ON INTEGER-VALUED FOURIER-STIELTJES TRANSFORMS ON A LCA GROUP WITH A CERTAIN DIRECTION

HIROSHI YAMAGUCHI

1. Introduction.

For a locally compact Hausdorff space Ω , $M(\Omega)$ denotes the Banach space of complex-valued bounded regular measures on Ω with the total variation norm. Let G be a LCA group with the dual group \hat{G} . G_d is the group G with the discrete topology and m_G is the Haar measure of G. Let G be the measure algebra and "" denotes the Fourier-Stieltjes transform. We denote by G the set G we signify G by G by G we signify G by G whose Fourier-Stieltjes transforms are integer-valued.

In their proof of the Cohen Idempotent Theorem, Ito and Amemiya proved the following theorem.

THEOREM 1.1 (See [5].) Let μ be a measure in F(G). Then μ can be represented as follows:

$$\mu = \sum_{i=1}^n \sum_{i=1}^{l_i} n_{ij} \gamma_{ij} m_{H_i},$$

where $n_{ij} \in \mathbb{Z}$, $\gamma_i \in \widehat{G}$ and H_i are compact subgroups of G such that $\{\sum_{j=1}^{l_i} n_{ij} \gamma_{ij} m_{H_i}\}$ are mutually singular.

In his Semi-Idempotent Theorem, Kessler proved the following theorem.

THEOREM 1.2 (See [6].) Let G be a compact abelian group such that \hat{G} is ordered. Suppose $\hat{\mu} \in B(\hat{G})$ is integer-valued on $\{\gamma \in \hat{G}; \gamma > 0\}$. Then there exists a measure $v \in F(G)$ such that $\hat{v}(\gamma) = \hat{\mu}(\gamma)$ for $\gamma > 0$.

On the other hand, Svensson has recently obtained the following theorem.

Received December 28, 1981; in revised form May 20, 1982.

THEOREM 1.3 ([10, Theorem 3.3.1]). Let Γ be a LCA group and Ω a bounded open convex set in \mathbb{R}^n . Suppose $\hat{\mu} \in B(\mathbb{R}^n_d \times \Gamma)$ is integer-valued on $\Omega \times \Gamma$. Then there exists an integer-valued $\hat{\nu} \in B(\mathbb{R}^n_d \times \Gamma)$ such that $\hat{\nu}(\gamma) = \hat{\mu}(\gamma)$ on $\Omega \times \Gamma$.

In this paper we prove that Svensson's theorem is satisfied for a LCA group G such that there exists a continuous homomorphism from \hat{G} into R^n . We first state our result in this paper.

MAIN THEOREM. Let G be a LCA group and ψ a nontrivial continuous homomorphism from \hat{G} into \mathbb{R}^n . Let Ω be a bounded open convex set in \mathbb{R}^n . Suppose $\hat{\mu} \in B(\hat{G})$ is integer-valued on $\psi^{-1}(\Omega)$. Then there exists a measure $v \in F(G)$ such that $\hat{v}(y) = \hat{\mu}(y)$ on $\psi^{-1}(\Omega)$.

