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TRANSITION OPERATOR CHARACTERIZATIONS
OF COMPACT AND MAXIMALLY
ALMOST PERIODIC LOCALLY COMPACT GROUPS

IRVING GLICKSBERG*

In Memory of Karel de Leeuw

In [3] arguments of Rota [7] and Schaefer [8] were combined with results
on almost periodic semigroups of operators [1] to yield information on the
point spectrum of unit modulus of a transition operator on C(X). Here we note
further consequences of the same line of argument, emphasizing more the
eigenvectors, which easily yields characterizations of those families of
transition operators that arise from the action of a compact transformation
group. In particular, we characterize the indicated groups by the behavior of
(what turns out to be) a generating set of translation operators, and also
rotations, as transition operators on spheres.

We will consider the compact and locally compact settings in sequence in
sections 1 and 2. Although the results were originally obtained by applying
those of [1], the applications were all to the abelian case and have been
abandoned in favor of more elementary arguments. Nevertheless, part of our
original argument yields an apparently new fact about almost periodic
semigroups (that, in the terms of [1], if the unitary subspaces span, the almost

periodic compactification is a group of invertibles); this is included in a final
section.

1. The Compact Case.

Here X will always be a compact Hausdorff space, C(X) the usual space of
continuous complex functions on X, and 6, the unit point mass at x. T will
denote a set of transition operators on C(X), i.e. non-negative operators fixing
the constants. We shall call an eigenvector corresponding to an eigenvalue of
modulus 1 a T!-eigenvector, and shall consider principally the following
properties of T (and their variants):
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(a) For each Te I the probability measures fixed by T* have the union of
their supports dense in X.

(b) There is a set of common T'-eigenvectors of the elements of T which
separate the points of X.

(c) T fixes only the constants.

For example we characterize an element of the general orthogonal group on
R"*1 as a transition operator on C(S") satisfying (a) which leaves invariant a
separating finite dimensional rotation invariant subspace while it is non-
contracting there (cf. § 1.3, Theorem 3). As the reader will note, (a) is
unnecessary in section 1, if we assume each T e T arises from a continuous self
map ¢ of X; far less is needed in the result just cited (cf. Corollary 5).

Our Abelian result is the following:

THeoReM 1. Each Te T arises from the action of an element of a fixed
compact Abelian transformation group if and only if (a) and (b) hold. Moreover,
X is itself a compact Abelian group (and I a generating set of its translation
operators) if (and only if) (c) also holds.

Half of the result is standard: if G is a compact Abelian group acting as a
transformation group on X (so (g, x) — g(x) is continuous) then the transition
operators f — fog on C(X) satisfy (a), since each orbit carries an image of the
Haar measure of G, fixed under our adjoint operators, while (b) follows from
the fact that C(G) is spanned by characters y, so it contains an approximate
identity of trigonometric polynomials. (Thus from continuity of g — fog one
has

“f_‘[zll aj<8,)’j>f°gdg“ <eg,

while [<g,y;>fogdg is a common T!-eigenvector.)

For the other direction we begin (as in [3]) with a simple observation on the
common T'-eigenvectors. Note that since T=0 and T1=1 for each Te T and
x € X we have a probability measure m, for which Tf(x)={ fdm,, fe C(X).
Thus if Th=ah, a € C, with |a|=1, then

jhdmx

so that T'|h| —|h| = 0. On the other hand, since each probability measure u fixed
by T* has u(T|h|—|h|)=0, while by (a) their supports are dense in X, we
conclude that T|h|=|h|. From equality in the inequality (1) we now have h

) lh(x)| = ITh(x)| =

< ﬁhldmx = Tih|(x)
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constant on the support of m,. Thus (b) clearly implies each m, is a point mass

0, And because Tf(x)=f(¢p(x)) is continuous for each fe C(X), ¢ is a
continuous map of X into itself.

Let {h,},. , be our separating set of common T'-eigenvectors. Identifying X
with its homeomorphic image in the product C* under x — {h,(x)},c 4 the fact
that

Thy(x) = hy(@(x) = A,h,(x)

says that ¢ corresponds to a “rotation” of C* on our image given by the
element {4,},. , of the compact Abelian group T*. Thus the various elements T
of T correspond to those of a subset of T*, a subset which evidently generates
our desired transformation group K in T“. The main assertion of Theorem 1 is
now clear.

For the final assertion, note that (c) directly implies the action is minimal, so
X consists of a unique orbit: fixing any x, € X, k — k(x,) maps K onto X.
Because K is Abelian the isotropy subgroup H, ={k € K: k(xy)=x,} is the
same for any x,, and thus fixes every x € X, so consists only of the identity.
Thus k — k(x,) is a homeomorphism of K onto X, and our assertion is clear.

(Exactly as in [3] we could of course describe the point spectrum (or joint
- spectra) of unit modulus of elements of -T.)

