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SOME CONVEXITY QUESTIONS
ARISING IN STATISTICAL MECHANICS

R. B. ISRAEL and R. R. PHELPS
Abstract.

An abstract version of a mathematical model for the classical theory of
lattice gases leads quite naturally to the study of a class 2 of generalized
“pressure” functions, which are convex and -continuous on the Banach space
A(K) of affine real-valued continuous functions on a compact convex set K.
The differentiability properties of the members of 2, as well as the extremal
structure of the convex set £ itself, are investigated by means of the Fenchel
duality between the members of 2 and the members of a certain cone # of
lower semicontinuous convex functions on K. New results on the
differentiability of the physical pressure are obtained in this context.

1. Introduction.

An abstract version of a mathematical model used in statistical mechanics
consists of a compact metric space , an infinite Abelian group G of
homeomorphisms of © (isomorphic to the group of translations of the
n-dimensional lattice Z") and the space C(2) of continuous real-valued
functions on Q. We denote the group action by 7 (so for each x € G, ™ is a
homeomorphism of ) and we assume 1 is expansive, that is, there exists >0
such that w,w’ € Q and d(t*w, T"w’) ¢ for all x € G imply w=0'. If we let &
be the closed linear span in C(f2) of all functions of the form

fot*—f, x€G, feCQ),

then £ < C(Q)* consists of the G-invariant measures and we know from the
amenability of G that the weak* compact convex simplex K of invariant
probability measures is non-empty. The elements of C(2) are called
“interactions” and those in K are called “invariant states”. There are two

Received August 4, 1982.

The second named author wishes to acknowledge helpful conversations with Professor Isaac
Namioka. Research by the first named author was supported in part by Grant A-4015 from the
Natural Sciences and Engineering Research Council of Canada while visiting the Department of
Mathematics at Rutgers University.



134 R. B. ISRAEL AND R. R. PHELPS

related objects of study: one is the pressure, which (if finite) is a convex
continuous function P on C(Q), and the other is the mean entropy, which is a
bounded, nonnegative affine upper-semicontinuous function A on K (which is
not, in general, continuous). The pressure has a number of interesting and
special properties; letting q: C(Q) - C(Q)/Z denote the quotient map, one
has

(P1) P(f+r) = P(f)+r, feC(), reR.
(P2) ~ P(f) = P(O), f=s0.

(P3) P(f) = la(Nl, f20.

(P4) P(f+g = P(f) whenever ge &£ .

Further properties turn out to be consequences of these four; for instance,
[P(f)—-P@)I = I f—gll, P(f+8) < P(f)+P(g) and P(f) < P(g) if f<g,

all of which are immediate from Proposition 2.2. (Property (P3) is an
important one which seems not to have been noted explicitly.)

One of the central theorems in the subject is the variational principle,
which relates the pressure P and entropy h by

P(f) = sup{u(f)+hw) : peK}, [feC(Q).

A dual version of this is
h(g) = inf{P(f)—u(f) : feC(Q)}, nek.

In the cases most often studied by mathematical physicists, Q is the cartesian
product WZ' where W is a finite set, and 7 is the natural action (Tw),=w,_
These models are sometimes called “classical lattice gases”. In “quantum lattice
gases” the framework is somewhat different: C(Q) is replaced by the self-adjoint
elements of a certain non-abelian quasilocal C*-algebra &, and K consists of
the G-invariant states on /. All the properties of the pressure and the mean
entropy which we have mentioned may be extended to the case of quantum
lattice gases.

From a geometric point of view, perhaps the most remarkable theorem in
this subject is the following one, which is valid for both the classical and
quantum lattice gases.

1.1. THEOREM. The metrizable simplex K is a (the) Poulsen simplex, that is, its
extreme points (the ergodic states) are weak* dense in K. In fact, for each r € R,
those extreme points of K which are contained in {u € K: h(u)>r} are weak*
dense in this set.
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The fact that K is the Poulsen simplex appears to have been proved first by
Ruelle [11, p. 197] in the classical case. A proof of this for the quantum case is
given by Bratteli and Robinson [3, vol. I p. 398], who attribute it to Ruelle.
(See, also, the survey by Olsen [9].) The stronger assertion concerning the
density of extreme points in the “slices” defined by h was proved in [6, p. 94]. As
will be seen later, it contains a great deal of information about differentiability
of the pressure. We refer to [6] and the monographs by Ruelle [11, 12] for
detailed expositions of the material touched on this section.

2. Geometric reformulation.

In what follows, we will put these matters in the setting of compact convex
sets K and the associated Banach spaces 4 (K) of affine continuous real valued
functions on K (with supremum norm). (See [1], [2] or [10] for relevant
background material.) The pressure will then be seen to be just one member of
a class 2 of functions on A(K) satisfying properties (P1)—(P3). That this is a
reasonable approach arises from two facts. First, the Banach space of
interactions studied in [6] and [12] admits a continuous linear mapping onto
C(Q) (see [12, p. 37]) in such a way that the physical pressure as originally
defined is constant on the kernel of this map [12, p. 39]; this allows one to
consider it as a function on C(Q). Second, as we have noted, the pressure can
actually be considered as a function on C(Q)/%, and the latter is linearly
isometric with A(K) (below). Thus, any differentiability properties we obtain
for the elements of 2 are automatically valid for the physical pressure.

2.1. ProposITION. The space C(Q)/% is linearly isometric with A(K), where K
is the simplex of G-invariant probability measures on Q.

