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PLUCKER CONDITIONS ON
PLANE RATIONAL CURVES

ALF BJORN AURE
1. Introduction.

What are the possible numbers of nodes and ordinary cusps that plane,
projective, irreducible and reduced curves of given degrees can have? A bound
is given by the Pliicker formulas ([4, pp. 120, 154]) relating the so called Pliicker
characters, but it is known that this bound is not the best possible. A great deal
of work concerning this problem has been done, for instance by Veronese [3],
Lefschetz [1], B. Segre [2] and Zariski [S, p. 219], [6, pp. 176, 186], but no
final result has been found.

If one works over a field of characteristic 0 one may examine the problem by
choosing either to study the possible number of singularities on a curve or on
its dual curve, but this requires that we have only a certain type of tangent
singularities.

DEerFINITION. A reduced, irreducible curve, C, in PzC is said to be a Pliicker
curve if C and its dual curve have only ordinary cusps and simple nodes as
singularities. (An equivalent definition: A curve whose Pliicker characters do
not have to be counted with multiplicity.)

On the other hand, it is clearly an advantage to work with a class of curves
that is stable under generalization and dualization. But it is easily seen that the
Pliicker curves do not satisfy this condition: There exist Pliicker curves that are
the specializations of non Pliicker curves in the Hilbert scheme of plane curves
of degree d, for some d (we shall give examples).

We will in this paper restrict our study to reduced, irreducible, rational plane
curves over C. By means of a correspondence between projections to pianes of
a fixed normal, rational curve of degree d in P! and plane rational curves of
degree d, we will define a new set of geometrical conditions stronger than those
in the definition of a Pliicker curve: This class of rational curves will be stable
under generalization (in the set of rational curves in the Hilbert schemes) and
dualization. Furthermore this class is in some sense maximal.
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Our method will be simply to examine the set of non Pliicker curves among
the reduced, irreducible plane rational curves of degree d for every d. Taking
the closure we will obtain new curves and conditions, and wanting equivalent
conditions for a curve and its dual curve we have to add the dual of the new
conditions for every possible d. These have to be treated the same way; by
taking closure and examing the dual situation we get even more conditions.
The result is that this process stops at this step and we get a finite list of point
configurations involving nodes, cusps, flexes, tangents, flex tangents and cusp
tangents that are not allowed for the curves in our class. (The demand on
having simple nodes for a Pliicker curve may seem to be unnatural. But if we
allow non simple nodes in the definition, they would all the same occur in the
list.)

I do not know whether these conditions also are the right ones for curves of
genus = 1.

As an application we prove the known fact that given any set of Pliicker
characters with genus 0, then there is a plane rational curve possessing these
characters. The proof will be a variation over Veronese’s outline of proof in
[3]

In an appendix to this paper S. A. Stremme describes the connection
between the scheme of parametrizations of rational plane curves of given degree
having only nodes and ordinary cusps as singularities and the corresponding
locally closed subscheme of the Hilbert scheme. His results are deeply needed
in our discussion.

2. The results.

THeoReM. Let Hy= PE£) =" be the Hilbert scheme of curves of degree d in PZ,
and let Ry H, be the locally closed subset consisting of reduced irreducible
rational curves having only ordinary cusps and nodes as singularities.

Then there exists a family {0,},5 3 of open sets O,c R, such that

1) If C is a rational plane curve of degree d, then C € O, if and only if C € O,

where C is the dual curve of C and d its degree.

2) The family {0 } is maximal with the property 1) and such that 0, does not
contain any non Pliicker curve and O, is open in R, d 2 3.

REMARKS.
a) We will see that 0,=(.
b) There exist Pliicker curves that are specializations of non Pliicker curves.

We get the remark b) from the Theorem and the remark a) as follows: We
have that R, contains all the rational Pliicker curves of degree d, and since
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every irreducible, reduced plane cubic is a Pliicker curve the fact that 0=
and that the family {0O,} is maximal lead to the existence of a d for which the
Pliicker curves do not form an open subset of R,.

More interesting than the pure existence of the family {@,} are the
geometrical properties of the curves in @, We shall describe the reduced,
irreducible rational curves not in @, and the easiest way of doing this is setting
up the (symbolic) list in Table 1. We have 13 families of curves. The first
example given in each family represents the characteristic figure of the general
member in the family, the following ones represent as we shall see,
specializations. To the right of the drawings is the dual type numbered. An x
means a flex. The family III is meant to illustrate a higher order flex/cusp.

We will in fact prove the following.