1.2. Our non-Abelian version merely replaces common T!-eigenvectors with
the unitary subspaces of [1]: a finite dimensional T-invariant subspace D of
C(X) is a unitary subspace if T| D is contained in a bounded (hence in a compact)
group of operators on D whose identity is the identity operator on D. (As is well
known the group can be taken unitary, relative to some inner product on D
[11, p. 70].) Thus we shall consider

(b’) There is a set of unitary subspaces for T which separate
the points of X.

THEOREM 2. Each Te T arises from the action of an element of a fixed
compact transformation group on X iff (a) and (b') hold. Moreover, X is a
homogeneous space of a compact group (and T a generating set of left
translations of the group acting on X) if (and only if) (c) also holds.

To begin the proof, note that for each Te I, each unitary subspace D is
spanned by a set of T!-eigenvectors of T, since T|D lies in a compact Abelian
group on which there is an approximate identity of trigonometric polynomials.
Thus the T!-eigenvectors of T separate the points of X by (b'). So we again
have Tf=fop all fe C(X), for some self map ¢ of X since each representing
measure m, is necessarily a point mass as earlier. Again ¢ is continuous.



124 IRVING GLICKSBERG

Let {D,},. , be-a set of separating unitary subspaces for I. For each Te I
and our corresponding map ¢, T|D,: f — fog is given by a unitary matrix M,
= (m;), if we select and fix an orthonormal basis { f%,. .., f7 } for D, relative to
an appropriate inner product on D,. Thus as before we can identify X with its
image in the topological product PC™ under the map

. x = {1 fa (X)) ea-
The fact that

Tt = fiop = 3 mif;
=
says that on the image ¢ corresponds to the natural action of an element of the
(topological) product group PU (n,) under which the image is invariant. Our
transformation group K is again the subgroup generated by the subset
corresponding to T. Finally, given (c), we now only find X a homogeneous
space K, completing our proof of Theorem 2.

REeMARK. For later use we should note that in both theorems the semigroup
S generated by T has its image in K dense (since a closed subsemigroup of a
compact group is a subgroup). Moreover, if 4 is the closed span of all the
unitary spaces, K can easily be identified” with a group of operators on A
compact in the strong operator topology which is generated by S| A4, and
which thus coincides with the strong operator closure (S| 4)™ of €| A. Thus K
is the almost periodic compactification of S| A4 in the terminology of [1].

To characterize a compact group now from Theorem 2 only requires
bringing in both left and right translations.

CoRoLLARY 1. Suppose T=L2UR where L € & and R € R imply LR=RL.
Then X is a compact group and £ (respectively R) is a generating set of its left
(respectively right) translation operators iff (a), (b'), and (c) hold for each set £
and ‘R.

Here we obtain two compact groups Kg, Kg, while because of (c) X is a
homogeneous space of each. But since any element of the first group commutes
with any element of the second, if h € K fixes x, € X, then kx, = khx,=hkx,
for any k € Kg. Since Kgx,=X we conclude the isotropy subgroup in K¢ of
any x, is trivial. Thus we can identify X as the underlying space of K¢, and &
as a generating family of left translations. Each element of Ky then appears, as
an operator, as right convolution with a probability measure m by a theorem of
Wendel [12]; since it is now easy to identify the measure m,=k*J, of our
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proof for k € Ky as a translate of m, m is a point mass, so ‘R consists of a set of
right translation operators. '
Finally, in one special setting, Theorem 2 can be sharpened considerably.

COROLLARY 2. Suppose X is also connected, (a) and (b') hold, and some
commuting subset I, of T has the property (c) that only the constants are fixed
under I,. Then X is a compact Abelian group on which the elements of I, form a
generating set of translation operators, while the elements of I arise from
translates of elements of an equicontinuous group of automorphisms of X
(necessarily periodic when X is finite dimensional).

Each of our unitary subspaces D for T provided by (b') is necessarily
spanned by common T!-eigenvectors for ¥, and thus (a), (b), and (c) hold for
¥,, whence X is a compact Abelian group by Theorem 1. Now the compact
group we obtain for T from Theorem 2 can be taken as the group G of the
proof of the main result of [4] (with X as the group H there), and precisely that
proof yields our assertions about ¥. The corollary includes the following
special case: if T is a transition operator on C(G), for G a compact connected
Abelian group, which (1) preserves Haar measure and (2) leaves invariant a set
of finite dimensional translation invariant subspaces D of C(G) which together
separate G, then T arises from a translate of an automorphism. (Take I,
the translations, T=I,U{T}.) But in fact if we start instead with a
homeomorphism ¢ of G for which T: f— fo satisfies only (2) the same
conclusion follows via the argument of [4] as soon as we recognize that
because of (2) the T-invariant finite dimensional subspaces D generate C(G) (as
in the proof of Theorem 6 below).

1.3. We next note some variants of our conditions, and related results. First
it is easy to see our single minimal orbit condition (c) can equally well be
replaced in all our results by either

(¢') Each probability measure fixed by all T*, T € X, has global support, or

(c") For any non-zero f=0 in C(X) there is a polynomial P in the elements
of T with positive coefficients for which Pf never vanishes.

With S the semigroup generated by ¥ one can replace (b’) by the seemingly
weaker hypothesis.

