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A FIXED POINT THEOREM FOR
C*-CROSSED PRODUCTS
WITH AN ABELIAN GROUP

GUY HENRARD

Abstract.

Let G be an abelian group and [4, G, «] a C*-dynamical system. We define a
C*-algebra B,(4, G) (by giving generators), independent of the action «, and an
action 6 of G on B,(4,G) so that the C*-crossed product G x 4 is the fixed
point algebra in B,(4, G) for the action 6.

Introduction.

Let (#,G,a) be a W*-dynamical system. It was proved by M. Takesaki
[11], generalized or proved in another way by T. Digernes [3, 4], U. Haagerup
[5] and A. Van Daele [13] that the W*-crossed product G x .# is the fixed
point algebra in .# ® B(L?(G)) for the action § =a®ad 4, where B(L?(G)) is the
Von Neumann algebra of bounded linear operators on the Hilbert space L2(G)
and 1 is the right regular representation of G on L?(G). In the case of abelian
groups this fixed point theorem can be seen as a consequence of the following
two theorems:

1) A is isomorphic to the fixed point algebra of the W*-crossed product
G x # for the dual action &, [9], [11], [13].

2) The duality theorem: G X G x A is isomorphic to #®B (L*(G)), where G
is the dual group of G, [9], [11], [13].

If [4,G,a] is a C*-dynamical system, then the duality theorem of Takai is
available [10]. However a fixed point theorem for C*-crossed products is not
obtained in this way as, unless G is discrete, the C*-algebra A is not imbedded
in the C*-crossed product G x A. When G is compact (G is discrete), G xAis
the fixed point algebra in A®X (L*(G)) for the action §=a®ad A, where
X (L*(G)) is the C*-algebra of compact operators on L2(G). This is a
consequnce of the duality theorem of Takai and a theorem of Landstad [8]. So,
for compact groups the analogy to the W*-case is complete. For non-abelian
compact groups this fixed point theorem is proved by A. J. Wassermann [14].
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If [4, G,«] is a C*-dynamical system with an abelian group G we define a
C"‘-algebra B(A,G,o) so that GxAcB(A4,G, a) MG X G x A), where
MG X G x A) is the multiplier algebra of the double crossed product G X GxA
8], [9] We prove that B(A4, G, ) admits the bidual actlon % and that G X A is
the fixed point algebra in B(A4,G,a) for the action & By using the same
isomorphisms as in the duality theory of Takai, B(4, G, a) is transformed to an
algebra, B(A4, G), independent of a. In this way we get a fixed point theorem for
the C*-crossed product G x A. The action 6 on B(4,G) is the transformed
action of & by the isomorphisms mentioned above. This action is in general not
continuous on B(4, G) but for uniformly continuous C*-dynamical systems [9,
8.5] we can define a C*-subalgebra B,(A4,G) of B(4,G) on which 6 is
continuous. If G is compact the theorem coincides with the known theorem of
Landstad, Takai and Wasserman. Unless G is compact the C*-algebras B(4, G)
and B, (4, G) are not tensorproducts of 4 with an operator algebra on L?(G);
so in general this fixed point theorem has very little analogy to the Von
Neumann case. Therefore, those C*-dynamical systems for which analogy is
almost complete will be described in a forthcoming paper.

For the theory of C*-algebras and their crossed products we refer to the
book of G. K. Pedersen [9]; for the abstract harmonic analysis we refer to the
books of E. Hewitt and K. A. Ross [7].

I wish to express my gratitude to my supervisor Alfons Van Daele for giving
both the idea of this paper and many suggestions. I wish also to thank Dorte
Olesen and Gert K. Pedersen for their warm hospitality during my visit, where
I had a chance to have some discussions on the subject. Finally I thank my
colleagues at the Mathematics Institute of Leuven for their interest.