Proor. Given an element of C(Q)/.%, that is, an element of the form q(f)

where fe C(Q), let f~ € A(K) be defined by f (W=u(f), nue KL
Clearly,

/71 = sup{lp(Nl : pe K} < sup{lu(N) : we £ ul <1}
lg(OI -

To establish the reverse inequality, given g(f) choose, by the Hahn-Banach
theorem, L e (C(2)/£)* such that L(g(f)=Ilq(f)| and |L|=1. Since
(C(R)/Z)* can be identified with £+, we can consider L to be a signed
invariant measure u on Q of norm 1. Since the total variation of an invariant
measure is invariant also, we have |u| € K. Now

lg(NIl = L@() = u(N) = u(H = 1@l = 1f (el £ 110,

IN
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so we conclude that the mapping q(f) — f~ is an isometry. To see that it is a
surjection, suppose that g € A(K). Any u € £ admits the unique Jordan
decomposition p=p* —p~ =a,u, —a,u, where a,=u*(Q), a,=u"(2) and
u; € K, i=1,2. The linear functional

u— ag(py)—ag(uy)

is well-defined and, using weak* compactness and the fact that g is affine and
.continuous, it is weak* continuous on bounded subsets of #*. By the Krein—
Smul’yan theorem, it is weak* continuous on #* hence arises from an
element q(f) of C(Q)/.%, which completes the proof. [The above isometry is
almost order-preserving: The positive cone A(K)* is the uniform closure of
4(C@*)]

The foregoing reformulation can also be carried out for quantum lattice
gases. ,

In what follows, then, we will let K be a compact convex set (in some locally
convex space) and let A(K) denote the real-valued affine continuous functions
on K. We can embed K in the obvious way in A(K)* and hence there is a
natural norm topology on K, as well. Let 2 denote the family of all continuous
convex functions P on A(K) which satisfy

(P1) P(f+r) = P(f)+r, fe A(K), reR.
(P2) P(f) = P(0) if f=0.
(P3) P() z If1 if f20.

ExampLE. Consider Py(f)=sup {f(x): x € K}.
Recall the definition of the Fenchel dual P* of a convex function P: For any
ne AK)*,

(*) P*(y) = sup{u(f)—P(f) : fe AKK)} .

This is always weak* lower semicontinuous and convex (possibly taking the
value + 00) and since P is convex and lower semicontinuous, the dual of P* on
A(K)** defined by

P**(x**) = sup {{x**,u)—P*(y) : pe A(K)*}
has the property that its restriction to A(K) coincides with P, that is
(**) P(f) = sup{u(f)—P*(u) : pe AKK)}.

The properties of P turn out to be precisely what we need to show that P* is
really a function on K < A(K)*; that is, P*(u) < + o0 if and only if 4 € K. This
is contained in the following proposition.
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2.2. PROPOSITION. For any P € 2 the lower semicontinuous convex function P*
satisfies

(i) P*(u)<0 and P*(u)= —P(0) for all p e K
(i) P*(w)= +00 if u € A(K)*\ K.

ProoF. i). The second assertion is immediate if one takes f=0 in (*). To
prove the first assertion, suppose that f € A(K); then f+ | f|| =20, so by (P3),
(P1) and the definition of the norm in A(K) we have

pN+HILT = 1U+IDE = PU+ISD = PH+IS
hence u(f)—P(f)=0 for all fe A(K). This implies (i).

(i1). If 4 ¢ K, then either u(1)+1 or u(1)=1 (hence ||u|=1) and |u| >1. In
the first case, let f=r in (*) to get (using (P1))

P*(w) 2 p(r) = ru()=PO)—r = r[u(1)—1]-P(0) .

B'y the correct choice of the sign of r we can make the right side as a big as we
wish, so P*(u)= +o00. If ||jul|>1, then there exists fe A(K) such that u(f)

> || f|. For any r>0 we have g=r(f— | f|)<0 so by (P2) we know that P(g)
< P(0). Consequently,

P*(p) 2 pu(®—P(g) 2 rlu(f)—1/11-P(0)

for any r>0, therefore P*(u)= + oo.

As a result of this proposition we can rewrite (**) in the form of a supremum
over K:

(**y P(f) = sup{u(f)—P*(w) : neK}.

Note that if we let h= — P*, then this has the same form as the variational
principle cited earlier; moreover, (*) now has the form

h(w) = —P*(w) = inf{P(f)—p(f) : fe AKK)},

which is the dual version of the variational principle. In other words, the
variational principle (or its dual) is an instance of Fenchel duality. What we have
essentially shown is that once the properties (P1)—(P4) are established for the
pressure, then the entropy can be uniquely defined by duality. One can reverse
this, of course: If the entropy is given, then the pressure can be obtained from it
by duality. The next result makes this correspondence more explicit. We will
henceforth use h for P*; the special case of the mean entropy will therefore be
the negative of one of our functions.
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DerFiNITION. Let o denote the convex cone of all bounded lower
semicontinuous convex functions h on K for which h<0.

2.3. PROPOSITION. If h € #, then the function P, defined on A(K) by
P,(f) = sup{f(x)—h(x) : xe K}

is a member of P. The correspondence h — P, is an order-reversing map of the
convex cone X onto the convex set P, and it is an isometry between the
supremum metric on H# and the supremum metric on 2. If K contains more than
one point, then this map is not affine.

Proor. It is straightforward to verify that P, satisfies (P1)-(P3). If h, <h,,
then clearly P, (f)=P,,(f) for all £ We have already proved that the map
h — P, is onto. To show that it is an isometry, suppose that hy, h, € # and let
Py, P, denote the corresponding elements of #. With the supremum norm on
H we have —hy < —h,+ ||h; —h,| and hence

Pl § P2+"hl—h2“ .
Reversing the roles of hy,h, we get |P, — P,|<||h, —h,|| and therefore

IPy=Pillw = lIhy—h,] .

On the other hand, we can apply the same kind of argument by starting with
P,<P,+||P,—P,|, and using h;(x)=sup {f(x)—P;(f): fe A(K)} to obtain
the reverse inequality.

If K contains more than one point we can choose h,,h, € A(K) such that
hy,h,<0, h, +h,= —1 and infh;< —1/2. Let h=(1/2)(h, + h,); then h=—1/2
and therefore P,(0)=1/2. Also, P, (0)=sup (—h;)>1/2, so P,(0)+ (1/2)[P,,(0)
+ P,,(0)], which proves that our correspondence is not affine.

3. Differentiablity properties of pressure functions.

One of the basic questions of physical interest is that of differentiability of
the pressure. Recall that, since A(K) is a separable Banach space whenever K is
metrizable (as it is in the physically significant case), Mazur’s theorem is
applicable and one can conclude that each member P of £ has a dense G, set of
points of Gateaux differentiability. A stronger assertion would be that the set G
of all points g in A(K) such that P is Gateaux differentiable at Ag, for all A+0,
is also a dense G, This last assertion is untrue, as can readily be seen by
examining simple examples when K is the two dimensional simplex, say. It is
true, however, for the physical pressure; this will be shown below. In fact, even
more is true: Suppose that S is any nonempty o-compact subset of A(K) [for
instance, take S={0}, or S to be a countable dense set, or a dense countable
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union of finite dimensional subspaces of 4(K)] and let G, be the set of all g in
A(K) such that the pressure is Gateaux differentiable at f+ Ag whenever f e §
and A% 0; then G, is a dense G, subset of A (K). This says that the set where the
pressure is Gateaux differentiable contains many translates of many one-
dimensional subspaces (the origin excluded). A more general assertion is the
claim that this set contains many translates of many n-dimensional subspaces
(the origin excluded); this is, in fact, contained in Theorem 3.2 below. We first
recall the definition of the subdifferential of a convex function P and its
relationship to Gateaux and Fréchet differentiability.