- LEMMA 1.4. Let G be a LCA group and ψ a nontrivial continuous homomorphism from \hat{G} into R^n . Let τ be an automorphism on \hat{G} , and let β be an automorphism on R^n . We put $\psi_* = \beta \circ \psi \circ \tau$. Then the following are equivalent:
- (I) For any bounded open convex set Ω' in \mathbb{R}^n and $\hat{\mu}' \in B(\hat{G})$ such that $\hat{\mu}'$ is integer-valued on $\psi_*^{-1}(\Omega')$, there exists an integer-valued $\hat{v}' \in B(\hat{G})$ such that $\hat{v}'(\gamma) = \hat{\mu}'(\gamma)$ on $\psi_*^{-1}(\Omega')$;
- (II) For any bounded open convex set Ω in \mathbb{R}^n and $\hat{\mu} \in B(\hat{G})$ such that $\hat{\mu}$ is integer-valued on $\psi^{-1}(\Omega)$, there exists an integer-valued $\hat{v} \in B(\hat{G})$ such that $\hat{v}(\gamma) = \hat{\mu}(\gamma)$ on $\psi^{-1}(\Omega)$.
- PROOF. (I) \Rightarrow (II): We note that $\psi^{-1}(\Omega) = (\beta \circ \psi)^{-1}(\beta(\Omega))$ and $\bullet \beta(\Omega)$ is a bounded open convex set in \mathbb{R}^n . We define $\hat{\mu}' \in B(\hat{G})$ by $\hat{\mu}' = \hat{\mu} \circ \tau$. Then $\hat{\mu}'$ is integer-valued on $(\beta \circ \psi \circ \tau)^{-1}(\beta(\Omega)) = \tau^{-1}(\psi^{-1}(\Omega))$. Hence, by the hypothesis, there exists an integer-valued $\hat{v}' \in B(G)$ such that

$$\hat{\mathbf{v}}'(\gamma) = \hat{\mu}'(\gamma)$$
 on $(\beta \circ \psi \circ \tau)^{-1}(\beta(\Omega))$.

We define $\hat{v} \in B(\hat{G})$ by $\hat{v} = \hat{v}' \circ \tau^{-1}$. Then \hat{v} is integer-valued, and for $\gamma \in \psi^{-1}(\Omega)$, we have

$$\hat{v}(\gamma) = \hat{v}'(\tau^{-1}(\gamma))
= \hat{\mu}'(\tau^{-1}(\gamma)) \qquad (\tau^{-1}(\gamma) \in (\beta \circ \psi \circ \tau)^{-1}(\beta(\Omega)))
= \hat{\mu}(\gamma) .$$

Thus (I) \Rightarrow (II) is proved. Since $\psi = \beta^{-1} \circ \psi_{\sharp} \circ \tau^{-1}$, (II) \Rightarrow (I) can be also proved as same as above. This completes the proof.

REMARK 1.5. Svensson proved in ([10, 4.2, p. 132]) the following:

Let Ω be a non-empty bounded open subset of \mathbb{R}^n whose closure $\overline{\Omega}$ in \mathbb{R}^n is non-convex. Then there exists $\hat{\mu} \in B(\mathbb{R}^n_d)$, integer-valued on Ω and such that $\hat{\mu}|_{\Omega} \neq \hat{\nu}|_{\Omega}$ for all integer-valued $\hat{\nu} \in B(\mathbb{R}^n_d)$.

2. Several lemmas.

Let e_k be an unit vector in \mathbb{R}^n such that $e_k = (0, \dots, 1, \dots, 0)$.

DEFINITION 2.1. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $e_k \in \psi(\hat{G})$ $(1 \le k \le n)$. Let χ_k be an element in \hat{G} such that $\psi(\chi_k) = e_k$. We define a discrete subgroup Λ of \hat{G} by

$$\Lambda = \{m_1\chi_1 + \ldots + m_n\chi_n; (m_1,\ldots,m_n) \in \mathbb{Z}^n\},$$

and we put $K = \Lambda^{\perp}$ (the annihilator of Λ).

The following lemma is due to [11].

LEMMA 2.2 ([11, Proposition 2.7]). $\{(\psi(\gamma), \gamma|_K); \gamma \in \hat{G}\}$ is a closed subgroup of $\mathbb{R}^n \oplus \hat{K}$ and topologically isomorphic to \hat{G} .

From above lemma, the following lemma is obtained.

LEMMA 2.3. If ker (ψ) is open $\{(\psi(\gamma), \gamma|_K); \gamma \in \hat{G}\}$ is an open subgroup of $\mathbb{R}^n_d \oplus \hat{K}$. In particular, \hat{G} is topologically isomorphic to an open subgroup $\{(\psi(\gamma), \gamma|_K); \gamma \in \hat{G}\}$ of $\mathbb{R}^n_d \oplus \hat{K}$.