1. Notation and preliminaries.

Throughout this paper G will denote a locally compact abelian group and G
its dual group. If 4 is a C*-algebra we denote by C,(G, 4), C,(G, A), C%(G, A),
C?(G, A) the sets of continuous functions from G to A4, with compact support,
vanishing at infinity, bounded uniformly continuous, bounded. If # is a
Hilbert space we denote by L?(G, #)=# ® L?(G) the Hilbert space of square
integrable functions from G to #. If 4 is a C*-algebra of operators on the
Hilbert space »# and y is in C®(G, A) we denote by m, the operator on L*(G, #)
defined by m,£(t)=y(6)¢(t), where £ € L*(G,#) and t € G. Then, lmyll =yl
where ||y||,, is the sup-norm of y. We denote by A the left regular representation
of G on L%*(G,#): At(t)=E(s™'t) where & e L%(G,#) and s,t € G. The
representation A induces a representation of L!(G) on L*(G, #) which is also
denoted by
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A AL = Jé(s"t)f(s)ds

where fe L'(G). 1 is defined by (X,£)(s)=¢(st). We denote by V the unitary
representation on G on L%(G, #) defined by V,&()=<t,0)&(t) where o € G,
¢ e L*(G,#),t € G and {t,0) is the image of ¢ by the character ¢. If f € L' (G)
and o € G, we denote by f, the function in L!(G), so that f,(s)={s,a) f(5),
where s € G. If u is a bounded measure on G, we denote by ji the (inverse)
Fourier transform of

i o) = J(t, o) du(t)

where ¢ € G.

An action o of G on a C*-algebra 4 is a homomorphism of G into the group
of automorphisms of 4, Aut A. The action a is continuous if for each a € A4 the
map s — ag(a) is continuous; a is uniformly continuous if the continuity is
uniformly on the unit ball of A. A triple [4, G, o] of a C*-algebra 4, a locally
compact group G and a continuous action a of G on A is called a C*-
dynamical system [9].

Let [4, G,a] be a C*-dynamical system and s# a Hilbert space so that A acts
non-degenerately on 3. Denote by II, the representation on L%(G,#) of
C.(G, A) with the L'(G, A)-norm defined by

n,(»e@) = ja,—x(y(s))é(s“t)ds

where y € C.(G, A), ¢ € L2(G,#) and t € G. If a € A and f € C,(G) we denote
II,(a, f) instead of IT,(a® f). It is known that if G is amenable (abelian groups
are) the C*-crossed product Gx A is isomorphic to the C*-algebra of
operators on L?(G, ) generated by {IT,(y) | y € C.(G,A)} [9],[10]. Ifa € A,
we denote by IT,(a) the operator on L?(G,#) defined by:

M, (a)S(t) = a,-+(a)E(?)

where ¢ € L2(G, ) and t € G. II, is a faithful representation of A into the
multiplier algebra of G x 4, denoted by M (G x A4) [1], [8], [9]. The action of G
on G x A defined by ad V is called the dual action and denoted by a.

In the following sections [4, G, a] will be a C*-dynamical system and 5 a
Hilbert space so that A acts non-degenerately on 3.

2. The C*-algebras B(A, G) and B,(4, G).
2.1. DeriNiTiON. We define the C*-algebra B(4,G) as the C*-algebra of -
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operators on L?(G, #) generated by operators mA, where y € C*(G, A) and
f€ C.(G). We denote by B,(A4, G) the C*-subalgebra generated by operators
m,A, where y € C3(G, A) and f e C,(G).

We first state a relation between the defined C*-algebras and A ® X" (L%(G)).

2.2. LEMMA.

A® X (L%(G)) < B,(A,G) < B(4,G) = M(A® X (L*(G)).

Proor. If a € A we denote by y, the constant function a from G to A. If
/.8 € C.(G), then a®mA,=m, ;A belongs to B,(A4,G). As AQ K (L*(G)) is
generated by elements of the form a®m A,, the first inclusion is proved. The
second inclusion is clear by definition, so it suffices to prove the last one.

For y € C¥(G, A), a € A and f,g,h € C,(G) one has:

mA (a@mh,) = m,(a®@Amiy,) .