DerFINITION. For f'e A(K) the subdifferential dP(f) of P at f is the set of all
u € A(K)* which satisfy

n(g)—u(f) = P(e)—P(f), geA(K).

This says that the continuous affine function on A(K) defined by g — pu(g)
—u(f)+P(f) is dominated by P and equals P at g=f; geometrically, this
means that the graph of this affine function (which is a hyperplane in 4(K) x R)
supports the convex epigraph of P at f. The continuity of P and the Hahn-
Banach theorem guarantee that 0 P(f) is always nonempty, and it is easily seen
to be weak* compact and convex. Note that if u € dP(f), then for all g € A(K)

u(@—P(g) = u(N—-P(f)
so that

P*(u) = sup {u(g)—P(g) : ge AKK)} = u(f)—P(f).

Since this is finite, we conclude that p e K. Thus, for members of 2, the
subdifferential is a subset of K and x € 0P(f) if and only if h(x)=f(x)— P(f).
This can be rewritten as x € dP(f) if and only if P(f)=f(x)—h(x); in view of
Proposition 2.3, this is equivalent to saying that the supremum which
characterizes P is attained at x. An easily verified but important consequence
of these observations is the fact (which we will frequently use) that if h € # is
affine, then 0P,(f) is a closed face of K; in particular, the extreme points of
dP,(f) are extreme points of K.

Differentiability of P at a point f can be characterized in terms of the
subdifferential, as follows. (We may take these as the definitions of
differentiability. See, for instance, [5, pp. 147-148].)

P is Gateaux differentiable at fif and only if 0P(f) consists of a single point.

P is Fréchet differentiable at f if and only if it is Gateaux differentiable there
and the set-valued map g — JP(g) is norm-norm upper semicontinuous at f.
Equivalently, dP(f)={x} and if || f,—f| — 0 and x, € dP(f,), then |x,— x|
— 0.
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There are two major ingredients in our results concerning differentiability.
The first of these is the extreme point density property for mean entropy which
was described in Theorem 1.1 and which we now single out.

DEeriNITION. An element h of # will be said to have property (D) provided
(D) extKN{xeK :h(x)<r}is dense in {x € K : h(x)<r},
forallreR.

Theorem 1.1 says that the (negative of) the mean entropy has property (D).
It is also clearly satisfied by any continuous h on the Poulsen simplex.
The second major ingredient is Edwards’ separation theorem for simplexes

(see [1] or [2]).

3.1. Tueorem (D. A. Edwards). Suppose that K is a simplex and suppose that h,
and —h, are upper semicontinuous convex functions on K with h, <h,. Then
there exists g € A(K) such that h, <g<h,.

We will also use the fact that the convex hull of finitely many extreme points
of a simplex K is a face of K.

3.2. THEOREM. Suppose that h is a bounded lower semicontinuous affine
function on the metrizable simplex K and that h has property (D). Let S be any o-
compact subset of A(K) and for each n=1 let G, be the set of all n-tuples ¢
=1(g1,82,- - -» &) in A(K)" such that P=P, is Gateaux differentiable at each
point f+A-g=f+3"7_,Ag; whenever fe S and A= (A, 4,,...,4) e R"\{0}.
Then G, is a dense G subset of A(K)".

Proor. For each a in A(K) let
G5 = {9 € A(K)" : a(x,)=a(x,) whenever fe S, 2 € R"\ {0}
and x,,x, € dP(f+4-9)} .

By separability of 4(K), the set G, is a countable intersection of sets Gy, so it
suffices to prove that each of these is a dense G;. Fix a in A(K), then, and
consider

C = {fe A(K) : There exist x,,x, € dP(f) with a(x,)+a(x,)} .

By using the compactness of K it is not difficult to show that for each i>1 the
set

C; = {fe A(K) : There exist x,,x, € dP(f) with a(x,)=a(x,)+i" '}
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is closed; it follows that C=UC; is an F,. By writing S=US, and R"\ {0}
=U K where the S, and K are compact, we can express G as a countable
intersection of the sets

Hi ;= {geAK): C;N(S+K; 9=} .

Ifg € H; ; ,, then dist (S, + K;-g, C) > 0; it follows that H, ; , is open and hence
that G, is a G;. We must prove that G} is dense. For this, it suffices to prove
that G{ is dense, since the rest of the proof will be a consequence of the
following induction argument: If (g,,...,g,_;) € G¢_,, let

S" = S+span{g,,...,8,-,}
(this is again g-compact) and consider the set

G815+ »8n-1) = {8, € AK) ¢ (81, .,80-1,8,) € GI} .

One can verify that this contains the set G§ (based now on §’) by using the fact

that (g,...,8,-1) € Gi_,. Assuming that sets of the form G{ are dense in

A(K), then, we see that each G*(g,,...,g,_,) is itself dense in 4(K). If we now

assume by induction that G?_, is dense in A(K)""!, it follows that G (which

contains the product (g,,...,8,-1) X G*(g;,- - .,8,-,) for each (g;,...,g,-,) in
4_,) is dense in A(K)"=A(K)""! x A(K).

In order to show that G{ is dense, write G{=G% NG%, where G%
(respectively G%) is defined in the same way as G¢, but with the restriction A>0
(respectively A<0). Then the same argument as above shows that G% and G°
are G, sets, and it suffices to prove that G% is dense. (By symmetry, G* = — G*
will also be dense.) Note that the set G% becomes even smaller if the set S
becomes bigger, so we may assume without loss of generality that S is a dense
linear subspace (since 4(K)-is separable and the linear span of a o-compact set
is g-compact). This implies that if g € G%, then so is f+ g for any f € S. Thus, it
suffices to show that G% is nonempty, since if g € G%, then G% will contain the
dense set g+S.