PROOF. Since $\ker (\psi)$ is open, $\{\gamma|_K; \gamma \in \ker (\psi)\}$ is an open subgroup of \widehat{K} . Hence $\{(\psi(\gamma), \gamma|_K); \gamma \in \widehat{G}\}$ is an open subgroup of $\mathbf{R}_d^n \oplus \widehat{K}$. This completes the proof.

The following proposition is a special case of Main Theorem.

PROPOSITION 2.4. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_k $(1 \le k \le n)$. We assume that $\ker(\psi)$ is open. Let Ω be a bounded open convex set in \mathbb{R}^n . Suppose $\hat{\mu} \in B(\hat{G})$ is integervalued on $\psi^{-1}(\Omega)$. Then there exists a measure $v \in F(G)$ such that $\hat{v}(y) = \hat{\mu}(y)$ on $\psi^{-1}(\Omega)$.

PROOF. Let $\Gamma = \{ (\psi(\gamma), \gamma|_K); \gamma \in \hat{G} \}$. Then, by Lemma 2.3, $\hat{\mu}$ can be regarded as a function in $B(\Gamma)$. Since Γ is an open subgroup of $\mathbb{R}_d^n \oplus \hat{K}$, there exists $\hat{\xi}_u \in B(\mathbb{R}_d^n \oplus \hat{K})$ such that

$$\hat{\xi}_{\mu}(\gamma) = \begin{cases} \hat{\mu}(\gamma) & \text{for } y \in \Gamma \\ 0 & \text{for } \gamma \notin \Gamma \end{cases}.$$

Evidently $\hat{\xi}_{\mu}$ is integer-valued on $\Omega \times \hat{K}$. Hence, by Theorem 1.3, there exists an integer-valued $\hat{v}_0 \in B(R_d^n \oplus \hat{K})$ such that $\hat{v}_0(\sigma) = \hat{\xi}_{\mu}(\sigma)$ for $\sigma \in \Omega \times \hat{K}$. We define $\hat{v} \in B(\hat{G})$ by $\hat{v}(\gamma) = \hat{v}_0(\psi(\gamma), \gamma|_K)$. Then \hat{v} is integer-valued and $\hat{v}(\gamma) = \hat{\mu}(\gamma)$ on $\psi^{-1}(\Omega)$. This completes the proof.

We need the following two lemmas in order to prove Main Theorem.

LEMMA 2.5. Let Γ_i be proper subgroups of \mathbb{R}^m $(i=1,2,\ldots,l)$. Then, for any $x_i \in \mathbb{R}^m$, $n_i \in \mathbb{Z}$ and open set V in \mathbb{R}^m , we have

$$\sum_{i=1}^{l} n_i \chi_{(x_i + \Gamma_i)} \neq M \quad \text{on } V$$

for any M, where $\chi_{(x_i+\Gamma_i)}$ is the characteristic function of $x_i+\Gamma_i$.

PROOF. Suppose $\sum_{i=1}^{l} n_i \chi_{(x_i + \Gamma_i)} = M$ on V for some $M \in \mathbb{Z}$. Let H_i be the annihilator of Γ_i in \mathbb{R}^m , and we put $I = \{1 \le i \le l; \Gamma_i \text{ is dense in } \mathbb{R}^m\}$. Then, by ([10, Theorem 3.1.2, p. 126]), we have

$$\sum_{i=I} n_i x_i m_{H_i} = M \delta_0.$$

However, since Γ_i are proper subgroups of R^m , m_{H_i} are continuous measures (cf. [4, (24.23) Theorem, p. 384]). Hence (1) yields a contradiction, and the proof is complete.