As Am, can be approximated by elements of the form 3¥;m A,
(f: & € C.(G)), we have that m A (a®m,4,) is approximated by elements of the
form ¥;m,A, (y; € C.(G, A)). As these elements belong to the closure of
(C.(G, 4).C*(G))=A® X (L*(G)) it is proved that m A, is a left multiplier of
A® X (L*(G)). In a similar way m A will be a right multiplier and as B(4, G) is
generated by operators mA, (y € C’(G, A), f € C.(G)), the lemma is proved.

We will now prove that the definition of the C*-algebras B(A,G) and
B,(A,G) is independent of the particular representation of A as an
operatoralgebra on a Hilbert space .

So let ¥, and 3¢, be Hilbert spaces and A, and A, C*-algebras acting non-
degenerately on 5, and 5, and suppose that ¢ is an isomorphism from
A, onto A, Denote by ¢®1 the isomorphism from A, ® X (L*(G)) onto
A,®@X (LX(G)) so that (p®1)@®T)=¢@@)R®T where ae A and
Te X (L*(G)) [12, IV.4.22].

If B is a C*-algebra, the left strict topology on M (B) is the topology induced
by the maps x +— |xb| where x € M(B), b € B. The strict topology is the
topology induced by the maps x — || xb|| + ||bx| where x € M(B), b € B. It was
proved in [2] that M(B) is the strict completion of B. The following lemma is
well-known [2], [9, 3.12.3].

2.3. LEMMA. If X', and X, are Hilbert spaces and B, and B, C*-algebras
acting non-degenerately on X", and X", and if p is a surjective morphism from B,
onto B,, then, by defining p(x)=lim p(xu,) (the limit is taken in the weak
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operator topology) where x € M(B,) and {u,) is an approximate unit in B,, p
becomes a morphism from M (B,) into M (B,). Furthermore p is continuous for the
left strict and the strict topology. If p is an isomorphism, then also p.

We denote by @ the extension of @®1 to an isomorphism from
M(A,® X (L*(G))) onto M(A4,® X (L*(G))).

2.4. PROPOSITION. @ is an isomorphism from B(A,, G) (B,(A4,, G)) onto B(A,,G)
(B.(42,G)) so that g(mA)=m,, A, where ye C(G,4) (Ci(G,A) and
fe C.(G).

Proor. Take y € C*(G, A) and f e C.(G). If {T,} is an approximate unit in
A, ® X (L*(G)), then m A, T, converges to m,A, in the left strict topology on
M(A,® X (L*(G))); so ¢(m,A,T,) converges to @(m,A) in the left strict
topology on M (4, ® X (L*(G))) (Lemma 2.3). As (¢ ® 1)(T,) is an approximate
unit in A, ® X (L?(G)) we have that m,,,A,(¢ ® 1)(T;) converges to m,, A, in
the left strict topology on M(A4,® X (L*(G))). So it suffices to prove that for
Te A® X' L*(G))

$mAT) = my A (p@®1)(T) .

If Tis of the form a®@m,A,, where a € A, g,h € C.(G), then by Lemma 2.2 we
know that for each £¢>0 there exists an element of the form Y?_, b;®S; with
b; € A, and S; € #"(L*(G)) so that

“mylf(a@mg/l,,)—é1 b,-®S,.” <e

and

mAlo@8mA) -5 p0)0S < 2.

As

<p(z bi®s.-) = 3 0h)®S;,

i=1

the proposition is proved.

Let 0 denote the action a®ad A of G on M(A® X (L*(G))). By an analogous
argument as in the preceeding proposition one can prove the following lemma

.2.5. LEMMA. For each t € G, the restriction of 6, to B(A,G) (B,(A4,G)) is an
automorphism of B(A,G) (B,(4,G)) so that
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0,(m,As8)(s) = o (y(st)A,E(s)
where y € C*(G, A) (C%(G, A)), f€ C.(G), & € L*(G, #) and s € G.

