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A NOTE ON CONTINUITY OF
PSEUDODIFFERENTIAL OPERATORS
IN HARDY SPACES

LASSI PAIVARINTA

The following sharp result concerning L,-bounds for pseudo differential
operators was proven by C. Fefferman in [3]: If T is a pseudo differential
operator of class L, 3 where‘0§5<9§1 and m2= (1 —9)|n/2 —n/p| then

0.1) T:L,—> L, 1<p<o0.
Moreover, if m= (1 —g)n/2 then
(0.2) T:H, > L,.

Here L, is the Lebesgue space in R" and H, is the Hardy space in the sence of
Fefferman and Stein (cf. [5]).

There arises the question if it is possible to extend this result-to the case 0<p
<1 and further whether it is possible for p=1 to have the same space of both
sides. There is indeed a natural candidate for such a generalization, using the
local or non-homogeneous Hardy spaces h, (cf. [6], [10] or [12] p. 124]).

We have not been able to prove this but only the following weaker result.

THEOREM. Let me R, 0<é6<e<1 and Te L7 ; Then for all 0<p,q,r<oo,
seR and s;<s+m—(1—g)n|l/p—1/2| it holds

(1) T:F, — F.

For the definition and properties of Triebel spaces F}, we refer to [9] or
[12]. Note that h,=F9, for 0<p<oo.

REMARK 1. For s, >s+m—(1—9)n|1/p—1/2| the claim is clearly false.

REMARK 2. We recall that a symbol r(x, ) is said to be in class S7
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IDEDEr (x, &)l < C,p(1+ &)+ 2P~ el
holds for any multi-indexes « and B and for each pair (x,¢) e R"xR” If
r(x, &) e S; ; we say that the corresponding pseudodifferential operator r(x, D)
belongs to the class L7,
Proor ofF THEOREM. If suffices to show that
T: Fy, — Fp, for s; <s+m—(1—g)(n/p+const.)
In fact, if we combine this with Hormander’s L, estimate (cf. [7])
T: Fszz“’ F;z, Te L(q),é
the desired result follows by non-trivial interpolation (cf. [4] or [12 p. 73]).
Thus for (1) it is sufficient to prove the following lemma.
LemMA. Let Te L, 7, 050<e=1 and m= (1 —g)(n/min (p,q)+n+1). Then
for all 0<p,q<o00 and s € R
T: F,, — Fj, .
Proor. For simplicity we suppose that s=0. We write r(x, D) for T. Let (¢,)

be the sequence of test functions as in the standard definition of F},, (cf. [8]).
What we should do is to estimate the norm

1 (@,(D)r (. DYf (<))ol

by the norm | (¢;(D)f)%oll, ) Thus the main task will be to commute the
operators ¢;(D) and r(x, D). We shall do this in the well-known manner by first
invoking the Leibniz rule (cf. [11 p. 46]).

1
@;(D)r(x,D) ~ ¥, —irig(x, D)o (D) .
szo B!
Here we have used the notation p{§(x, &)=DA(iD,)p(x, &).
Next we choose another sequence of test functions (;);Z, with y;(D)p;(D)

=¢;(D) valid for all j. Moreover we suppose that y;(¢) is supported in a set
where |£|~ 2. To estimate r,(x, D)o (D) f (x) we write it in the integral form

) 7 (% D)o (D) f (x) = f Kj(x, ) f;(») dy
where f;=y;(D)f and

Kj(x,y) = je“"'”ér(p,(x, OeP (&) dE .
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For the kernel Kj(x,y) we can get the following estimate

2

J < - -
3) Ky e S Ca i 5577

for A<[m]/(1—9).

Namely, by partial integration one obtains for each o, |a|<[m]/(1 —p)

[(x— y)“K () £ Cy Z 2in(1 4 2f)~mra-abip—ilal < C,ﬂZj"Z‘”"”.

ySa

By using A> (n/min (p,q))+n it follows from (2) and (3) that
Irg)(x, DYpP (D) f (x)| = Cf F(u, )

with u>n/min (p,q). Here f(u,x) is the Fefferman-Stein maximal function
defined by

l@i(D)f (¥)I

LG e TEs T

Hence, if we write

@;(D)r(x,D)f (x) := Z r(p)(x, D)o (D) f (x)+ R} f(x) := g(x)+g}(x)

N B!
we obtain from the Fefferman-Stein-Peetre inequality (cf. [5], [9] or [12, p.
47]) that

(g3 C)5ZollL,u) < CNlS g, -

It remains to give a similar estimate for the remainder R}V f(x). In order to
do that we write R}Nf in the form

RYf(x) = J e+ £(o)pN(n, &) de dy

where
1
pY(n,¢) = f(mé)(w,(n%)— > —,¢}”’(é)n”>
isi<n B!

and 7(n,¢) is the Fourier transform of r(x,&) with respect to x. By using
Lagrange’s remainder term in Taylor’s formula and by taking N large enough
one can prove that

IghollLay < CIf s, -
For the details cf. [8].
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REemARks. The use of interpolation yields the corresponding result for Besov
spaces.

Finally, we ask whether Fefferman’s theorem remains true if 0<6<g<1 is
replaced by 0= =9 <1 or more generally whether the following result holds:
Supposing 0<p<oo, 0S¢<1 and Te L{!,;9"/P~ 121 we have

T:h,— h,.

For p=2 this is true according to theorem of Calder6on and Vaillancourt (cf.
[1]). For 1<p<oo and ¢=0 it is proved by Coifman and Meyer in [2 p. 140].
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