(b") There is a separating set of invariant finite dimensional subspaces D for
which (S|D)~ contains exactly one idempotent, the identity I.

Here (S| D)~ can be taken as the strong operator closure or the closure ofa
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corresponding semigroup of matrices since these coincide. Indeed the finite
dimensionality of D implies S| D is almost periodic, so the fact that I is the
only idempotent in (S|D)~ says its kernel is a group containing I, hence
containing S| D, whence D is a unitary subspace [1, 4.11].

Alternatively in all the preceding, (b’) can be replaced by

(b"") There is a separating set of invariant finite dimensional subspaces D for
which each T € T is non-contracting in the sense that fe D,0 e {T"f}"~
imply f=0.

Indeed this follows from a simple fact about operators of norm <1.

LeEmMmA 1. Let T be a subset of the unit ball of operators on a Banach space.
Then a (T-) unitary subspace D is simply a finite dimensional I-invariant
subspace on which each T € X is non-contracting.

To see this, note that because D is finite dimensional the strong operator
closure ={T"| D: n=1}~ is a compact Abelian semigroup; thus it has a
least ideal K which is a compact group, as is easily seen [10]. But the identity e
of K must be the identity operator, since T is non-contracting on D: for fe D
has O=e(f—ef) € {T"(f—ef)}, so f—ef=0. Hence S=eScKc@S, and S
=K is a group of invertible operators. Since S consists of operators of norm
<1 it consists of isometries, so T'| D lies in the compact isometry of D, for each
Te T, whence D is I-unitary. Provided T is a semigroup we can simply
assume it is bounded: for then ||k|| < M for all k € K (for any T), so T|D has an
inverse of norm <M as above, and (¥ |D)” is a compact semigroup with
inverses, so a group.

One way to obtain such invariant D is to assume ¥ commutes with a fixed
compact operator. In analogy with our earlier usage, we call a semigroup & of
operators non-contracting if 0 € (Sf)~ implies f=0.

CoroLLARY 3. Suppose T=2UR, where L € & and R € R imply LR=RL,
and each of £, R, satisfies (a) and (c). Suppose each T in T is non-contracting
while there is a compact operator Hg (respectively Hg) commuting with each
Te & (respectively R) whose generalized eigenspaces separate X.

Then X is a compact metric group and L (respectively R) is a generating set of
its left (respectively right) translation operators.

(X is necessarily metric since we have a countable set separating X.)

Such compact operators H are obtained of course in the group setting as
convolutions with appropriate central L' functions. Since H is compact, we
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know that for each of its non-zero eigenvalues A we have a least integer n for
which the finite dimensional null spaces D of (Al — HY" and that of (Al — H)"**
coincide; we are assuming X is separated by such generalized eigenspaces D.
The point here of course is that such D are S invariant, since H commutes with
the elements of &, and now Lemma 1 implies these are unitary subspaces.
Since their span separates the points of X in each case, we have (b)) in
Corollary 1, so that result identifies X as our compact group.

In particular, we can apply the same sort of argument to specific subsets of
R". Let $" be the n sphere in R"*!,

THEOREM 3. Suppose T is a transition operator on C(S") which satisfies (a) and
leaves invariant a finite dimensional rotation invariant subspace D which
separates S" while T is non-contracting on this subspace. Then T arises from an
element of the general orthogonal group on R"*!,

For example, D could be the space of homogeneous polynomials of degree k
(21). More generally, our proof applies equally well to show that for a
compact Riemannian globally symmetric space M of rank 1 (so two point
homogeneous [5, p. 355]) in place of S" (and an isometry invariant subspace
rather than rotation invariant) T arises from an isometry. As will be noted, the
crucial fact is that the (isometry) orbit space is then an interval. One
consequence for such M is that, if I denotes its group of isometries, any I-
invariant metric defining the topology of M yields the same isometry group.
Indeed, if I' is the (a priori larger) new isometry group, the compactness of I’
shows we have a probability measure on M which is I'-invariant (the image of
Haar measure) and that C(M) is spanned by finite dimensional I'-invariant
subspaces as usual. These are I-invariant of course, and finitely many suffice to
separate M by a simple argument using compactness. We have only to note
that those points not separated from my, e M by an invariant D form a
compact submanifold invariant D form a compact submanifold M, so
separation allows us to find a D, so that M, , has lower dimension. Thus we
can find a D with M, zero dimensional, hence finite, and so a D with M
={m,}. Their span now provides our D, and for ¢ € I' if Tf=fo¢, our result
shows T arises from an element of I, whence ¢ € I.