LEMMA 2.6. Let F be a LCA group. Let E be an open coset in $R_d^k \oplus R^{m-k} \oplus F$ such that E is not open in $R^k \oplus R^{m-k} \oplus F$, where R_d^k is the group R^k with discrete topology. Then for each $u \in F$,

$$E_u = \{x \in \mathbb{R}^k \oplus \mathbb{R}^{m-k}; (x, u) \in E\}$$

is not open in $R^k \oplus R^{m-k}$ if $E_u \neq \emptyset$.

PROOF. Suppose there is $u \in F$ with $E_u \neq \emptyset$ such that E_u is open. Let x_0 be an element in $\mathbb{R}^k \oplus \mathbb{R}^{m-k}$ such that $(x_0, u) \in E$. Then, since E is open in $\mathbb{R}^k_d \oplus \mathbb{R}^{m-k} \oplus F$, there is an open neighborhood U of u in F such that $\{x_0\} \times U \subset E$. Then $\{x_0\} \times U + E_u \times \{u\} - E_u \times \{u\}$ is an open set in $\mathbb{R}^k \oplus \mathbb{R}^{m-k} \oplus F$, and it is contained in E because E is a coset. This contradicts the hypothesis that E is not open in $\mathbb{R}^k \oplus \mathbb{R}^{m-k} \oplus F$, and the proof is complete.

3. Proof of Main Theorem.

THEOREM 3.1. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $[\psi(\hat{G})]$ coincides with \mathbb{R}^n , where $[\psi(\hat{G})]$ is the subspace of \mathbb{R}^n generated by $\psi(\hat{G})$. Let Ω be a bounded open convex set in \mathbb{R}^n . Suppose $\hat{\mu} \in B(\hat{G})$ is integer-valued on $\psi^{-1}(\Omega)$. Then there exists an integer-valued $\hat{v} \in B(\hat{G})$ such that $\hat{v}(y) = \hat{\mu}(y)$ on $\psi^{-1}(\Omega)$.

PROOF. We prove the theorem by dividing two cases that ker (ψ) is open or not.

Case 1. Suppose ker (ψ) is open. By the hypothesis that $[\psi(\hat{G})]$ coincides with \mathbb{R}^n , there exists an automorphism β on \mathbb{R}^n such that $\beta \circ \psi(\hat{G})$ contains e_k $(1 \le k \le n)$. Hence, by Lemma 1.4 and Proposition 2.4, the theorems is obtained.

CASE 2. Suppose $\ker(\psi)$ is not open. By the structure theorem of LCA groups, we have $\hat{G} \cong \mathbb{R}^m \oplus F$, where m is a nonnegative integer and F is a LCA group which contains a compact open subgroup F_0 . Since $\ker(\psi)$ is not open, $\psi(\mathbb{R}^m) + \{0\}$. We put $k = \dim \psi(\mathbb{R}^m)$. Then $1 \le k \le \min(m, n)$, and there exist an automorphism τ on \hat{G} ($\cong \mathbb{R}^m \oplus F$) and an automorphism β on \mathbb{R}^n such that

$$\beta \circ \psi \circ \tau(x_1, \dots, x_k, \dots, x_m) = (x_1, \dots, x_k, 0, \dots, 0)$$
for $(x_1, \dots, x_k, \dots, x_m) \in \mathbb{R}^m$.

Hence, by Lemma 1.4, we may assume that ψ satisfies

$$\psi(x_1, ..., x_k, ..., x_m) = (x_1, ..., x_k, 0, ..., 0)$$
for $(x_1, ..., x_k, ..., x_m) \in \mathbb{R}^m$.