We now construct an element g in G%. Let S=U S; with §; compact, and let
d be a metric on K. We may assume a € S; and |a|| =1. Define inductively
sequences 0;>0, x; € extK, g; € A(K) as follows:

(1) Choose a decreasing sequence d; so that | f(x,)—f (x;)| <37/ whenever
feUl,S;U{g,,...,g-1} and x;,x, € K with d(x,x,)<d;; this is possible
since compact subsets of 4(K) are equicontinuous.

(2) Suppose that x,,. .., Xn;-1) € ext K have been chosen, for some integer
m(j—1)>0. Since h is lower semicontinuous, for each x’ € ext K the set

{x e K : d(x,x)<d; and h(x)>h(x)—377}
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is open. Moreover, since h satisfies property (D), the union of these sets covers
K. By compactness, we can chO0S€ X,,;_ 1)+ - - -»Xm(j i €xt K such that the
corresponding sets cover K, hence for each x € K there is some i with i <my()),
d(x,x;)<d; and h(x)<h(x)+37/

(3) Use Edwards’ theorem to choose g; € A(K) such that g;(x)=a(x)?
i=1,...,m(j) and a®? £g <1, by noting that the function which is defined to be
equal to a(x;)? at the finitely many extreme points x; and equal to 1 elsewhere is
lower semicontinuous and concave, and clearly dominates the convex
continuous function a2.

Next, let g= —Y 27Jg;. Suppose that g were not in G%. Then there would
exist fe S, A>0 and x',x" € JP(f+ Ag) such that e=[a(x’)—a(x")]*>>0. Since
h is affine we should have x= (1/2)(x'+ x") € dP(f+ Ag). We claim, however,
that for some i,

(f+2g—h)(x) > (f+ig—h)(x),

which implies that x ¢ d P(f+ Ag). Indeed, given j (to be specified below) choose
i<m(j) so that d(x,x;,)<é; and h(x)<h(x)+37/. For k=j we have

2(X)—gi(x) 2 (1/2)[g,(x) +gu(x")] —a(x)?
2 (1/2[a(x)? +a(x")?]—a(x)?

e/d+a(x)>—a(x)* .

I

Since a € S; and d(x,x;) <4, we have |a(x)—a(x)| <37/ while a(x)+a(x))
<2, so that a(x)? —a(x;)?> —2-374,

For k<j we have |g,(x)—gx(x)|<377 and h(x)—h(x;)> —377; also, |f(x)
—f(x)<377if fe Ui_, S, Consequently,

(f+Ag=h)(x)— (f+Ag=h)(x) > —=2:3774+4 Y 279[g,(x)—ge(x)]

j—1

> -—2-371‘—}.( Y 2"‘)'3"'
k=1
+A Y 27%@e/4—-2-379)
k=j

> 271 Q(e/4—2-37 ) - 2+ 37/,
which is easily seen to be positive if j is chosen to be sufficiently large.

For a similar result in a more physical setting, see [7].

The next result establishes a converse to the foregoing theorem, showing that
the stronger differentiability conclusion requires property (D).
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3.3 THEOREM. Suppose that h € # fails to satisfy property (D); then for some
n=1 the subset of A(K)"
{g9 € A(K)" : for some A € R"™\ {0}, 0P,(A-g) & extK}

has nonempty interior. When h is affine, the condition dP,(A-g) = ext K means
that P=P, is not Gateaux differentiable at A-g.

Proor. By hypothesis, there exists r € R such that ext KN {x € K:h(x)<r} is
not dense in {x € K: h(x)<r} (and the latter is nonempty). Thus, there exist
Xy € K,0>0,0<e=r—h(xy) and f3, f>,. . ., f,, € A(K) with || f;|| <1 such that if
[fi(x)—=filxo)l < b for i=1,2,...,m, then either x ¢ ext K or h(x)> h(x,)+e¢. By
duality,

h(xo) = sup{f(xo)—P(f): fe A(K)},

so there exists f,,, ; € A(K) such that f,, ., (xo) — P(f,,+ 1) > h(x,) —€/4. Suppose
first that f,, f5,. .., fw+1 do not span A(K).

Choose f,,+, € A(K) with |f, ..l <e/8 and f,.; ¢ span{fi,..., fu fm+1}-
Now, let U be the neighborhood of (f,,. .., fn4+2) in A(K)™*? consisting of all

9= (gla- . -,gm+2) Satisfying
Ifi—gl < /3 and |gl <1 for i=1,2,...,m,

8m+1(X0) = P(gn+1) > h(xo)—¢/4
"gm+2" < 8/8 and 8m+2 ¢ span {gl,' . "gm+1} .
We claim that for each g € U there exists 4 € R"*2\ {0} with dP(4-g)text K.
Given g € U, then, let
y = min {3/3,6(4lgm+ )71} -
By the version of the Bishop—Phelps theorem given in [6, Corollary V.1.2], if
& =span {g,,...,8m+1} (and recalling that the subdifferentials — that is, the
support functionals — of P are contained in K) we can find x, e K and ge &
such that x, € OP(g+gm+2),
8= 8m+1l = ¥ '[P@msz+8m+1)— @ms2 + 8m+1)(X0) +h(x0)]

and

8" (xo)—g'(xy)l = vlig'll forall g'e F.

Since P is Lipschitz —1 and | g,,+,|l <&/8, we know that P(g,, ., +gn+.)<€/8
+P(g,,+1) and hence
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P(8m+2t8m+1)— (8m+2t8m+1)(X0) +h(xo) <
< &/8+4 P(gm+1) = 8&m+1(X0) + h(Xg) — gm+2(Xo) < &/2.

Also, |g;(xo)—gi(x,)|<y=é/3 and ||g;—fill<6/3 so that |f(xe)—fi(x))|<
for i=1,2,...,m. By hypothesis, then, either x, ¢ ext K or h(x,)> h(x,)+¢.
The latter cannot hold, however, since x, € 0P(g+g,.,) implies that
(8+8m+2—M(x0) = (§+8m+2—h)(x,) so that

h(x)—h(xe) £ 8m+2(X1)— 8m+2(x0) +8(x1) —g(xo)
< e/d+ylgl = ¢/4+y(I1g—8m+1ll + 18m+11D
< e/4+y( e2+ gmesl) = €.