For the proof of Theorem 3, note that T'| D non-contracting implies D is a
unitary subspace for {T’:j=1} by Lemma 1. Thus D is spanned by T'-
eigenvectors of T exactly as in Theorem 2, and these separate S" since D does.
So just as there Tf=foq, f € D, for a self map ¢ of S” which lies in a compact
transformation group acting on S", so ¢ is in fact a homeomorphism.
Moreover, as we saw in the proof of Lemma 1, T|D lies in the compact
isometry group ‘of the subspace D of C(S").
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Consequently, the subgroup of the group of isometries on D generated by
homeomorphisms of S" contains a compact subgroup K generated T and the
operators arising from O,,,. Let G be the corresponding group of
homeomorphisms of S". Since K is compact in the uniform topology on
operators on D the same is true of the isometric image group K* of adjoint
operators; identifying S" with its homeomorphic image in D*, K*|S" clearly
corresponds to our group of homeomorphisms G, and compactness of K* | §" to
the compactness of G in the topology of uniform convergence on S". Because of
that compactness, G is a compact topological group, which acts as a
transformation group on S".

Now as a homogeneous space of the compact homeomorphism group G, S"
carries a G-invariant metric ¢ defining its topology. But for p, € S" the
component of p, in the open g ball about p, of (great circle) radius r>0 has its
boundary ¢ precisely the boundary of a Euclidean ball about p, in $": for if
p € 0 then 0 contains the orbit of p under the isotropy subgroup of p, in O, , ,,
a replica of $"~! and just the boundary of a Euclidean ball about p,. Indeed
because of this ¢ is just the union of such boundaries b Euclidean balls; since
each b seprates S” into exactly two components and all distinct h are pairwise
disjoint we conclude 0 consists of precisely one b, and our component is just an
open Euclidean ball. Because our component is invariant under the isotropy
subgroup G, of p, in G, we conclude that the elements of G, send open
Euclidean balls B, (p,) of radius R(r) centered at p, onto themselves. where R
is a strictly increasing function possibly having jumps but |0 as r | 0. Since we
see G, also must send dBpg,(p,) onto itself and each element of G, sends
Bgr((p) onto Bg,(g(p), for p € dBg,(po) we have

B = BR(r,(Po) U Lg; BR(r')(g(p))
8€lg

mapped onto itself by each element of G,,.

Now B is just the open Euclidean ball of (great circle) radius R(r)+ R(r').
Thus we similarly conclude that g € G, sends any open ball centered at p,,
whose radius lies in the N-fold sum of the range of R, onto itself; indeed since
an increasing union of such open balls is again mapped by g € G, onto itself,
we have the same conclusion for any radius which is the sum of a series R j,
with each R; in the range of R. Since we can find a sequence R | 0 in the range
of R, and any positive real is the sum of such a series (allowing repetitions), we
conclude each g € G, sends B,(p,) onto itself for any r. Evidently then g € G
sends B,(p) onto B,(g(p)), and thus in particular our ¢ giving rise to T lies in
0,44

In case D =P,, the space of polynomials of degree <k (for k=1), there is a
simpler algebraic argument available to finish the proof after one obtains ¢.
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For then ¢ is a polynomial map and it suffices to see P, is invariant. Indeed for
x; the ith coordinate function, x;0¢ is a polynomial of degree <k on S", as is
x¥op=(x;o0), and one can deduce that x;0¢ coincides with a first degree
polynomial on S" from the fact that S" is a hypersurface defined by a
polynomial whose highest homogeneous part is irreducible, arguing
with degrees. Of course almost all the argument is unnecessary if one can easily
conclude P, is invariant; for example, this is the case if T is a transition
operator on C(S") satisfying (a) which commutes with the spherical Laplacean
4, and is non-contracting, for then the eigenspaces of 4, the surface spherical
harmonics, are T-invariant, and P, is one. Another instance is contained in

CoroLLARY 4. Suppose X < R" is compact and not contained in the zero set of
any non-zero complex polynomial. Further suppose T is a transition operator on
C(X) satisfying (a) which leaves P invariant and is non-contracting there. Then,

modulo an affine change of coordinates, T arises from an orthogonal
transformation.

Here we obtain our homeomorphism ¢ exactly as in Theorem 3, and
because T is consequently multiplicative while p —» p| X isa 1 —1 map on P,,
we can easily argue in terms of degree to see P, is invariant (and thus T-
unitary) since if Tx;=x;0¢ € P, has degree > 1, (x;00)* € P, has degree >k.
Thus x;op=3;c;;x;+d; (with real coefficients). Since T|P, is (real and)
unitary when P, is taken in the appropriate inner product, if we use the Gram-
Schmidt process to obtain a real orthonormal basis 1, p,,...,p, from 1,
Xy,. .., X, then, since 1 L p,, spang {p,,. . .,p,} is invariant and p,,. . ., p, provide
the desired affinely equivalent coordinates relative to which T is an orthogonal
transformation.

Finally we note the simplification possible, when T is known to arise from a
self map ¢ of S" in Theorem 3. As a consequence of its proof we have

COROLLARY 5. Suppose ¢ is a continuous map of S" onto itself, and, for some
finite dimensional rotation invariant subspace D of C(S") other than the constants

we have Dopc=D. Then ¢ coincides on S" with an element of the general
orthogonal group O, ., on R"*1,

Because ¢ is onto, f — fo¢ is non-contracting on all of C(S"), and since D is
non-trivial it separates the points of some non-trivial homogeneous space
0,.,/H of 0,, . If this homogeneous space is S" itself we are done by just the
proof of Theorem 3; if not, H, which must contain the isotropy subgroup O, of
some north pole N of S", can only be generated by that subgroup and an

Math. Scand. 55 — 9
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element of 0, ,, which interchanges north and south poles (as is well known
and easily seen by considering the orbit of N under H), and O, ,/H is RP".
Since DopcD, ¢ thus maps antipodal pairs to antipodal pairs, and the
induced map ¢ on O, ,/H=RP" is now seen to arise from an element of O, ,
by exactly the proof of Theorem 3. Of course it is immediate that ¢ itself arises
from the same element.