So we get the following proposition

2.6. PROPOSITION. 0 is an action of G on the C*-algebras B(A, G) and B, (A, G).

2.7. REMARKS.

i) If G is a compact group, then B,(A4,G)=B(4,G)=A® X (L*(G)). So in
the compact case we get the bidual system [4A® o (L?(G)), G, a®ad I].

ii) If a« is a uniformly continuous action (i.e. s+ o ') is continuous
uniformly on the unit ball of A), then it is easy to check that 6 is a continuous
action on B,(4, G) and so [B,(4,G),G,0] is a C*-dynamical system.

iii) In general, the action 8 is not continuous on B,(4, G) as can be seen from
the following example. Take G=R, R=C%(R) and « is translarion. Define for
each t e R the following function f, € C5(R):

0 if se (—o0,1-1/t]
fort=2, fi(s) = { t(s—1)+1 ifse[l1-1/, 1]
1 if s e [1, +00)

for t<2, f,=f,.

If t,,t; € R, then | f;, —f,lI<|t;—t;], so the function ¢+ f; belongs to

C:(R, C’(R)). However the function t — a,f,, is not continuous uniformly for
s € R.

3. A fixed point theorem for C*-crossed products.
3.1. NoTATION.
i) We denote by IT the faithful representation of A on L%(G, 5#) defined by

M@ = a,(aé(t),
where ae€ A, £ € L*(G,#) and t € G.

ii) If y € C*(G, A) and fe C.(G) and fe C.(G) we denote by IT(y, f) the
bounded linear operator on L? (G x G, ) defined by

o5 (y, N (s,t) = a,(y(1) fX(S,T_lf)f(r)d’
where y € L2(G x G, %) and s,t € G.

3.2. LeMMA. I1, induces an isomorphism ﬁ, from B(A, G) onto the C*-algebra
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of operators on L*(GxG,) generated by operators I1i(y, f) where
y € C*(G, A) and f € C.(G). Furthermore II,(m,A,)=IT5(y, f).

Proor. This follows from Proposition 2.4 and the identification of
L*(G(L*(G, #))) by L*(G x G, #).

3.3. NOTATION.

i) We denote by X the linear isometry of L?(G x G, #) onto L%(G x G, #)
defined by

Xx(s,0) = x(s,s7 '),

where y € L?(G x G, ) and s,t € G.
ii) If y € C®(G, A) we denote by a~! the function from G to A defined by

a”ly(s) = ag-1(y(9)

where s € G. Clearly a™ 'y e C%(G, A).
iii) If y € Cb(G, A) and f € C.(G) we denote by I15(y, f) the bounded linear
operator on L%(G x G, #) defined by

5y, f)x(s,t) = a,-1(y(ts)) ‘[‘X(S,"_lt)f(r)dr ,
where y € L2(G x G, #) and s,t € G.

3.4. LEMMA. X*ﬁa(B(A, G))X is the C*-algebra of operators on L*(G x G, #)
generated by operators IT5(y, ), where y € C*(G, A) and f € C.(G).

Proor. Take y € C¥(G, A), fe€ C.(G), x € L*(G x G, #), and s,t € G. Then

X*II5 (™ y, NXx(s,1)

a (o™ ty(ts) f Xy(s,r~tst)f(r)dr

-1 (y(ts)) Jx(s,r_ ' f(r)dr

5 (y, fHx(s,t) .

So X*IT3 (e~ 'y, f)X =IT%(y, f) and as y +— a~ 'y is an isomorphism of C*(G, A)
the lemma is proved.

3.5. NoTaTION. i) We denote by U the linear isometry of L2(G x G, 5#) onto
L*(G x G, ) defined by .

Ux(s,1) = fx(t,th,T) dr,

Math. Scand. 54 — 3
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where y € LY(G x G, #)NL*(G x G, #) and s,t € G.
ii) We denote by W the linear isometry from L?(G x G, #) onto L*(G
x G, ) defined by

Wy(t,t) = {t,1ox(z,0),

where y € L3(GxG,#) and 1€ G, t € G.
iii) If y € C®(G, A) and f e C(G) we denote by IT4(y, f) the bounded linear
operator on L?(G x G, #) defined by

m3(y, Nx(z.0) = H“:-l(Y(Sr))Ux(s,f‘t)f(r)<;,_f> drds ,

where y € L2(G x G, #) so that Uy € C.(Gx G, #) and 7 € G, t € G. This is
well-defined as can be seen from the next lemma; also || II5(y, /I S 1yl fll1-

(iv) We denote by B(A4,G,«) the C*-algebra of operators on L*(G x G, #)
generated by operators I15(y, f) where y € c?(G, A) and f e C,(G).