Thus, P(g +g,,+,)Eext K and since g and g, . , are linearly independent, we
have g+ g, ,=4"¢ for some 4%0. This completes the proof for the case where
fis++ s fms+1 do not span A(K). If they do span A(K), then an argument similar
to that above (using O instead of g, ,) shows that for (g,,...,g.+) in some
neighborhood of (fj,.. ., fn4+1), there exists g € span{g,,...,8m+,} such that
oP(g)textK. To avoid the case g=0, choose a (possibly smaller)
neighborhood of (f},. .., f,,+1) in which each (g,,...,8,+1) span A(K). Then
for some constant ¢ we have g+c=A4-g with A+0 and JP(g+c)
=0P(g)textK.

The situation concerning Fréchet differentiablity is much less positive. In
fact, it is known [4] that the physical pressure is nowhere Fréchet differentiable.
This result (Corollary 3.5) will drop out of the theorem which follows, which
shows that— when K is a simplex and h is affine — Fréchet differentiability of
P, at some point forces P, to be affine in a neighborhood of the point. This
rather strong property has a number of equivalent formulations, one of which
(assertion (v) below) negates property (D). It is somewhat remarkable that
mere Gateaux differentiability of P, in an open set implies that P, is affine in
that set; this is evident from the proof that (iv) implies (iii).

3.4. THEOREM. Suppose that h € # is affine and that K is a simplex. The
following assertions are equivalent.

(i) P, is Fréchet differentiable at some point of A(K).
(i) There exists x € ext K such that 0P,(f)={x} for all f in some nonempty
open subset of A(K).
(iii) P, is affine in some nonempty open subset of A(K).
(iv) P, is Gateaux differentiable in some nonempty open subset of A(K).
(v) There exists x € extK and a neighborhood V of x such that h(x)
<inf{h(y): y € VN extK, y+x}.
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PRroor. (i) implies (ii). Suppose that P, is Fréchet differentiable at f e A(K),
with 0P, (f)={x}, say, where x € ext K. Recall that for distinct extreme points
x, y of a simplex, one has | x — y|| =2. (This is a corollary of Edwards’ theorem.)
It follows from this, from the fact that every subdifferential of P, contains an
extreme point of K, and from the norm-norm upper semicontinuity of 9P, at f

that one can find an open neighborhood U of fsuch that 9P,(g)={x} for each
ge U.

(ii) implies (iii). It is clear from (ii) that
P,(g) = g(x)—h(x) forallge U,

so that P, is affine in U.

(iii) implies (i). If the continuous function P, is affine in some open set U,
then P, will have the same subdifferential at each point of U; in particular, dP,
will be norm-norm continuous at each such point and hence P, will be Fréchet
differentiable in U.

It is obvious that (iii) implies (iv). To see that (iv) implies (iii), suppose that
for some &> 0, the function P, is Gateaux differentiable in the 2¢-neighborhood
of the function f'e A(K) but not affine in any neighborhood of f. Let dP,(f)
={x}cextK and let m=P,(f)=f(x)—h(x). Since P, is not affine in any
neighborhood of f we can choose f; € A(K) and y € extdP,(f;) such that
| f—fill <€/2 and y=+x. We have

SO =h@) = (f=HW+P(f) > Pu(f)—e = m—¢.

To show that P, cannot be Gateaux differentiable in a 2¢-neighborhood of f, it

suffices to find g € A(K) such that |g||<¢ and dP,(f+g) contains the two

points x and y, that is, f+ g — h attains its maximum on the face F=[x,y]. In

order to use Edwards’ separation theorem, we define h,,h, on K as follows:
Let

0 elsewhere h, = min[e,m—(f—h)] .

by = {m—(f—h) on F

It is straightforward to verify that h, is convex and upper semicontinuous, that
h, is concave and lower semicontinuous and that h,<h, By Edwards’
theorem, there exists g € A(K) such that hy Sg=<h,. Since h; =h,=m—(g—h)
on F, the same is true of g, so f+g—h=mon F and (since g<h,), f+g—h=<m
on K. Finally, 0< g <¢, which completes this part of the proof.

(iv) implies (v). Suppose that (v) fails; we will show that (iv) cannot hold, by
showing that for any f € A(K) and any ¢> 0 there exists g € A(K) such that ||g||
<¢ and JP,(f+g) contains at least two extreme points. To this end, choose

Math. Scand. 54 — 10
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x € extdP,(f) and choose a neighborhood V of x in which f satisfies f>f(x)
—¢/2. Since (v) fails, there must exist y € V Next K, y#+x, such that h(y) < h(x)
+¢/2. Let m=P,(f)=f(x)— h(x); we have

h(y) = f(x)—m+e/2 < f(y)—m+e

with (obviously) the same inequality at x. The construction used in proving
that (iv) implies (iii) yields the desired conclusion.

(v) implies (ii). It is well known that extreme points have neighborhood bases
consisting of “slices”, so that we can find f € 4(K) and «>0 such that

xeS(f)) = {ye K : f()>supf(K)~a} € V.

Let M =sup (—h)(K); by multiplying f and a by a positive scalar we can
assume that [a+f(x)—sup f(K)]—M>0. Choose §>0 so that 26 is smaller
than this number and also smaller than

inf{h(y) : ye VNextK, y£x}—h(x).
Let
U= {geAK): gx)>f(x)—0, g<min{f(x), f}+3} .

This set is clearly open, and it can be shown to be nonempty by a standard
strict separation argument, using the fact that x is extreme and that the convex
hull of the graph of min {f(x), f} + is compact (hence closed) in K x R. We
claim 0P,(g)={x} for each g € U. Indeed, if g € U and if y € extdP,(g), then

fO) > g)—90 2 g(x)—h(x)+h()—6 > f(x)—M =26 > sup f(K)-a,

so y € VN ext K. Moreover,

h() = h(x)—g(x)+gW) < h(x)=L[f(x)=6]1+[f(x)+8] = h(x)+20

so our second restriction on d shows that y=x.

There are several easy consequences of the foregoing theorem. For instance,

property (D) clearly negates assertion (v), hence assertion (i), so we obtain the
following corollary.

3.5. CoroLLARY. If K is a simplex and if h € ¥ is affine and satisfies property
(D), then P, is nowhere Fréchet differentiable.
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It would be satisfying if the converse to this result were true, or if the
existence of a nowhere Fréchet differentiable P, were to imply that K is the
Poulsen simplex. This, however, is not the case; equivalently, there can exist
a K which is not a Poulsen simplex and an h € # for which assertion (v)
of Theorem 3.4 fails, as shown in the following example.