Let $\hat{G}_{\tau} = R_d^k \oplus R^{m-k} \oplus F$, and let G_{τ} be the dual group of \hat{G}_{τ} . Then $\psi \colon \hat{G}_{\tau} \mapsto R^n$ is a continuous homomorphism and ker (ψ) is open in \hat{G}_{τ} . Hence by Case 1 there is an integer-valued $\hat{v} \in B(\hat{G}_{\tau})$ such that $\hat{v} = \hat{\mu}$ on $\psi^{-1}(\Omega)$. Then v can be written as follows:

$$v = \sum_{i=1}^{l} \sum_{j=1}^{l_i} n_{ij} \gamma_{ij} m_{H_i} \quad (n_{ij} \in \mathbb{Z}, \gamma_{ij} \in \widehat{G}_{\mathfrak{c}}),$$

where H_i are compact subgroups of G_r . Let H_i^{\perp} be the annihilator of H_i in \hat{G}_r , let I_1 be the set of those i such that H_i^{\perp} is open in \hat{G} and let I_2 be the set of those i such that H_i^{\perp} is not open in \hat{G} .

CLAIM.
$$(\sum_{i \in I_2} \sum_{j=1}^{l_i} n_{ij} \gamma_{ij} m_{H_i})^{\hat{}} = 0$$
 on $\psi^{-1}(\Omega)$.

Suppose there exist a nonzero integer M and $\gamma_0 = (x_0, u_0) \in \psi^{-1}(\Omega)$ $(x_0 \in \mathbb{R}^k \oplus \mathbb{R}^{m-k}, u_0 \in F)$ such that $(\sum_{i \in I_2} \sum_{j=1}^{I_i} n_{ij} \gamma_{ij} m_{H_i}) (\gamma_0) = M$. Since $(\sum_{i \in I_2} \sum_{j=1}^{I_i} n_{ij} \gamma_{ij} m_{H_i})$ is integer-valued and continuous on the open set $\psi^{-1}(\Omega)$, there is an open neighborhood V of x_0 in $\mathbb{R}^k \oplus \mathbb{R}^{m-k}$ such that

(1)
$$\left(\sum_{i\in I}\sum_{j=1}^{l_i}n_{ij}\gamma_{ij}m_{H_i}\right)(x,u_0) = M \quad \text{for } x\in V.$$

We put $E_{ij} = \{x \in \mathbb{R}^k \oplus \mathbb{R}^{m-k}; (x, u_0) \in \gamma_{ij} + H_i^{\perp}\}$ and $I'_2 = \{i \in I_2; E_{ij} \neq \emptyset\}$. Then E_{ij} are cosets in $\mathbb{R}^k \oplus \mathbb{R}^{m-k}$, and it follows from (1) that

(2)
$$\sum_{i \in I'_j} \sum_{j=1}^{l_i} n_{ij} \chi_{E_{ij}}(x) = M \quad \text{for } x \in V.$$

By Lemma 2.6, if $i \in I_2$, E_{ij} are not open in $\mathbb{R}^k \oplus \mathbb{R}^{m-k}$, hence proper cosets in $\mathbb{R}^k \oplus \mathbb{R}^{m-k}$. Hence by Lemma 2.5 and (2) we have a contradiction. Thus Claim is obtained.

We put $\sigma = \sum_{i \in I_1} \sum_{j=1}^{I_i} n_{ij} \gamma_{ij} m_{H_i}$. Then $\sigma \in M(G)$ and $\hat{\sigma}$ is integer-valued. Moreover, by Claim, we get $\hat{\sigma} = \hat{\mu}$ on $\psi^{-1}(\Omega)$. This completes the proof.

COROLLARY 3.2 (Main Theorem). Let G be a LCA group and ψ a nontrivial continuous homomorphism from \hat{G} into \mathbb{R}^n . Let Ω be a bounded open convex set in \mathbb{R}^n . Suppose $\hat{\mu} \in B(\hat{G})$ is integer-valued on $\psi^{-1}(\Omega)$. Then there exists an integer-valued $\hat{\nu} \in B(\hat{G})$ such that $\hat{\nu} = \hat{\mu}$ on $\psi^{-1}(\Omega)$.