1.4. Returning to our conditions, we should note that as long as (a) holds, we
can of course make an assertion without any separation condition, but only
about the closed span B of the unitary subspaces; B is the pullback of C(Y) for
a quotient space Y of X, and our assertions apply to T|B. (Of course B may
reduce to the constants.) As noted in [2, footnote 1] a transition operator T
yields as well defined operator on C(F ;), where F ris the closure of the union of
the supports of all fixed u; thus if (a) fails we can make some assertion about
any subset of T for which all F coincide.

Next, we should probably note that (a) is precisely equivalent to the
condition

(@) For Te T and fe C(X), 0 € €{T"f|: n=1} implies f=0.

Here @ is the closed convex hull. Indeed if (a) holds and 0 lies in the convex
hull, we have

N
Y ATfl <e for 4,20
n=1

summing to 1, whence for a fixed u we obtain u(lf|)=3 A,u(T"|f])<e, so (a)
implies f=0 on X. Conversely assuming (a’), if f=0 vanishes on the set Fp,
f e C(X), and v is any probability measure, then since any w* cluster point u of
{I/NTN  T*v} is necessarily fixed by T* so u(f)=0, we have
v(I/NIN_ | Tf) — 0, whence 1/N YN, T"f — 0 weakly in C(X). By Mazur’s
theorem then 0 € €{T"f: n=1}, so f=0 by (a’). Thus F=X as (a) asserts.
Alternatively, (a) and (a’) are equivalent to
(@) For Te X and fe C(X), |[I/NTN_, T"|f||l, — O implies f=0.
Indeed 0 € €{T"|f|} is equivalent to the condition in (a”) since ¢
>Yk_, A,T"f| (as above) implies
1 X u 1 Nk | LA
o>y LP(Z AT 25 8 TNz Y T
N ngl (n=l l" Nj=kz+l Nj;l

if 2k|| f|l <eN.
Thus we can interpret (a)-(a”’) as asserting that for the Markov proces
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associated with any Te T, for each non-void open U in X there is a starting
point x from which we return to U with positive expected frequency.

1.5. Both (b) and (c) are assertions about entities with a common property
for all T in T; when T is a finite commuting set and (a) holds, (b) can be
replaced by individual restrictions.

THEOREM 4. Let T be a finite commuting set of transition operators satisfying
(a) and suppose that

(b*) for each Te X the subspace Ay of elements of C(X) almost periodic
under {T": n>1} separates X, while T is non-contracting on Ar.

Then T arises from the action of a compact Abelian transformation group on X,
and if (c) also holds X is a compact Abelian group.

Ar={fe C(X): {T"f: n=1}" iscompact} is of course closed and Tinvariant.
Because the strongly closed orbit {T"f: n2 1}~ of f € Aris compact, the strong
operator closure of {T"|A;: n=1} is a compact jointly continuous Abelian
semigroup, as we can see by identifying it with the closure of the image of
{T"|A:nz1} in the topological product of orbits P, {T"fin>1}".
Consequently, its least ideal is a compact group K, exactly as in Lemma 1,
whose proof in fact shows the identity of K 1 is the identity operator on 4 by
non-contraction. Because of this 4 is spanned by T'-eigenvectors of T via the
argument for the standard half of Theorem 1 above (with kf in place of fog).
So the T!-eigenvectors for T separate X.

In fact we now know T arises from a map ¢ of X as in Theorem 1, so the T*-
eigenvectors for T form a multiplicative semigroup: Tf,=4,f, i=1,2 implies

Tf, 2= (fif)eo = (fie9)(fr00) = LA S, .

Since Tf= Tf we conclude the closed span of the T!-eigenvectors of T'is a self-
adjoint algebra separating X, which must therefore be C(X) by Stone-
Weierstrass.

Hence A= C(X) for each Te I, and, since the identity operator of K is
now the identity operator on C(X) and k — kf is strongly continuous for
fe C(X), we can in fact approximate f by T!-eigenvectors using an
approximate identity of trigonometric polynomials on K : for ¢ >0 and certain
a; € C, k; € Ky we have

f—iajj <k,Ej>kfdk” < g
1 Kr
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thus those non-zero elements of the form | K<k, kykf dk yield T'-eigenvectors
for T which span C(X)= A . We note this only because we can similarly assert
that for T,, T, € T, non-zero elements of the form

f <k1,E1>k,(J <kz,’zz>k2fdk2)dk1
Kr, Kr,

= f J <k1,121><k2’ E2>k1k2fdkz dky
Kr, J K7,

span C(X), and are common T!-eigenvectors for T; and T, since the elements
of Ky, and Ky, commute. Evidently then C(X) is spanned by common T!-
eigenvectors for T since T is finite. But now (b) holds so we are done.