3.6. ExampLE. Let K, K, be copies of the Poulsen simplex contained, say,
in locally convex spaces E|, E,, respectively. By taking the convex hull of
(Kyx{0})U ({0} xK,) in E; xE, (and making the obvious identifications)
we can obtain a simplex K such that K=co (K; UK,) and each x in K has a
unique representation

x = Ax;+(1-Ax,, O0=AZ], x; €K, i=1,2.

In particular, the constant 4 is an affine continuous function of x, so if we let
h(x)= —A, then h € # and equals —1 on K, 0 on K,, respectively. It is easily
checked that, since ext K =ext K, Uext K,, assertion 3.4(v) fails for h. On the
other hand, it is obvious that K is not a Poulsen simplex; in particular, of
course, property (D) also fails for h.

One can draw a density conclusion about ext K from the existence of a
nowhere Fréchet differentiable P, (where h € S is affine), namely, that ext K is
dense in itself.

3.7. COROLLARY. Suppose that K is compact and convex (not necessarily a
simplex) and that h € # is affine. If ext K contains a relative isolated point, then
P, is Freéchet differentiable on some nonempty open set.

Proor. If x € ext K and if there exists a neighborhood V of x which misses
ext K\ {x}, then the infimum in assertion 3.4(v) equals + 00, so (v) is satisfied.
The proof that (v) implies (ii) does not use the fact that K is a simplex, and
from (ii) we obtain the desired differentiability conclusion.

Note that if K is a simplex, h € & is affine and continuous and ext K has no
isolated points, then 3.4(v) fails for each x € ext K, hence P, is nowhere Fréchet
differentiable, that is, the converse of Corollary 3.7 is valid under these
additional hypotheses.

It is not difficult to exhibit lower semicontinuous affine functions on the
Poulsen (or any) metrizable simplex K for which P, has points of Fréchet
differentiability, hence which satisfy the various equivalent conditions of
Theorem 3.4.
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3.8. ExaMPLE. Fix x, € extK and for each x € K let u, denote the unique
measure on ext K which represents x. Define

h(x) = —p({xo}) -

The map x — u, is affine, so h is affine. To see that h is lower semicontinuous,
we show that —h is upper semicontinuous. To this end, let A=ext K\ {x,}
and suppose that {x,} <K, with x, — x. For each fe A(K) we have yu, (f)
=f(xy) = f(x)=p,(f). Thus

L S dps, —f(xo)h(x,) — f Af du,—f(x)h(x), fe AKK).

Given ¢>0, choose a compact subset J of A such that u, (4\J)<e By
Edwards’ separation theorem there exists f € A(K) such that f=0 on J, f(x,)
=1 and 0<f<1. Thus,

—h(x,) = f fdu,, —h(x,) — J Sdp—f (0h(x) = p(ANJT)—h(x) < —h(x)+e.
A A

We conclude that limsup —h(x,)< —h(x)+¢ for all ¢>0, therefore limsup
—h(x,)< —h(x) and hence —h is upper semicontinuous. Now, since the
supremum which defines P, is attained at an extreme point, we can write

Py(f) = sup {f(x)+u:({xo}) : x € extK}.

On ext K, we know that u ({x,}) is the characteristic function of {x,,}, so
this becomes

Py(f) = max[sup {f(A)}, f(xo)+1].
Consider, finally, the nonempty open subset U of A(K) defined by

U = {fe AK) : sup f(A)<f(xo)+1}.
(This is nonempty since, for instance, it contains the constant functions.)

Clearly, if fe U, then P,(f)=f(xo)+1, and this is obviously Fréchet
differentiable on U.

If h is affine and lower semicontinuous on the simplex K, then P, cannot be
everywhere Gateaux differentiable. This assertion is a consequence of [6,
Theorem V.2.2(a)] (after a translation into the present language), and is also an
easy consequence of “(iv) implies (ii)” of Theorem 3.4. [Such a P, would
necessarily have the form f— f(x)—h(x) for some x € ext K. By Edwards’
theorem one could find fe A(K), ||f]| > —h(x), such that f=0 and f(x)=0,
which would violate property (P3).] The above fact is also a consequence of the
following easy corollary of Edwards’ theorem, once one observes that the
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restriction of an affine function to the convex hull F of finitely many extreme
points is necessarily continuous. Since metrizability holds in the physical
situation, the second assertion in this proposition gives a new characterization,
in terms of continuity of the mean entropy, of those sets of states which can
form the set of equilibrium states for some interaction.

3.9. PROPOSITION. Suppose that h € # is affine and that K is a simplex. If F is
a nonempty face of K and if h|g is continuous, then there exists f € A(K) such that
F < 0P,(f). Suppose, further, that K is metrizable; then the subdifferential sets
0P, (f) of P, are precisely those closed faces F of K for which h|g is continuous.

Proor. Suppose that F is a face of K and that h|p is continuous. By a
corollary to Edwards’ theorem there exists f € A(K) which extends h|r and
which satisfies f<h on K. Thus, f—h<0on K and f—h=0on F,so F<dP,(f).
Suppose, now, that K is metrizable and that h is continuous on the closed
face F. Choose f as above. It is known (see [1, p. 121]) that there exists g in
A(K) which vanishes on F and is strictly negative on K\ F; it follows that
F=0P,(f+g). Conversely, if F=0P,(f) for some fe A(K), then F is a closed
face of K and P,(f)=f(x)— h(x) for x € F, which implirs that h| is continuous.

If h is strictly convex and lower semicontinuous, then for each f'e A(K) the
function f— h attains its maximum at a single point, that is, P, is everywhere
Gateaux differentiable. Such strictly convex functions exist on any metrizable
K more generally, they exist if K is affinely homeomorphic to a weakly
compact convex subset of some Banach space (that is, if K is an Eberlein
compact). Such a space can be assumed to be weakly compactly generated,
hence admits a strictly convex norm. The square of such a norm suffices, since
it is weakly lower semicontinuous and strictly convex.

4. Extreme points of 2.

In this section we will identify some of the extreme points of £, showing, in
particular, that the physical pressure is such a point. We will also show that #
is the closed convex hull of its extreme points, in the topology of pointwise
convergence. This would be trivial if 2 were pointwise compact, but it is not
bounded: If Pe#, then P+ce? for each constant ¢>0, hence
sup {P(0): P € 2} = +o00. It is pointwise closed; since

IP(f)-P@)l = I/—gl, fgeAK), Pe?,

pointwise limits of elements of 2 are continuous. Such limits are also convex
and satisfy properties (P1), (P2) and (P3). Moreover, 2 is the union of “large”
compact convex subsets. To see this, define, for t20,
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P, ={PeP: PO)<t}.