3.6. LeMMA. If y € C*(G, A) and f € C,(G) then

W*U*I5(y, NUW = 1I5(y, f) .
So
W*U*X*IT,(B(4,G)XUW = B(A,G,a) .

Proor. Take y € C*(G, A), fe C.(G), x € C.(GxG,#)and 1 € G, t € G. We
get

I

WHU*IT5(y, (1) = {t,7) JJ“:-!(Y(tS))x(S,r"t)f(r)<s,T> drds

e H“r"(}’(sr))x(st"r,"’t)f(r)<st"r,r> drds

= ﬂ‘ -1 (Y)Y UW*U*x (s, r ™) f (r)<sr, 1) drds

30, NW*U*x(a,1) .
So W*U*II5(y, )UW=1II5(y, f), and the lemma is proved.

3.7. REMARK. As we have used the same isomorphisms as in the duality
theory of Takai [9], [10] we have that B(4,G,a)c M(G x (G x A)) by Lemma
2.2. The action 6 on B(A,G) is transformed into the bidual actlon d=adV.
If y e C°(G, A), fe C.(G) and t € G we have that
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&115(y, f) = M5(y, f)
where y, € C*(G, A) is defined by y,(s)=y(st) if s € G.

It is now easily seen by the following lemma that B(4, G, «) contains G % A.
3.8. LEMMA. If a € A and f € C.(G) then

WHU*X*IT, (my-1, A)XUW = IT,(I1,(a, /).

ProoF. If y € L%(G x G, #) so that Uy € C.(Gx G, #)and 7 € G, t € G, then
W*U*X*T,(m,-1, A)X UWy(z,1)

m5(ys Nx(z,0) = o-1(a) H Ux(s,r™'0)f (n)<sr, 7> drds

= ,-1(a) jx(t,r"t)f(rKr,O dr = IT(IT,(a, /)x(z.0) -

We will now prove that G x 4 is the fixed point algebra in B(4, G, a) for the
action 4.

39. LemMa. If ye C%G,A), fe C.(G) and ye L*(GxG,#) so that
Uy € C.(G x G, i), then

ﬂ M - (V) Uxls,r 0 f () <sr, 7> drds

ProoFr.
n
o ﬂ

- j |(U*m, AU, 01 dedt (v, is defined by ,)=0+(¥(6) (s € G)

2
dedr < YIS £ 131202

H a1 (V) Ux(s, 70 f (<sr, T drds : dtdt

»

= | IU*m, AU, D3 de

»

= " (my,)"fX)( sy t)"% dt

o

= 3 P A P

IA

3.10. NortaTion. If y € Cb(G, 4) and fe C.(G) we denote by IT5(y, f) the
bounded linear operator on L%(G x G, #) defined by
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a My = 'U“r‘(Y(S))UX(S,"‘lt)(S",O drds

where y € L2(Gx G, #) so that Uy e C.(GxG,#) and 1€ G, t € G. The
preceeding lemma shows that this operator is well defined and that || I15(y, f)|
Syl S

3.11. LeMMA. If ye Cy(G,A) and fe C.(G) then II5(y,f) belongs to
GxGxA.

Proor. If y € Cy(G, A), the y can be approximated (in the sup-norm) by
elements of the form Y'_, a,®h, where a; € A, h; € L'(G). By Lemma 3.9,
IT%(y, f) can be approximated by elements of the form Y7, IT3(a;,®h,, f). If
ae A, he L'(G),x € LAGxG,#)sothat Uy e C.(GxG,#)andt€ G, te G
then we get

5@®h, (1)

o,-1(a) JJE(S)Ux(s, r ) f (r)(sr,t) drds

I

-1 fjx(o"r, r='th(e)dolr,t> f(r)dr

H&(”a(aa f)’ h)X(‘l-’ t) .
So each IT%(a;®Hh;, f) belongs to G X G x A and this proves the lemma.