PRrOPOSITION. For d >4 a reduced, irreducible rational curve of degree d is not
in O, if and only if it has points and tangents as in one or more of the examples in
the list. For d=3 we have to add the cuspidal cubic to the list.

3. Proof of the theorem and construction of the list.

3.1. We can sketch the construction in the following way: The Pliicker
conditions exclude the situations 1-6 and 10, 11 for every d. Taking the closure
we obtain the specializations 7, 8,9, 12, 13. Wanting equivalent conditions for a
curve and its dual curve we must add 14, 16, 18, 21, for every possible d. Taking
the closure we obtain the specializations 15, 17, 19, 20, 22, 23, 24. The dual
situations of these give 25-30.

We see from the list that part 1) of the theorem is satisfied (proof omitted).
Remark a) follows from the fact (for instance using Noether’s theorem) that 30)
is generical for plane cubics. The main difficulty in proving the theorem will be
to get the maximality stated.

3.2. Let V, be the triples of homogeneous polynomials over C of degree d in
two variables, (t,,t,), and R;,=H, as in the theorem. We have a morphism, 4,
from the open subset X< P(V,) consisting of the triples without a common
zero, to H, in the following way:

Let the .monomials of degree d in X,Y,Z be a basis for H, If
p=(Po> P1,P2) € X, then the resultant

Rp(X, Y9 Z) = Res (XPZ‘_ZPO’ Yp2——zpl)

is of degree 2d in X, Y, Z, and by expansion of the determinant it is easily seen
that Z4 s a factor of R,(X,Y,Z).So (1/Z%R (X, Y,Z) € H,, and this defines the
map A. Furthermore if A'(p) is an irreducible polynomial, then it is the
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equation of the curve parametrized by p. (It has the right degree and its set of
zeros contains the parametrized curve.)

Denote 4 ~!(R))= X, then X, is an open subset of P(V,), and A=X|y : X,
— R, is a surjection since every rational curve over C can be parametrized. By
the Corollary to the Theorem in the appendix we have.

321 If UcR, then A~1(0)=A"1(U).

We can identify X, with an open subset of P(M; ,,,) where M, 4, is the
space of 3 x (d + 1) matrices, namely identifying

d
L) | and 4= gy

i=0,1,2 j=0,1,..., d

We have Rk (4,)=3 for every p € X, so we can define a morphism g: X,
— Gr (d—3,d)=the Grassmannian of codimension 3 subspaces of PY by
sending a matrix to its “kernel”. Let C be a fixed rational normal curve of
degree d in P?. We can then think of A, as a projection of C to a P? with
appropriate chosen coordinates, and then g is just forgetting the P? and giving
the center of projection.

We have an action of PGL (3) on P(M; ,.,) by left multiplication, and this
action restricts to X, because the properties of the curves in R, are independent
of choice of coordinates. Furthermore the fibres of g are in this way isomorphic
to PGL (3).

Let %, be the image of g in Gr (d — 3, d), then %, is open by the definition of
the Grassmannian.

Using 3.2.1 and the definition of the Grassmannian we have

ProposITION. Let A: X, — Ry and g: X, — U, be as above. If U< R, is such
that A~ (U) is invariant under the action of PGL (3), then U=24g™*(gA~*(U)).

The sets we are going to study in R, will satisfy the condition of the
proposition because, as we shall see, they will be determined by geometrical
properties of curves which are independent of projective equivalence. Hence the
proposition tells us that our topological study of families of curves (as
described in 3.1) can be translated to a study of centers of projections to
varying P%’s of a fixed rational normal curve of degree d in P?.

3.3. NortaTioN. With d given, let C be a once and for all fixed rational
normal curve of degree d in P¢, and let G(k) denote the Grassmannian of linear
subspaces of dimension k in P4 For pe C and 0<Sr<d—1 let P}, denote the
osculating P" to C at p.
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The symbols X, Y, Z will be used for codimension 3,2, 1 subspaces of P¢,
respectively. :

3.4. Now we will start the construction of the list. The two first families in the
list (I. Curves having points of multiplicity =3 and IL. Curves having tacnodes)
are exceptional because they are outside R,, so they do not have to be treated.
We will define a closed set W,c%, such that our wanted @, will be
Ag~ (U, W,). We will examine coincidence manifolds involving %,, other
Grassmannians and products of C with itself. When two or more points in a
product of C are equal, they are regarded as infinitesimally near. We will have
to describe 11 coincidences, and for the moment denoting the projection of the
coincidence to %, in each case by W, , i=1,...,11, we automatically get W, ;

-closed, and W,=U{L, W, ..