Since P — P(0) is a pointwise continuous linear functional, each 2, is closed,
convex and has convex complement in #. Furthermore, if P, € 2, and
f € A(K), then

Po(f) = sup f < Pu(f) = sup (f—h) £ Po(f)+P,(0) £ Po(N)+t,
which shows that
2, < [1 {[Po(f). Po(f)+1] : fe A(K)},

hence £, is pointwise compact. (Thus, each 2, is a cap of 2 [8].)
4.1. PROPOSITION. The convex set 2 is well-capped, that is, Z=U {2,: t 20}.

If P e 2, then P € Pp, so the proof of this proposition is immediate. It is
the first step towards producing extreme points in #: Each #, is the closed
convex hull of its extreme points, and it follows from elementary
two-dimensional arguments that an extreme point P of 2, is either an extreme
point of & or “nearly” so; that is, it satisfies P(0)=t and lies in the relative
interior of a segment which is itself an extremal subset of 2. The segment could
itself be part of a ray in 2, that is, a set of the form

{P,+A(P,—P,) : A20}, P,P,e2.
We know that if P, € 2 and ¢>0, then P,+c=P,_.=P,+c(P,_,—P,) € 2,
and it will be useful for us to know that these are the only rays contained in 2.
4.2. ProOPOSITION. If P,, P, € P and if the ray
P,+R*(P,—P) S 2,
then W =h—c for some constant ¢>0.
ProoF. We first show that if P,+ R™* (P, — P,) S 2, then h is constant. To this

end note that for each A>0 convexity of P=P,+ A(P,— P,) implies that for
all f,g € A(K)

PGf+1g) < iP(+3P(g),
so that
(A=DEEPo(f)+5Po(®)— Po3f+32)] < ALEP,(f)+4Pu(8)— Puf+30)] .
Dividing both sides by 4, multiplying by 2 and letting A —» + 00 gives us
sup f+supg—sup (f+g) < sup (f—h)+sup (g—h)—sup (f+g—2h).

If h were not constant, we could apply the separation theorem to choose
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f e A(K) such that f<h and sup f>infh. Let g= —f; we would then have
(since f—h=0)

sup f—inf f < sup (f—h)+sup (—f—h)+sup (—2h)
< sup (—f)+sup (—h)—2sup (—h)
= —inf f+infh,

contradicting our choice of f.
Suppose, next, that h,h’ € # and that

P,+R*(P,—P) c 2.
Since 2 is closed and convex, the parallel ray
P0+R+(Ph'—Ph)

is also in #. By what we have just proved, each point on this ray is of the form
P __ for some constant ¢=0. In particular,

Py+P,—P, =P_,
for some ¢=0. This is equivalent to
sup f+sup (f—h)—sup (f—h) = sup(f+c) forall fe A(K) R
that is,
(1) sup (f—H)—sup (f—h) = ¢, fe AK).

We will show that this implies that h=Fh+ c. Indeed, suppose that h(x)> h'(x)
+c for some x € K. By the separation theorem we could choose f € A(K) such
that f<h and f(x)>Hh (x)+c. It would follow that

sup (f—h)—sup (f—h) 2 f(x)-H(x) > c,
contradicting (1). Another application of the separation theorem also shows

that there is no point x with h(x)—c <Hh(x), so the proof is complete.

It seems very difficult to decide directly whether an element of 2 is an
extreme point, but the difficulties become fewer if one formulates the notion in
terms of the members of . This requires the introduction of a modified
version of the “inf-convolution” originated by Moreau [8].

DEFINITION. If hy, h, € & define h; Dh, on K by setting

for each x € K.
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It is straightforward to prove that h, 0 h, is convex, bounded, non-positive
and (using the compactness of K) that it is lower semicontinuous; that is,
h,0h, € o#.

DEFINITION. Say that a function h € # is “extreme” in # provided h=h,
=h, whenever h;,h, € # and h=4%h, 0ih,.

4.3. LEMMA. An element P, of 2 is an extreme point of 2 if and only if h is
“extreme” in K.

Proor. We first show that if h=%h, 0h,, then P,=3P, +3P, . Indeed, if
f e A(K), then
P,(f) = sup{f(x)—h(x): x € K}
= sup {f(x)—%inf{h, (x,)+h,(x;): x;,x, € K, x=%(x;+x,)} : x € K}
= sup {30/ () = hy (x)]+301 (x2) —hy (x2)] : x4, X, € K}
= 3Py, (N)+3P,(f) .

Conversely, if P,=3%P,, +1P,,, let g=%h,04h,. By what we have just proved,
P,=}P, +4P,,=P,; since the correspondence h < P, is one-one, g=h.
The assertions of the Lemma are now immediate.

4.4. COROLLARY. If P, is an extreme point of P, then so is P, for each A20.

PROOF. It is clear that P, is an extreme point of 2. If A>0 and Ah=13h, 01h,,
then h=4A"'h, 044" 'h,, hence h=A"'h,=A"'h,.

Note the curious fact described by this corollary: Since the map h — P, is
continuous onto £ with its supremum metric, every extreme point in 2 is
joined to P, by a (uniformly continuous) arc of extreme points of 2. If h € #
is affine and continuous, with sup h=0>infh, then it is elementary to verify
that the image of the one-dimensional ray {Ah: A20}m under the map Ah
— P,, is an affinely independent set, hence spans an infinite-dimensional
subset of 2. Such an h exists whenever dimK2>1.

4.5. THEOREM. For any compact convex K, the set P is the pointwise closed
convex hull of ext 2, its set of extreme points.

Proor. Let L be a pointwise continuous linear functional, so that there exist
as,...,a,in R and f,,.. ., f, in A(K) such that
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L(P)= ) aP(f), Pe2.
i=1

Given « € R it suffices to show that if S={P € 2 : L(P)>a} is non-empty, then
SNext P+ . Since 2 is the union of the sets 2,, t>0, there exists t>0 such
that SN P, + . Since 2, is compact and convex, there exists P, € S Next 2,
We are obviously finished if P, € ext 2, so assume otherwise. It follows that
P, lies in the relative interior of a segment [P,, P,.]< < with P,, P, € ext 2,
or in the relative interior of a ray P,+R* (P, — P,) in 2, where P, € ext?. In
the first of these cases, one of P, P, would lie in S and we would be finished,
so we assume that the second case holds and that P, ¢ S. This implies that ¥ g;
>0. Indeed, we have L(P,)Sa<L(P,). Moreover, by Proposition 4.2, we
know that h'=h—c for some constant ¢>0. Thus,

L(P) = ¥ a;sup (fi—h) £ « < L(Py) = ) a;sup (fi—h+c)
=Y aisup fi—h)+c Y a;,

which proves our contention.

