1}^n \Pi_4^{\alpha}(a_i \otimes \hat{h}_i, f)$. If $a \in A$, $h \in L^1(\hat{G})$, $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \hat{G}$, $t \in G$ then we get

$$\Pi_{4}^{\alpha}(a \otimes \hat{h}, f)\chi(\tau, t) = \alpha_{t^{-1}}(a) \iint \hat{h}(s)U\chi(s, r^{-1}t)f(r)\overline{\langle sr, \tau \rangle} drds$$

$$= \alpha_{t^{-1}} \iint \chi(\sigma^{-1}\tau, r^{-1}t)h(\sigma) d\sigma \overline{\langle r, \tau \rangle} f(r) dr$$

$$= \Pi_{\hat{\alpha}}(\Pi_{\alpha}(a, f), h)\chi(\tau, t) .$$

So each $\Pi_4^{\alpha}(a_i \otimes \hat{h}_i, f)$ belongs to $\hat{G} \underset{\alpha}{\times} G \underset{\alpha}{\times} A$ and this proves the lemma.

3.12. Lemma. If $\tilde{x} \in B(A, G, \alpha)$ and $g \in L^1(\hat{G})$, then we have that $\tilde{x}\lambda_g$ and $\lambda_g\tilde{x}$ belong to $\hat{G} \stackrel{>}{\times} G \stackrel{>}{\times} A$.

PROOF. Take $y \in C^b(G, A)$, $f \in C_c(G)$ and $g \in L^1(\hat{G})$ so that $\hat{g} \in C_c(G)$. Denote by K_1 and K_2 the compact supports of f and \hat{g} . Let $\varepsilon > 0$ and take $\delta > 0$ so that $\delta < \varepsilon/\|\hat{g}\|_{\infty} \|f\|_1$.

By continuity of y, for each $r \in G$ there exists an open neighbourhood V_r of r so that $||y(sr)-y(sr')|| < \delta$ for $r' \in V_r$ and $s \in K_2$. By compactness of K_1 there exist $r_1, \ldots, r_n \in K_1$ such that $K_1 \subset \bigcup_{i=1}^n V_{r_i}$. Let $\{h_i\}_{i=1}^n$ be positive functions in $C_c(G)$ which form a partition of unity subordinated to the covering $\{V_{r_i}\}_{i=1}^n$. Denote by y_i the function from G to A defined by $y_i(s) = y(sr_i)$. By the preceding lemma we have that $\sum_{i=1}^n \prod_{j=1}^n \prod_{i=1}^n (y_i \hat{g}, h_i f)$ belongs to $\hat{G} \times G \times A$. If $\chi \in L^1(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ we get:

$$\begin{split} & \left\| \Pi_3^{\alpha}(y,f) \lambda_{\mathbf{g}} \chi - \sum_{i=1}^{n} \left\| \Pi_4^{\alpha}(y_i \hat{\mathbf{g}}, h_i f) \chi \right\|^2 \\ &= \iiint \left\| \iint \alpha_{t^{-1}} \left(y(sr) - \sum_{i=1}^{n} h_i(r) y_i(s) \right) \hat{\mathbf{g}}(s) U \chi(s, r^{-1}t) f(r) \overline{\langle sr, \tau \rangle} \, dr ds \right\|^2 dt d\tau \end{split}$$

$$\leq \|f\|_{1} \iiint_{K_{1}} \left\| \int \alpha_{t^{-1}} \left(y(sr) - \sum_{i=1}^{n} h_{i}(r)y_{i}(s) \right) \hat{g}(s)U\chi(s, r^{-1}t) \overline{\langle s, \tau \rangle} \, ds \right\|^{2} |f(r)| \, dr \, dt \, d\tau$$

$$\leq \|f\|_{1} \iint \sup_{s} \left\| \alpha_{t^{-1}} \left(y(sr) - \sum_{i=1}^{n} h_{i}(r)y_{i}(s) \right\|^{2} |g(s)|^{2} \int \|\chi(\tau, r^{-1}t)\|^{2} \, d\tau |f(r)| \, dr \, dt$$

$$\leq \delta^{2} \|f\|_{1}^{2} \|g\|_{\infty}^{2} \|\chi\|^{2} \leq \varepsilon^{2} \|\chi\|^{2} .$$