3.12. LeMMa. If % € B(A,G,a) and g € L'(G), then we have that XA, and A%
belong to G xGxA

Proor. Take y € C*(G, A), f € C.(G) and g € L*(G) so that § € C.(G). Denote
by K, and K, the compact supports of fand §. Let >0 and take 6 >0 so that
<e/Iglol fNs.

By continuity of y, for each r € G there exists an open neighbourhood V, of r
so that ||y(sr)—y(sr')|| <d for ¥ € V, and s € K,. By compactness of K, there
exist ry,...,r, € K, such that K, cUj_, V,. Let {h;}_, be positive functions in
C.(G) which form a partition of unity subordinated to the covering {V,}i_,.
Denote by y; the function from G to A defined by y;(s)=y(sr;). By the
preceeding lemma we have that Y7_, IT3(y,8, h;f) belongs to G xGxA If
x € LY(G x G, #) so that Uy € C,(G x G, #) we get:

2

50y, A — _Zl I3 (yig, hif )1

= J‘”U‘J‘“t‘(}’(sr)“_g hi(")Ys(S))Q(S)Ux(s,r"t)f(r)(sr,r) drds 2dtdt
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= AN fﬁxl
Ilflllﬂsgp

< S2fIFNghZNxl® = lxl? .

So M5(y, f)4, belongs to G xGxA.
We have also

2

|f () drdtdr

fa:—(y(sr)— 5 hi(r)yi(s))g(swx(s,r"t)Zs,T>ds
i=1

IIA

&t (Y(sr) - .Zl h;(r)y;(s)

2
lg(s)* j lx(z,r~'0)l1? el f (r)| drdt

AJI5(y, fx(t,t) = ija,-n(y(sr))Ux(s,r“t)f(r)g(a)(sr,a"t) drdsdc

= ﬁ -1 (y(sr)g(sHUx(s,r o) f (N)<sr, ) drds .

So we can use an analogous argument to prove that 4 I15(y, f) belongs to
G§G§A

As the functions g € L!(G) with § € C.(G) are dense in L'(G) we have that
IT5(y, f) satisfies the statements of the lemma and as B(A4, G,a) is generated by
operators of the form I15(y, f) where y € C®(G, A) and f € C,(G), the lemma is
proved.

3.13. LemMa. If y € Cb(G, A) and f € C.(G) then

1) )'ong(ya f)}‘a—l =H°3'(y, fa) for eaCh o€ G
ii) the map o — A 015(y, f)A,_, is (norm) continuous.

So for each % € B(A,G, #) the map o — A,XA,_, is norm continuous.

ProoF. It suffices to prove the first statement. So take y € L2(G x G, #) so
that Uy € C.(Gx G, #) and 7 € G, t € G. Then we get

A‘ana(y’ f))'a— IX(T9 t) = J:[ at“(y(sr))U)'a— 1X(S’ r- ‘t)f(r)<sr’ o lt> drds

= J‘J‘at"(y(sr»UX(s’r_lt)<r7 a)f(r)(sr,'c) drds
= II3(y, f)x(%,1) .
3.14. LeMMA. G X A is the fixed point algebra in B(A,G,a) for the action &

Proor. If [B,G,f] is a C*-dynamical system, then M. B. Landstad [8,
Theorem 4] proved a theorem which characterizes the C*-algebra B in the
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multiplier algebra of the crossed product by the following three conditions:
xe MG X B) belongs to B if and only if:

i) XA, and A X belong to G x B for fe L*(G),
ii) s — AXA;-1 is (norm) continuous,
iii) B,(X)=X for all ¢ € G.
We can apply the theorem on the dual system [G x A, G, &]. The lemma follows
then from 3.12 and 3.13.
We then have our main theorem

3.15. THEOREM.
i) G x A is the fixed point algebra in B(A,G) for the action 6.
ii) Gx A is the fixed point algebra in B,(A,G) for the action 6.