For some d some of the coincidences will become empty, but then the
corresponding dual situation is also nonexistent so this will not contradict the
maximality stated in the theorem. So the following construction is taken for
every d=3.

II1. Higher order flex/cusp. A curve has such a point if and only if there is a
line intersecting a branch of the curve 4 times in a point. Thinking of the
inverse image of the line for an arbitrary projection P4 — P? of C we can look
at

{(X,Z,p) e U;xGd—-1)xC| XcZ2P3}.

IV. Non-simple nodes. A non-simple node is a node where one branch
intersects its tangent with multiplicity = 3.

A point p € C is projected to a flex if and only if the center of projection X
satisfy X N (P:\ P})+ ¥. Wanting a closed condition we must demand X N P}
+ (7, and this is equivalent to the existence of a P?~' such that X < P~ !> P}
so we can look at

{(X,Y,Z,p1,p)) € Usx G(d=2)xGd~)x C* | XcY<Z2P],
and p,,p,eY}.

If XNP,,+@ (which gives a cusp for p, ¢ X), then we would have got
something treated in I, which is impossible for X € %, If p,=p,, then
X <Z2P3, which was treated in IIL

This illustrates the specializations we will get: A demand on having a special
flex specializes to a cusp. Furthermore a demand on having a certain line as
tangent in a point specializes in the point being a cusp: X<P! 'SP}
— XNP,+, and at last a node may specialize in a cusp:
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when p,=p,, so XNP, +. We see in the list that these are the
specializations we get from the first example in every family, but we have to be a
little more careful when examining them because there is more than one point
involved.

V. Tritangent. The tangent line corresponds to a P~ !, so we look at

{(X,Z,p1,P2p3) € Uy x G(d—1)x C> | X=Z<P, UP, UP} .

p

But this does not exclude the possibility of X intersecting one or more of the
tangents, on the other hand a P*"3c P! intersecting one or more of the
tangents is always a specialization of a P*~3 in the P! not intersecting the
tangents because the codimension is' 2. So we get 7), 8) and 9) in the list.

REMARK 1. A similar argument will also work in the remaining families
except IX and X, so we will just study these two families with regard to
specialization.

Furthermore in the tritangent case, if p, =p,, then Xc:ZgP;I, which is
treated in IIL

VI. Flex tangent being tangent at another point. Consider
{(X,Z,pppz) € g”d x G(d_ 1) X C2 ' XCZDP!ZH U P!l’z} .

As above p, =p, is treated in IIL

We have now described the centers of projection giving non Pliicker curves
in %, for every d. Taking the closure and examining the dual situation, we
obtain the first examples in the families VII-X which must be studied in the
same way for every possible d because of part 1) in the theorem.

Before we go on we need some lemmas:

LeEmMaA 1. Let C be a rational normal curve of degree d in P* and py,. . .,p,
distinct points of C. If n;, i=1,. . .,s, are nonnegative integers such that 33;_, (n;
+1)<d+1, then Py,. .., Py arein general position, i.e. they generate a PN 1,

where N=Y3_, (n;+1).

Proor. This is easily seen using that a hyperplane intersects C with
multiplicity d.

As a result we have for d =4 that two osculating planes intersect in one and
only one point.
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Using the language of the previous construction we have

LEMMA 2. Let d=4, C as in Lemma 1. Then two flexes/cusps that coincide
give a higher order cusp or the center of projection will intersect C.

Proor. We have for i=1,2, q;€ XN P2, p, — p,, and X — X,, where X
is the center of projection. There are two cases:

If the g;’s are generically distinct, then we have a line in X intersecting the
two osculating planes. Going to the limit, we get that X, intersects P} in aline,
therefore p, € X, or X, gives a higher order cusp.

If g, =q,, then by Lemma 1, d=4, and {q,} = P2 N P}, Looking at the dual
curve C in P* given by the osculating P>’s, we see that g, corresponds to a P>
in P*, containing the tangents corresponding to P} and P} . Hence if g, — g,
then g, corresponds to an osculating P? for C, but that means g, = p,.

Eventually, by using Lemma 2, it is easily seen for the following families in
the case d >4, that an X e %, will give something treated in I1I or VI, if two of
the points on C coincide.

REMARK 2. For d =3 we must examine this situation in the cases X and XIII
(which are the only possible nonempty coincidences for d = 3).
VII. Flex tangent through a node. That is
{(X,Y,Z,p),p2P3) € Uy x Gd—2)xGd—1)xC* | XcYcZ2P?
and p,p,eY}.