So $\Pi_3^{\alpha}(y, f)\lambda_g$ belongs to $\hat{G} \underset{\hat{\alpha}}{\times} G \underset{\alpha}{\times} A$. We have also

$$\lambda_{\mathbf{g}} \Pi_{3}^{\alpha}(y, f) \chi(\tau, t) = \iiint \alpha_{t^{-1}}(y(sr)) U \chi(s, r^{-1}t) f(r) g(\sigma) \overline{\langle sr, \sigma^{-1}\tau \rangle} dr ds d\sigma$$

$$= \iint \alpha_{t^{-1}}(y(sr)) \hat{g}(sr) U \chi(s, r^{-1}t) f(r) \overline{\langle sr, \tau \rangle} dr ds.$$

So we can use an analogous argument to prove that $\lambda_g \Pi_3^{\alpha}(y, f)$ belongs to $\hat{G} \not\simeq G \not\simeq A$.

As the functions $g \in L^1(\widehat{G})$ with $\widehat{g} \in C_c(G)$ are dense in $L^1(\widehat{G})$ we have that $\Pi_3^{\alpha}(y, f)$ satisfies the statements of the lemma and as $B(A, G, \alpha)$ is generated by operators of the form $\Pi_3^{\alpha}(y, f)$ where $y \in C^b(G, A)$ and $f \in C_c(G)$, the lemma is proved.

- 3.13. LEMMA. If $y \in C^b(G, A)$ and $f \in C_c(G)$ then
- i) $\lambda_{\sigma}\Pi_3^{\alpha}(y, f)\lambda_{\sigma-1} = \Pi_3^{\alpha}(y, f_{\sigma})$ for each $\sigma \in G$.
- ii) the map $\sigma \mapsto \lambda_{\sigma} \Pi_3^{\alpha}(y, f) \lambda_{\sigma-1}$ is (norm) continuous.

So for each $\tilde{x} \in B(A, G, \mathcal{H})$ the map $\sigma \mapsto \lambda_{\sigma} \tilde{x} \lambda_{\sigma-1}$ is norm continuous.

PROOF. It suffices to prove the first statement. So take $\chi \in L^2(\hat{G} \times G, \mathcal{H})$ so that $U\chi \in C_c(G \times G, \mathcal{H})$ and $\tau \in \hat{G}$, $t \in G$. Then we get

$$\lambda_{\sigma}\Pi_{\alpha}(y,f)\lambda_{\sigma-1}\chi(\tau,t) = \iint \alpha_{t^{-1}}(y(sr))U\lambda_{\sigma-1}\chi(s,r^{-1}t)f(r)\overline{\langle sr,\sigma^{-1}\tau\rangle} drds$$

$$= \iint \alpha_{t^{-1}}(y(sr))U\chi(s,r^{-1}t)\langle r,\sigma\rangle f(r)\overline{\langle sr,\tau\rangle} drds$$

$$= \Pi_{3}^{\alpha}(y,f_{\sigma})\chi(\tau,t).$$

3.14. Lemma. $G \underset{\alpha}{\times} A$ is the fixed point algebra in $B(A, G, \alpha)$ for the action \hat{a} .

PROOF. If $[B, G, \beta]$ is a C*-dynamical system, then M. B. Landstad [8, Theorem 4] proved a theorem which characterizes the C*-algebra B in the

multiplier algebra of the crossed product by the following three conditions: $\tilde{x} \in M(G \times_{\tilde{g}} B)$ belongs to B if and only if:

- i) $\tilde{x}\lambda_f$ and $\lambda_f\tilde{x}$ belong to $G \times B$ for $f \in L^1(G)$,
- ii) $s \mapsto \lambda_s \tilde{x} \lambda_{s^{-1}}$ is (norm) continuous,
- iii) $\hat{\beta}_{\sigma}(\tilde{x}) = \tilde{x}$ for all $\sigma \in \hat{G}$.

We can apply the theorem on the dual system $[G \times_{\alpha} A, \hat{G}, \hat{\alpha}]$. The lemma follows then from 3.12 and 3.13.

We then have our main theorem

- 3.15. **THEOREM.**
- i) $G \times A$ is the fixed point algebra in B(A, G) for the action θ .
- ii) $G \underset{\alpha}{\times} A$ is the fixed point algebra in $B_u(A, G)$ for the action θ .