Proor. The first statement follows from the preceeding lemma, Remark 3.7
and Lemma 3.8. As B,(4, G) is contained in B(4,G) and G x A is contained in
B,(A, G) the second statement follows from the first one.

3.16. REMARKS.

i) If G is compact we get the known fixed point theorem of Landstad-Takai
[8], [10] and Wassermann [14].

ii) Although Theorem 3.15 holds with both the C*-algebras B(4,G) and
B,(A,G), the C*-algebra B,(A,G) is not nicely transformed by the
isomorphisms used in this section. This is due to the fact that the isomorphism
y > ay”! (Lemma 3.4) of C*(G, A) does not restrict to an isomorphism of
C%(G, A). This can be seen from the same example as in Remark 2.7 (iii).

We end this section by showing that B, (A4, G) it self is a crossed product.

3.17. ProposITION. B,(A4, G) is isomorphic to G x C¥(G, A).

Proor. We represent B,(4,G) faithfully on L%(G x G, #) by defining

mAx(s,t) = y(t) fx(s, rolog(rdr,
where y € C%(G, A), g € C.(G) x € L*(G x G, )#) and s,t € G. Then

X*mA X x(s,t)

I

y(st) J Xyx(s,r~tst)g(r)dr

(A-1y)(s) fx(s,r' g (r)dr
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= Ha(y,g)X(S,t) .
So X*B,(4,G)X =G x C(G, A).

3.18. REMARK. There is a class of C*-dynamical systems (4, G, «) for which
the crossed product Gx A is contained in A®B,(G,C). For these C*-
dynamical systems the analogy to the W*-case is alsmost complete. This class
of C*-dynamical systems is treated in [6].

I am very greatful to the referee for suggestions on the proofs of Lemmas
2.2 and 3.9 and on Remark 3.18.

REFERENCES

1. C. A. Akeman, G. K. Pedersen, and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal.
13 (1973), 277-301.
2. R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132
(1968), 79-99.
. T. Digernes, Poids dual sur un produit croisé C. R. Acad. Sci. Paris, Sér. A 278 (1974), 937-940.
. T. Digernes, Duality for weights on covariant systems and its applications, Thesis. University of
California at Los Angeles, 1975.
S. U. Haagerup, On the dual weights for crossed products of Von Neumann algebras 1, 11 Math.
Scand. 43 (1978), 99-118; 119-140.
6. G. Henrard, Duality and a fixed point theorem for almost periodic C*-crossed products, preprint,
Leuven, 1983.
7. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, 1, Il (Grundlehren Math. Wiss. 115,
152) Springer-Verlag, Berlin - Heidelberg - New York, 1963, 1970.
8. M. B. Landstad, Duality theory of covariant systems, Trans. Amer. Math. Soc. 248 (1979), 223-
267.
9. G. K. Pedersen, C*-algebras and their automorphism groups (London Math. Soc. Monographs
14), Academic Press, London, New York, San Francisco, 1979.
10. H. Takai, On a duality for crossed products of C*-algebras, J. Funct. Anal. 19 (1975), 25-39.
11. M. Takesaki, Duality for crossed products and the structure of Von Neumann algebras of type
III, Acta Math. 131 (1973), 249-310.
12. M. Takesaki, Theory of operator-algebras, 1, Springer-Verlag, Berlin - Heidelberg - New York,
1979.
13. A.van Daele, Continuous crossed products and type 111 Von Neumann algebras, (London Math.
Soc. Lecture Note Ser. 31), Cambridge University Press, Cambridge, 1978.
14. A. ). Wassermann, Automorphic actions of compact groups on operator algebras, Thesis,
University of Pennsylvania, 1981.

H W

KATHOLIEKE UNIVERSITEIT LEUVEN
DEPARTEMENT OF MATHEMATICS
CELESTIJNENLAAN 200 B *

B-3030 HEVERLEE

BELGIUM