2. The locally compact case.

Henceforth X will be a locally compact Hausdorff space, C(X) the space of
bounded continuous functions, and C,(X) the subspace of functions vanishing
at infinity. In order to accomodate to the locally compact setting we shall have
to use hypotheses on a semigroup S of transition operators (rather than a set)
leaving Co(X) invariant. Then Tf(x)=| fdm,, with m,=m! a probability
measure for which x — m, is w* continuous into C,(X)*, while in addition
x —  in X implies m, K — 0 for any compact K in X.

Evidently, we can no longer use finite invariant measures, and our
replacement for (a) will require that we assume & has the property that ST
< TS for any Te S. This insures that we can regard S as a directed set by
taking T, <T, if T, € ST, (since then Tand S in S have TS (=S'Tfor §' € ©)
as a common upper bound). Now call a closed subset F of X uniformly
absorbing on compacta if, for each compact K in X, m'F > 1 uniformly for
x € K (that is, m]F>1—¢for x € K, Te &T,). Our replacement for (a) simply
precludes the existence of any such sets save X itself. Our result, in its Abelian
form, is

THEOREM 5. Let X be a locally compact Hausdorff space and S a semigroup of
transition operators on C(X) leaving C,(X) invariant with ST<TS, all Te .
Suppose

(2) X has no proper closed subsets uniformly absorbing on compacta.

(B) The common T*-eigenvectors for S separate X.

(y) The only bounded lower semicontinuous functions fixed by all Te S are
the constants, and f20, 0%£f e C(X), x, € X, imply supreg Tf(x)>0.

(0) S|Cy(X) is weakly almost periodic [1].
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Then X is a locally compact abelian group and & a generating set of its
translation operators.

“Generating” is in the sense of the strong operator topology on C,(X), the
uniformly continuous functions. The converse is essentially trivial. Here (a)-(y)
correspond to (a)-(c) of course, noting that the latter half of (y) merely says the
union of the supports of the various m! is dense in X, which evidently was an
immediate consequence of (c”), while (&) represents a new feature of the locally
compact setting. Whether it is essential is unclear, but certainly both () (in
some form) and (f) are; for example for X the additive non-negative reals and
S its translation operators, only (a) fails.

Actually, as we shall see after the proof, (0) is implied here by the weaker
hypothesis

(8') There is a non-zero f in Cy(X) for which Sf is conditionslly weakly

compact.

2.1. The proof begins exactly as in Theorem 1. Let f be a common T'-
eigenvector, Te S, and Tf=4f, |A|=1. Then

(1) Sl = ITf (X)) = demx = jlfl dm, = T|f|(x)

so |fIST|f]| for every Te &. Set h=supg.sS|f], so h is lower semi-continuous
and bounded; we shall next show h is fixed under all T in S, hence constant by

)

From non-negativity of each S € € and |f|< T|f| we have
() SIfl = STIfl, S, TeX.
Thus

h = supS|f| < supSTIf] < sup TSIf|
Sed SeS Se&
since ST<TS. But TS|f|< Th, so, continuing,
h < supTS|f| £ Th.
se@
On the other hand by a well known property of the integral

Th = TsupS|f| = supTS|f]| £ h
Sec Sec

since T& < &; thus Th=h for all Te € and h is constant by (). Evidently, if
c=sup|f], so ¢>0, then c=suph and h=c.
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Now T— T|f] is an increasing net since T,<'T, says T,=ST,=T,S’ for
some S, S’ in S (again since ST, = T, €), and thus T,|f| < T, S'| f| = T,| f| by (2).
So because T|f|1 c, a constant, convergence is uniform on compacta by Dini’s
theorem. Thus () implies the closed set F={x: |f(x)|=c—¢} cannot be proper
since

TIfI(x) = Jlfldmf < (c—emI(X N\ F)+cmI(F)

now implies mT(F) —=— | uniformly on compacta. We conclude |f|=c, yielding
equality in (1). But that, again by (f), implies the closed support of mT is a set
of constancy of f, and m[ is a point mass as before, so T arises from a self map
¢ of X and our common T!-eigenvectors form a multiplicative semigroup.
Because T7=Tf their closed span A is a closed separating self-adjoint
subalgebra of C(X).

Because A is spanned by common T'-eigenvectors S|4 is an almost
periodic semigroup of operators (necessarily Abelian for the same reason),
whose closure K=(S|A4)” in the strong operator topology is a jointly
continuous compact Abelian semigroup as in Theorem 4. Since K is Abelian it
has a least ideal which is a compact group (as is well known and easily proved
[10]). Now the identity of K is an idempotent operator E which necessarily has
each common T!-eigenvector as a T'-eigenvector (as all elements of K clearly
must), so E fixes each common T'-eigenvector. Hence E is the identity on A.
Consequently K =KE is its own least ideal, so a compact group.