PROOF. The first statement follows from the preceding lemma, Remark 3.7 and Lemma 3.8. As $B_{\mu}(A, G)$ is contained in B(A, G) and $G \underset{\alpha}{\times} A$ is contained in $B_{\mu}(A, G)$ the second statement follows from the first one.

3.16. REMARKS.

- i) If G is compact we get the known fixed point theorem of Landstad-Takai [8], [10] and Wassermann [14].
- ii) Although Theorem 3.15 holds with both the C*-algebras B(A, G) and $B_u(A, G)$, the C*-algebra $B_u(A, G)$ is not nicely transformed by the isomorphisms used in this section. This is due to the fact that the isomorphism $y \mapsto \alpha y^{-1}$ (Lemma 3.4) of $C^b(G, A)$ does not restrict to an isomorphism of $C^b_u(G, A)$. This can be seen from the same example as in Remark 2.7(iii).

We end this section by showing that $B_{\mu}(A,G)$ it self is a crossed product.

3.17. Proposition. $B_u(A,G)$ is isomorphic to $G \underset{\lambda}{\times} C_u^b(G,A)$.

PROOF. We represent $B_{\mu}(A, G)$ faithfully on $L^{2}(G \times G, \mathcal{H})$ by defining

$$m_y \lambda_{\mathsf{g}} \chi(s,t) = y(t) \int \chi(s,r^{-1}t) g(r) dr ,$$

where $y \in C^b_u(G, A)$, $g \in C_c(G)$ $\chi \in L^2(G \times G, \mathcal{H})$ and $s, t \in G$. Then

$$X * m_y \lambda_g X \chi(s,t) = y(st) \int X \chi(s,r^{-1}st)g(r) dr$$
$$= (\lambda_{t^{-1}}y)(s) \int \chi(s,r^{-1}t)g(r) dr$$

$$= \Pi_{\lambda}(y,g)\chi(s,t)$$
.

So
$$X * B_u(A, G)X = G \underset{\lambda}{\times} C_u^b(G, A)$$
.

3.18. REMARK. There is a class of C*-dynamical systems (A, G, α) for which the crossed product $G \underset{\alpha}{\times} A$ is contained in $A \otimes B_u(G, \mathbb{C})$. For these C*-dynamical systems the analogy to the W*-case is alsmost complete. This class of C*-dynamical systems is treated in [6].

I am very greatful to the referee for suggestions on the proofs of Lemmas 2.2 and 3.9 and on Remark 3.18.

REFERENCES

- C. A. Akeman, G. K. Pedersen, and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal. 13 (1973), 277-301.
- R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99.
- 3. T. Digernes, Poids dual sur un produit croisé C. R. Acad. Sci. Paris, Sér. A 278 (1974), 937-940.
- 4. T. Digernes, Duality for weights on covariant systems and its applications, Thesis. University of California at Los Angeles, 1975.
- U. Haagerup, On the dual weights for crossed products of Von Neumann algebras I, II Math. Scand. 43 (1978), 99-118; 119-140.
- G. Henrard, Duality and a fixed point theorem for almost periodic C*-crossed products, preprint, Leuven, 1983.
- E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, I, II (Grundlehren Math. Wiss. 115, 152) Springer-Verlag, Berlin - Heidelberg - New York, 1963, 1970.
- M. B. Landstad, Duality theory of covariant systems, Trans. Amer. Math. Soc. 248 (1979), 223– 267.
- G. K. Pedersen, C*-algebras and their automorphism groups (London Math. Soc. Monographs 14), Academic Press, London, New York, San Francisco, 1979.
- 10. H. Takai, On a duality for crossed products of C*-algebras, J. Funct. Anal. 19 (1975), 25-39.
- M. Takesaki, Duality for crossed products and the structure of Von Neumann algebras of type III, Acta Math. 131 (1973), 249-310.
- M. Takesaki, Theory of operator-algebras, I, Springer-Verlag, Berlin Heidelberg New York, 1979.
- 13. A. van Daele, Continuous crossed products and type III Von Neumann algebras, (London Math. Soc. Lecture Note Ser. 31), Cambridge University Press, Cambridge, 1978.
- 14. A. J. Wassermann, Automorphic actions of compact groups on operator algebras, Thesis, University of Pennsylvania, 1981.

KATHOLIEKE UNIVERSITEIT LEUVEN DEPARTEMENT OF MATHEMATICS CELESTIJNENLAAN 200 B B-3030 HEVERLEE BELGIUM