A NOTE ON CONTINUITY OF PSEUDODIFFERENTIAL OPERATORS IN HARDY SPACES

LASSI PÄIVÄRINTA

The following sharp result concerning L_p -bounds for pseudo differential operators was proven by C. Fefferman in [3]: If T is a pseudo differential operator of class $L_{\varrho,\delta}^{-m}$ where $0 \le \delta < \varrho \le 1$ and $m \ge (1-\varrho)|n/2-n/p|$ then

$$(0.1) T: L_n \to L_n, \quad 1$$

Moreover, if $m \ge (1 - \varrho)n/2$ then

$$(0.2) T: H_1 \to L_1.$$

Here L_p is the Lebesgue space in \mathbb{R}^n and H_1 is the Hardy space in the sence of Fefferman and Stein (cf. [5]).

There arises the question if it is possible to extend this result to the case 0 and further whether it is possible for <math>p = 1 to have the same space of both sides. There is indeed a natural candidate for such a generalization, using the local or non-homogeneous Hardy spaces h_p (cf. [6], [10] or [12] p. 124]).

We have not been able to prove this but only the following weaker result.

THEOREM. Let $m \in \mathbb{R}$, $0 \le \delta < \varrho \le 1$ and $T \in L_{\varrho,\delta}^m$. Then for all $0 < p, q, r < \infty$, $s \in \mathbb{R}$ and $s_1 < s + m - (1 - \varrho)n|1/p - 1/2|$ it holds

$$T: F_{pq}^s \to F_{pr}^{s_1}.$$

For the definition and properties of Triebel spaces F_{pq}^s we refer to [9] or [12]. Note that $h_p = F_{p2}^0$ for 0 .

REMARK 1. For $s_1 > s + m - (1 - \varrho)n|1/p - 1/2|$ the claim is clearly false.

REMARK 2. We recall that a symbol $r(x, \xi)$ is said to be in class $S_{\varrho, \delta}^m$, $0 \le \varrho, \delta \le 1$, if

Received December 15, 1983; in revised form March 20, 1984.

$$|D_{\xi}^{\alpha}D_{x}^{\beta}r(x,\xi)| \leq C_{\alpha\beta}(1+|\xi|)^{m+\delta|\beta|-\varrho|\alpha|}$$

holds for any multi-indexes α and β and for each pair $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n$. If $r(x, \xi) \in S_{\varrho, \delta}^m$ we say that the corresponding pseudodifferential operator r(x, D) belongs to the class $L_{\varrho, \delta}^m$.

PROOF OF THEOREM. If suffices to show that

T:
$$F_{pq}^{s} \to F_{pq}^{s_1}$$
 for $s_1 < s + m - (1 - \varrho)(n/p + \text{const.})$

In fact, if we combine this with Hörmander's L_2 estimate (cf. [7])

$$T: F_{22}^s \to F_{22}^s, \quad T \in L_{\varrho,\delta}^0$$

the desired result follows by non-trivial interpolation (cf. [4] or [12 p. 73]). Thus for (1) it is sufficient to prove the following lemma.

LEMMA. Let $T \in L_{\varrho,\delta}^{-m}$, $0 \le \delta < \varrho \le 1$ and $m \ge (1-\varrho)(n/\min(p,q)+n+1)$. Then for all $0 < p, q < \infty$ and $s \in \mathbb{R}$

$$T: F_{pq}^s \to F_{pq}^s$$
.

PROOF. For simplicity we suppose that s=0. We write r(x,D) for T. Let (φ_k) be the sequence of test functions as in the standard definition of F_{pq}^s (cf. [8]). What we should do is to estimate the norm

$$\|(\varphi_j(D)r(x,D)f(x))_{j=0}^{\infty}\|_{L_p(l_q)}$$

by the norm $\|(\varphi_j(D)f)_{j=0}^{\infty}\|_{L_p(l_q)}$. Thus the main task will be to commute the operators $\varphi_j(D)$ and r(x, D). We shall do this in the well-known manner by first invoking the Leibniz rule (cf. [11 p. 46]).

$$\varphi_j(D)r(x,D) \sim \sum_{\beta \geq 0} \frac{1}{\beta!} r_{(\beta)}(x,D) \varphi_j^{(\beta)}(D)$$
.

Here we have used the notation $p_{(\beta)}^{(\alpha)}(x,\xi) = D_x^{\beta}(iD_{\xi})^{\alpha}p(x,\xi)$.