Further specializations are: 12), 13).

VIIIL. Flex tangent through another flex. That is
{(X,Z,p1,p2) € Uy x Gd—1)x C*| X<Z2P2,p, and XNP.L+Q}.

Further specializations are: 12), 13).

IX. Two flex tangents intersecting in a point on the curve. That is
{X,Y,p1,P2,P3) € Uyx G(d—2)xC*| XY p, and
dim(YUP?)21, i=1,2}.

Ap Remark 1. Fix distinct p,,p,,p; and a P*~2 as in the definition. If
P.cP"iN P} f?r i=1 or 2, then we get something treated in IV, otherwise let
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L;=P,NP*"% i=1,2. Then a P*~? intersecting one or both P2 in the point
L;N P, is a specialization of a P‘~>*cP*~2 intersecting P2 in a point in
L;\ P},. Hence 14 and 15 are specializations of 13.

X. Three concurrent flex tangents. That is
{(X,Y,py,p2,P3) € Uy x G2 % C* | XY
and dim(YNP2) 2 1, i=1,2,3}.

Ap REMARK 2. When d=3 the set is empty, because the dual curve would
have been of degree 3 or 4 with 3 cusps or 2 cusps and a flex on a line.

Ap ReMArRk 1. When d=4, fix distinct p,,p,,p;. We shall have a P?
contained in a P? and dim (P>?NP2)=1. The P? is determined by the three
points of intersection between the osculating planes (Lemma 1), because if they
did not generate a P?, they would have to be a common point of three
osculating planes: Looking at the dual situation in P* this corresponds to a P3
containing 3 tangents of C, but that is impossible by Lemma 1, since C is a
rational curve of degree 4.

Let % = C? be the triples of distinct points. Then the coincidence over % is
isomorphic to % x P2, where the 3 points of intersection determine the
coordinates in P2. Therefore the coincidence is irreducible, and projecting to
U, we get an irreducible set. Since the centers of projection giving one or more
cusp instead of flex form a proper closed subset of this set, the irreducibility
gives us 22, 23, 24, as specializations of 21.

When d = 5, we may always find a P?~ 3 through 3 points, and using the same
method as in IX we find Remark 1 satisfied.

Now the remaining families come from the dual situations of the
specializations above.

XI1. Bitangent through a flex. That is
{(X,Z,p1,P3P3) € Ugx Gd—1)xC* | X<Z>p,, P}, P},

Py

and XNP};+J}.
Further specializations are: For d=6: 7), 8), 9).
XII. Tangent through two flexes. That is
{(X,Z,p1,P2rp3) € Uyx G(d—1)xC* | X<Z>P},p,,p,
and XNP L+, i=1,2}.
Further specializations are: For d>5: 26), 27). For d26: 8), 9).
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XIIL. Three collinear flexes. That is
{(X,Z,p1,P2.03) € Uy x G(d—1) x c? l XcZdp;
and XNPi+, i=1,2,3}.

Ap REMARK 2. When d=3 we get an exceptional case since this situation is
generic, the specialization being the cuspidal cubic. The dual curve of a
cuspidal cubic is itself a cuspidal cubic, so we do not get any new conditions.

Further specializations are: For d=4:29), d=5: 27), d=6: 9).

The theorem now follows from the construction.

We have not proved independency between these 13 families, but looking at
the construction, the fact %, = (¥ leads to the existence of Pliicker curves of
degree 6 with 3 collinear cusps. Such a curve may for instance be constructed
as the dual curve of a Pliicker curve of degree 4 with 3 concurrent flex tangents
and no cusps. An example is the curve parametrized by p(t)=(£3(¢t—4),
(t—1*Q2t+ 1), t(t — 1)) with flexes for t =0, 1, — 2 giving (0, 1,0), (1,0, 0), (16,27,2)
and flex tangents X =0, Y=0 and 27X —-16Y=0 all through (0,0,1). By
calculation one can prove this is a Pliicker curve. Denoting p = (p,, p;, p,), then
the dual curve is parametrized by (p,p5 —p2P},P2Po — PoP2» PoP1 — P1Po)s and,
using the resultantmap in 3.2, we may find the equation of the sextic.