PROOF. Let $[\psi(\hat{G})]$ be the linear subspace of \mathbb{R}^n generated by $\psi(\hat{G})$. We put $k = \dim [\psi(\hat{G})]$. Then there exist independent vectors u_1, \ldots, u_k in $\psi(\hat{G})$. Hence there exists an automorphism β on \mathbb{R}^n such that $\beta(u_i) = e_i$ $(1 \le i \le k)$. Therefore, by Lemma 1.4, we may assume that ψ satisfies the following:

- $(1) \quad e_i \in \psi(\widehat{G}) \qquad (1 \leq i \leq k);$
- (2) $\psi(\hat{G}) \subset \mathbb{R}^k = \{(x_1, \dots, x_k, 0, \dots, 0) \in \mathbb{R}^n; x_i \in \mathbb{R} \ (1 \le i \le k)\}.$

By (1) and (2), we can regard ψ as a nontrivial continuous homomorphism from \hat{G} into \mathbb{R}^k such that $[\psi(\hat{G})] = \mathbb{R}^k$. We put $\Omega_k = \mathbb{R}^k \cap \Omega$. Then Ω_k is a bounded open convex set in \mathbb{R}^k and $\psi^{-1}(\Omega_k) = \psi^{-1}(\Omega)$. Hence, by Theorem 3.1, there exists an integer-valued $\hat{v} \in B(\hat{G})$ such that $\hat{v} = \hat{\mu}$ on $\psi^{-1}(\Omega)$. This completes the proof.

COROLLARY 3.3. Under the assumption of Main Theorem, we suppose that $\hat{\mu}(\gamma) = 1$ or 0 on $\psi^{-1}(\Omega)$. Then there exists an idempotent measure $v \in M(G)$ such that $\hat{v}(\gamma) = \hat{\mu}(\gamma)$ on $\psi^{-1}(\Omega)$.

PROOF. By Main Theorem, there exists an integer-valued $\hat{v}_0 \in B(\hat{G})$ such that $\hat{v}_0(\gamma) = \hat{\mu}(\gamma)$ on $\psi^{-1}(\Omega)$. By Theorem 1.1, $F = \{ \gamma \in \hat{G} : v_0(\gamma) = 1 \}$ belongs to the open coset ring of \hat{G} . Hence there exists an idempotent measure $v \in M(G)$ such that $\hat{v}(\gamma) = \chi_F(\gamma)$, where χ_F is the characteristic function of F. Since $F \supset \{ \gamma \in \psi^{-1}(\Omega) : \hat{\mu}(\gamma) = 1 \}$, v is the dsired one. This completes the proof.

REFERENCES

- P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 32 (1960), 191-212.
- C. F. Dunkl and D. E. Ramirez, Topics in harmonic analysis, Appleton-Century-Crofts, New York, 1971.
- C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis (Grundlehren Math. Wiss. 238), Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I: Structure of topological groups, integration theory, group representations (Grundlehren Math. Wiss. 115), Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- 5. T. Ito and I. Amemiya, A simple proof of a theorem of P. J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774-776.
- I. Kessler, Semi-idempotent measures on abelian groups, Bull. Amer. Math. Soc. 73 (1967), 258– 260.
- 7. L. Pigno, Transforms vanishing at infinity in a certain direction and semi-idempotent measures, Math. Scand. 41 (1977), 153-158.
- 8. L. Pigno and B. Smith, Semi-idempotent and semi-strongly continuous measures, preprint.
- 9. W. Rudin, Fourier analysis on groups, (Interscience Tracts in Pure and Applied Math. 12) Interscience Publishers, New York London, 1962.
- E. Svensson, On Fourier-Stieltjes transforms, integer-valued on a given set, Math. Scand. 44 (1979), 103-134.
- 11. H. Yamaguchi, An extension of a theorem of F. Forelli, Math. Scand. 52 (1983), 145-160.

DEPARTMENT OF MATHEMATICS JOSAI UNIVERSITY SAKADO, SAITAMA JAPAN