Next we choose another sequence of test functions $(\psi_j)_{j=0}^{\infty}$ with $\psi_j(D)\varphi_j(D) = \varphi_j(D)$ valid for all j. Moreover we suppose that $\psi_j(\xi)$ is supported in a set where $|\xi| \sim 2^j$. To estimate $r_{(\beta)}(x, D)\varphi^{(\beta)}(D)f(x)$ we write it in the integral form

(2)
$$r_{(\beta)}(x,D)\varphi_j^{(\beta)}(D)f(x) = \int K_{\beta}^j(x,y)f_j(y)dy$$

where $f_i = \psi_i(D) f$ and

$$K^j_\beta(x,y) \,=\, \int e^{i(x-y)\xi} r_{(\beta)}(x,\xi) \phi_j^{(\beta)}(\xi)\,d\xi \ . \label{eq:Kj}$$

For the kernel $K_B^i(x, y)$ we can get the following estimate

(3)
$$|K_{\beta}^{j}(x,y)| \leq C_{\lambda} \frac{2^{jn}}{(1+2^{j}|x-y|)^{\lambda}}, \quad \text{for } \lambda \leq [m]/(1-\varrho).$$

Namely, by partial integration one obtains for each α , $|\alpha| \leq \lfloor m \rfloor / (1-\varrho)$

$$|(x-y)^{\alpha}K_{\beta}^{j}(x,y)| \leq C_{\alpha\beta} \sum_{\gamma \leq \alpha} 2^{jn} (1+2^{j})^{-m+(1-\varrho)|\gamma|} 2^{-j|\alpha|} \leq C_{\alpha\beta} 2^{jn} 2^{-j|\alpha|}.$$

By using $\lambda > (n/\min(p,q)) + n$ it follows from (2) and (3) that

$$|r_{(\beta)}(x,D)\varphi_i^{(\beta)}(D)f(x)| \leq Cf_i^*(\mu,x)$$

with $\mu > n/\min(p,q)$. Here $f_j^*(\mu,x)$ is the Fefferman-Stein maximal function defined by

$$f_j^*(\mu, x) = \sup_{y \in \mathbb{R}^n} \frac{|\varphi_k(D)f(y)|}{(1 + 2^k |x - y|)^n}.$$

Hence, if we write

$$\varphi_{j}(D)r(x,D)f(x) := \sum_{|\beta| \le N} \frac{1}{\beta!} r_{(\beta)}(x,D) \varphi_{j}^{(\beta)}(D)f(x) + R_{j}^{N} f(x) := g_{j}^{0}(x) + g_{j}^{1}(x)$$

we obtain from the Fefferman-Stein-Peetre inequality (cf. [5], [9] or [12, p. 47]) that

$$\|(g_j^0(x))_{j=0}^{\infty}\|_{L_p(l_q)} \leq C_N \|f\|_{F_{p_q}^0}.$$

It remains to give a similar estimate for the remainder $R_j^N f(x)$. In order to do that we write $R_j^N f$ in the form

$$R_j^N f(x) = \int e^{ix(y+\xi)} \, \widehat{f}(\xi) p_j^N(\eta,\xi) \, d\xi \, dy$$

where

$$p_j^N(\eta,\xi) = \hat{r}(\eta,\xi) \left(\varphi_j(\eta+\xi) - \sum_{|\beta| < N} \frac{1}{\beta!} \varphi_j^{(\beta)}(\xi) \eta^{\beta} \right)$$

and $\hat{r}(\eta, \xi)$ is the Fourier transform of $r(x, \xi)$ with respect to x. By using Lagrange's remainder term in Taylor's formula and by taking N large enough one can prove that

$$\|(g_i^1)_{i=0}^{\infty}\|_{L_n(l_n)} \leq C \|f\|_{F_{n_0}^0}$$

For the details cf. [8].

REMARKS. The use of interpolation yields the corresponding result for Besov spaces.

Finally, we ask whether Fefferman's theorem remains true if $0 \le \delta < \varrho \le 1$ is replaced by $0 \le \delta = \varrho < 1$ or more generally whether the following result holds: Supposing $0 , <math>0 \le \varrho < 1$ and $T \in L_{\varrho,\varrho}^{(1-\varrho)n|1/p-1/2|}$ we have

$$T: h_p \to h_p$$
.

For p=2 this is true according to theorem of Calderón and Vaillancourt (cf. [1]). For $1 and <math>\varrho = 0$ it is proved by Coifman and Meyer in [2 p. 140].

REFERENCES

- A. P. Calderón and R. Vaillancourt, A class of bounded pseudodifferential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187.
- 2. R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-differentials, Astérisque 57 (1978).
- 3. C. Fefferman, L^p -bounds for pseudo-differential operators, Israel J. Math. 14 (1973), 413–417.
- C. Fefferman, N. M. Rivière, and I. Sagher, Interpolation between H^p-spaces. The real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
- 5. C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- 6. D. Goldberg, A local version of real Hardy space, Duke Math. J. 46 (1979), 27-41.
- 7. L. Hörmander, *Pseudo-differential operators and hypoelliptic equations*, (Proc. Sympos. Pure Math. 10), pp. 138-183. American Mathematical Society, Providence, R.I., 1966.
- L. Päivärinta, Pseudo differential operators in Hardy-Triebel spaces, Z. Analysis Anwendungen 2 (1983), 235-242.
- 9. J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.
- J. Peetre, Classes de Hardy sur les Varietés, C. R. Acad. Sci. Paris. Sér. A-B, 280 (1975), 439–441.
- 11. M. Taylor, *Pseudodifferential operators* (Princeton Math. Ser. 34), Princeton University Press, Princeton, N.J., 1981.
- 12. H. Triebel, Spaces of Besov-Hardy-Sobolev type, (Teubner-Texte /ur Math.) Teubner, Leipzig, 1978.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HELSINKI HALLITUSKATU 15 00100 HELSINKI 10 FINLAND