4. The Pliicker characters of a rational curve.

4.1. The Pliicker formulas for a rational Pliicker curve of degree d, class d,
with i flexes and x-cusps are

1) J=2(d—1)—x, 2) i=3(d—-2)—2x

The other Pliicker characters are then given by the genus formulas.
The possible Pliicker characters are, by 2), given by those (d,x) where d > 1
and 0S<x <[3(d—2)]. From the construction of {¢,} we will get

ProposITION. For every pair of integers (d, x) with d>4,0<x £[3(d—2)] and
(d, %)% (4, 3), there exists a curve in O, with x cusps.

The reason why we have to exclude (4,3) is the fact that the three cusp
tangents intersect, since the dual curve is of type (3,0) having 3 flexes on a line.
Since every curve of type (3,0), (3,1) or (4,3) are Pliicker curves, the
Proposition gives us the existence of rational Pliicker curves for every set of
Pliicker characters with genus 0.
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4.2. PrOOF OF THE PRrOPOSITION. 1) and 2) give, using i=d—2+d—2—x:
421. d-2 <x £3d-2) <> 0=<i<d-2 and then d<d,
x =d-2 < i=d-2 andthend=d.

By 4.2.1 it is sufficient to consider the case x £d — 2, because either the curve or
the dual curve is of this type. We will not use this directly, but 4.2.1 is crucial
since wanting to have x cusps means, in the sense of section 3, choosing a
center of projection that intersects C's developable of tangents in x points, and

when x¥<d-2 it is always possible to find a dimension d—3 subspace
containing x given points.

NotaTioN. We will use the notation of section 3: C is a fixed rational normal
curve of degree d>4 in P? and let D be its developable of tangents. Let %}
< Gr (d —3) be the centers of projection that give rise to birational projections
of C, so %,;<%j. Eventually by using the same method as in section 3 for
the families I and II, one shows that the centers of projection giving curves of
type I-XIII form a closed subset of %}, denote this by Wj.

We will prove the proposition by induction on d, using the fact that W} is
closed and the conditions are equivalent for a curve and its dual curve. This
will reduce the problem to examining the nodal cubic.

Let Y, = D* 0<k<d -2, be the k-tuples of linearly independent points in D,
then Y, is open and dense in D*.

Let

Ky = {(X,pp-- s p) €U x Y, | preX,i=1,.. k}.

We have K, irreducible because of the linear independence, and letting n: K,
— %} be the projection, then n(K,) is irreducible. Let Z, , denote n(K,) =%},
then Z, , is irreducible and by counting conditions we get dim Z, , =3d —6—k.
So we have Z, (2Z, ,>...2Z; 4, -

Let Z, ,_, denote the projection to %} of

{(X,P1 . »Pac1) €ULXCU Y| XNPL+Q, i=1,...,k}.

Then, for instance by looking at explicit parametrizations of plane rational
curves, (using that we are in %) and not necessarily in %, we see
Zya-2N2441%D.

Suppose we have proved the existence as in the proposition for curves of
degree <d. Assume there does not exist a curve of degree d with x cusps
having a center of projection outside W}. By induction x<d—2, other-
wise we may dualize and ‘get a contradiction since then d<d by 4.2.1. So
Z4;\Z4 .+, S Wj, and because of the irreducibility we get
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4.2.2. Zd,d—Z g Zd,x = Zﬂ,x\Zd,x+l g W; .

A curve with x cusps 0<x =d—2 does not have to correspondtoa X € Z, ,,
since we do not know whether the intersections of an X that gives the curve
with the developable are in general position or not. But a curve of degree d
with the maximal number of cusps, [3(d — 2)], and of the required type exists by
induction since d <d, and for such a curve d—2 of the intersections with the
developable have to be linearly independent: Otherwise we could force one
more intersection but that is impossible by the maximality (even if the center
would not give a birational projection). This contradicts 4.2.2 that
Z44-2EWa

To start the induction for d=4, we may use the same method as above to
prove the existence for x =0, 1,2, by looking at the properties of the curves of
type (d, x)= (3,0) being the dual of the type (4, 3). Using the irreducibility of the
Z, s, the only thing that does not work as earlier is if all the curves with
centers of projection in Z, ,_,=Z, , are in the family X. But every curve of
type (4,2) has a center of projection in Z, , (only 2 intersections with D),
looking at the dual situation, which is also of type (4,2), we get every curve of
type (4,2) is the dual type of the family X. A curve of type (4,2) has two flexes
so we get the possibilities 27 and 29 in the list. The first one is impossible since
the degree'is 4, the second one leads to all curves of type (4,2) are in the family
XII. But then we may use the same argument as in the induction step to get a
contradiction.
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