In order to complete the proof we first produce some extreme point P, of 2
with g#+0. The element P, (above) would do if h+0, so assume that h=0.
Using the fact that £, is obviously not one-dimensional (we ignore the trivial
case when K is a single point), we can choose P, € ext 2, with h, +H’,0. Using
the same geometric arguments we applied above to P,, we can either find
P, € ext 2 with g#0 or P, would lie on the ray in £ from P, through P, . But
by Proposition 4.2 there is only one such ray, the one through P,.. Thus, an
extreme point P, exists with sup(—g)>0. By Corollary 4.4, we have
P,, € ext 2 for each A>0; we will show that L(P,,)>a for sufficiently large A
To see this, note that for each i

—sup (—f)+Asup (—g) < sup (f;—Ag) < sup fi+Asup(—g).
Consequently,

L(P,) = Y a;sup (fi—4g)

Y al[—sup(—f)+Aisup(—g)]+ 3 alsup f;+Asup(-g)]

a>0 a,<0
=A} a)sup(—g)+o,

where ¢ is a sum of terms not containing A. Since Y a;>0 and sup (—g)>0, the
desired conclusion follows.

We show next that an important subclass of # (which contains the negative
of the mean entropy) is made up of “extreme” points of J#, at least when K is
metrizable.

1\
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4.6. THEOREM. If K is metrizable and if h € 5 is affine, with sup h=0, then h is
“extreme” in ', so P, is an extreme point of P.

Proor. Note first that if h € # and suph<O0, then P, lies in the relative
interior of the ray P,.+ R* (P,—P,) in 2, where h'=h—sup h, hence P, cannot
be extreme in 2. Thus, sup h=0 is a necessary condition for h to be “extreme”.
Suppose then, that h € # is affine and that h;,h, € # with h=1h, 04h,. Let

J = {x € K: 2h(x)=h, (x)+hy(x)};

it is immediate from the definition of the inf-convolution that ext K=J. We
will show first that we must have h, =h=h, on J, then we will use metrizability
to prove that J=K. Suppose, then, that x,y € J. Since h is affine we have

(1 Fh()+3h() = h(Gx+3y) < 3hi(x)+3h, ()
and, similarly,
vl $h(x)+3h() = $h, () +3h,(x) .

If we add (1) and (2) and use the fact that x,y € J we obtain
h(x)+h() < 3hy () +3hy (x) +3h, 0) +3h, () = h(X)+h() ,
which implies that equality must hold in both (1) and (2); that is,
h(x)—hy(x) = h,())—h(y) and  h(x)—h,(x) = b () —h() .

Let ¢, =h(x)—h,(x), ¢, =h(x)— h,(x); then since this holds for all y € J, it says
that on the set J

h2 = h+C2 and hl = h+Cl .

Moreover, ¢; +c¢,=2h(x)—h,(x)—h,(x)=0, so taking c=c,= —c, gives us
hj=htc on J. But

0 = suph;(extK) = suph(extK)tc = +¢, soc=0.

Next, let g=h, +h, —2h; this is convex and nonnegative, vanishing precisely on
J. If x € K choose a maximal measure pu representing x; by the extended
barycentric calculus,

hi(x) Jh,d,u and h(x) = Jhdp ,

so 0sg(x)<fgdu=0 since g=0 on extK and K is metrizable (hence
‘u(ext K)=1). Thus, J=K.

Note that we would not have needed metrizability in the above proof if h
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were continuous: Since J = {x € K: g(x) <0}, continuity of h would imply that
g is lower semicontinuous, hence the convex set J would be closed; since it
contains ext K, it would be all of K. We used metrizability, of course, to
guarantee that each point of K can be represented by a Borel probability
measure with support in ext K, and this is also true, for instance, when ext K is
an F, set in K.

The simple example which follows shows that 2 need not be the closed
convex hull of those P, with h affine.

4.7. ExampLE. Let K=[-1,1] and let fi(x)=—x—1 and f,(x)=x—1,
x € [-1,1]. Clearly, f;, f, € A(K) and the function

g = max (flf f2)

is in M. Define the continuous linear functional L by L(P)=P(f})+ P(f,)
—P(0). It is straightforward to verify that L(P)<—1 while L(P,)20
whenever h € J is affine; this shows that 2 is not the closed convex hull of
such P,.

This example, when combined with Theorem 4.5, shows that—for K=
[—1,1] at least — there exist “extreme” elements of # which are not affine. (In
fact, an elementary but character-building argument will show that the
nonaffine function g introduced in Example 4.7 is “extreme”.) This observation
is valid for any K provided K is a simplex, since one can prove that if g is
“extreme” in ) (F), where F is a closed face of K, then the function on K

h = sup{f: fe A(K), f£0, flr<g}

extends g and is “extreme’ in # (K).

S. Concluding remarks.

The study of the set 2, when K is the Poulsen simplex of invariant
probability measure described in the introduction, can be viewed as an effort
to see how much information about the pressure is contained in the
variational principle, since £ is the set of all convex continuous functions on
A(K) which satisfy that principle. It would be of interest to see what additional
distinguishing characteristics of the pressure, as an element of &, can be
deduced by using its known properties. An example of what we mean by this is
contained in Theorem 4.6; using known properties of the mean entropy, it
shows that the pressure is an extreme point of 2 (but there are lots of these).
Using property (D) one can obtain a considerable amount of information
about differentiability of the pressure, but unfortunately this is shared by any
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extreme P, for which h is continuous and affine. Finally, it is known (see e.g. [3
vol. II, p. 308] for the quantum case) that the physical pressure is Gateaux
differentiable at the origin; equivalently, the lower semicontinuous affine
function h corresponding to (the negative of) the mean entropy attains its
infimum on K at a unique extreme point. Again, it is easy to produce many
affine elements of »## with this property.
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