2.2. Now A can be identified as C(Y) for a compact Hausdorff space Y into
which X maps in a continuous 1—1 fashion since A separates X, while the
group K of norm decreasing non-negative maps of C(Y) must be a group of
isometries since the identity operator is its identity. Thus each element of K is
of the form

f—ofog fed,

where g is a self-homeomorphism of Y. Henceforth, let G denote the group of

homeomorphisms g we so obtain, and S those corresponding to elements of
S| A.

2.3. Since we can identify measures on X with their images on Y, if x € X,
and g € S gives rise to an element T of S| A = K, we can evidently identify our
m! as the point mass at g(x); thus such g map X into itself, and indeed
continuously since x — m! was w* continuous into Cy(X)*. Moreover g|X
even extends continuously as a self map of X, (the one point compactification)
into itself since x; — oo in X implies g(x,;) — oo because Cy(X)og=TC,(X)
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< Cy(X). Thus we can extend g to a 1 — 1 continuous map of X , into itself, and
so to a homeomorphism. In fact the map is also onto since mxT'(g(Xw) nNx)=1
for all x, T, since g'(x) € g'g(X )= g(X ) =g(X ), s0 g(X )N X is precisely X
by (x). We conclude that g| X is a self homeomorphism of X (as now g™ '| X
also must be). Consequently the subgroup

H = {ge G: g| X is a self homeomorphism of X}

of G contains the set S which gives rise to our generating subsemigroup S| 4 of
K=(S|A4)".

2.4. Note that for any x, € X, Sx,, and so Hx,, is dense in X by the latter
half of (y).

Now we want to see Hx,=X. Recalling that we have an isomorphism
between the groups K and G, we can transfer the compact topology of K to G,
and regard G as a compact topological group. Since the topology of K is the
strong operator topology on C(Y)=A, that on G is precisely uniform
convergence on Y of course. Moreover since (S|A4)” =K, S™ =G.

Now suppose that x; € X\ Hx,. We have a net {h,} in S with h;x, — x, in
X, and we can of course assume h; — g in G. Fix h € H. Then there is an f=f,
in Cy(X) which has f(h(x,))=1. Consequently

f(hs(h(x0))) = f(hhs(xo)) = f(h(xy) =1,

and since f € C,(X) this implies that for x = h(x,) there is a compact K < X for
which {h;(x)};>5 = K. But hs(x) — g(x) in Y, so {h,(x)} can have at most one
cluster point, g(x), in K,. Hence x € Hx,, implies g(x) € X and h;(x) — g(x) in
X. In particular, g(x,)=x,.

But for any f'e C,, since h; € S by (J) { fohs} has a weak, hence pointwise
cluster point f’ in Cy(X), and since f(h;(x)) — f(g(x)) for x in Hx,, fog=f" on
Hx,. So for every f e Cy(X), (fog)| Hx, has a continuous extension to X, and
that says g | Hx, also has a continuous extension, g*, to X. The same argument
can now be applied to g~ ': since Sx, is dense in X there is a net {h}} in S with
hyx, — xo=g 'x,, and for any cluster point g’ of {h}} in G, g'gx,=g'x; =X,.
Thus g'ghx,=hg'gx,=hx, for all hin H, so g'g fixes each x in a dense subset of
X, hence of Y, and g'=g~'. So h; —» g~! by compactness, and now the
preceding argument says g~ '| Hx, has a continuous extension g, to X. But
g '|Hx,=(g|Hx,)" ", and thus the extension g, is inverse to g*, and g* is a
self homeomorphism of X. Moreover as we have seen, for any fin Co(X), {f
ohs} has a weak cluster point f' coinciding on Hx, with (fog)|Hxy=(f
og*)| Hx,. So f' is unique, and necessarily the continuous function fog*. Thus
fog* € Cy(X), and foh; — fog* weakly, hence pointwise on X, so h; — g*
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pointwise on X. Finally then aoh; — aog* pointwise on X for a € A=C(Y).
Since aoh; — aog uniformly, aog=aog* on X, and now we see g*=¢|X;
similarly g, =g~ '| X so g lies in H. Hence x, =g(x,) € Hx, after all, and X
=Hx,.

Because H is Abelian the isotropy subgroup of x, is trivial (hyx, = x, implies
hohx =hhgx,=hxy, so hg fixes every x in Hx,=x, whence h, is the identity
map). Thus h — h(x,)is 1 — 1 and we can now transfer our group structure on
H to X, setting, say, h(x,)h'(x,) = hh' (x,). Since each h is continuous on X our
multiplication is continuous in the second factor: if hj(x,) — h'(xy) in X,
hhjs(xo) — hh'(xo) so h(xg) hs(xe) = h(xg)h (xo). So X is now an Abelian
locally compact separately continuous group, hence a locally compact Abelian
group by Ellis’ Theorem [2, 6, 9]. Of course each element of S amounts to a
translation on our group, and we are done.

In order to see (&') implies (d) in the presence of (x)-(y), note that once we
know each Te & arises from a self map of X, hence is multiplicative, the
elements fin C(X) for which Sf'is conditionally weakly compact (i.e., the S-
weakly almost periodic elements,) form an algebra B closed under the taking of
conjugates and absolute values. Indeed, this follows since conditional weak
compactness in C(X), (hence in C(8X)) amounts to conditional compactness in
the topology of pointwise convergence on the Stone-Cech compactification
pX.

Consequently, since the elements A are almost periodic, BN C,(X) contains
the A-module Sf generates in C,(X) if f is our non-zero weakly almost
periodic function given in (&'). Since this 4-module separates any pair of points
not both in (Tf)™'(0) because A does, it must separate X if Nz (T/)™'(0)
=@. But Tf (x)=0 for all Te & implies f vanishes on Sx which is dense in X
as we saw in the beginning of 2.4.

Thus BN Cy(X) is dense subalgebra of C,(X) by Stone-Weierstrass, and
since the S-weakly almost periodic elements of C,(X) form a necessarily closed
subspace, (0) follows.

Evidently the group G in our proof is the Bohr compactification of X; the
same is true in our next, more general, setting.

2.5. For maximally almost periodic locally compact groups the
corresponding result again brings in the unitary subspaces of [1].

THEOREM 6. Suppose X is a locally compact Hausdorff space and Sg and Sy,
are semigroups of transition operators on C(X) leaving Co(X) imvariant, with RL
=LR for L € S, R € Sy, while S,L<cL&, SR <=RSg Suppose

(2) X has no proper closed subsets uniformly absorbing on compacta for S4 or
Sy
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(B) There is a set of finite dimensional subspaces of C(X) which separate X
and each of which is both an Sg- and Sy-unitary subspace.

(y) The only bounded lower semicontinuous functions fixed by all T in ©=8g
(or in Sg) are the constants, and in each case, f=0,f+0in C(X), x, € X,
imply supreg Tf (Xo)>0.

(0) SglCo(X) and Sg| Cy(X) are weakly almost periodic.

Then X is a (necessarily maximally almost periodic) locally compact group with
Sy and Sy, generating sets of left and right translation operators.

(Again the analogue of (¢’) will suffice.)

Exactly as in Theorem 2 for each Te Sy (or Sg) we have the subspaces in
(B) spanned by T'-eigenvectors for T, so these eigenvectors span a self-adjoint
algebra A separating X as in 2.1. Thus T arises from a 1 —1 map g of X into
itself which is in fact onto and a homeomorphism exactly as in 2.3 (where
g(X )N X is now Sg-uniformly absorbing on compacta, so all of X).

Now consider the group of homeomorphisms of X all such g generate. Each
common Sg¢- and Sy-unitary subspace D is necessarily invariant under the
norm 1 maps these homeomorphisms induce on C(X), and if D,,D, are two
such subspaces then the finite dimensional subspace

D = span{f,f,:fie D, i=1,2}

of C(X) is clearly invariant under these maps, which form a group with the
identity operator on D as its identity, and of course the same applies to the
corresponding maps for Sg. Thus D is again a unitary space for &y and Sg, so
the closed span A4 of all common &gy and Sy-unitary subspaces is an algebra,
and necessarily self-adjoint since D is unitary if D is.

We can of course now identify A and C(Y) for a compact Hausdorff space Y
into which X maps in a continuous 1—1 fashion. As in Theorem 2 each
element of S (respectively Sg,) arises from a homeomorphism of Y, and as in
the remark following Theorem 2 have strong operator closures which are
compact groups K4, K. The corresponding compact groups G4, G (as in 2.2)
of homeomorphisms, with semigroups Sg, Sg corresponding to Sg, Sg, have
trivial isotropy subgroups for any y € Y, as in the proof of Corollary 1. Thus
we can identify Y with each of these groups, and the induced map Gy — Gg is
of course an anti-isomorphism. Now exactly as in 2.3 we have subgroups

Hg = {g € G4: g| X is a self homeomorphism of X}

and Hg of G4, Gy which contain the semigroups Sy, Sg, and as before Hgx,
and Hgx, are dense in X for any x, € X. Because h € Hy, b’ € Hg imply h and
k' commute we can argue just as in 2.4 that in fact Hgx,=X; one has only to
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use h; in Sg and h in Sg. In the same way any weak cluster point f’ of { foh,}
(with {h;} in S¢ say) has fog=f" on Hgx, (Where h; — gin GQ so one obtains
the continuous extension g* of g| Hg@x, as before.

Thus our earlier arguments yield the fact that Hgoxo =X = Hgx. for any x, in
X, and one can identify these groups with X, obtaining now a locally compact
group with continuity of multiplication in the right factor as before; continuity
in the left factor follows from the fact that the anti-isomorphism of Gg onto Gy
send Hg onto Hg (so that the continuity of h" — hh'(x,) for b’ in Hg provides
that). Finally, that H o maps into Hg (and vice versa) is a direct consequence of
Hgxo= X = Hgx, and the triviality of the G ¢-, Gg-isotropy subgroups: if g(x,)
=h(x,) for g € Gg, h € Hg, g~ 'h(xo)=x,, and then g=Hh, so the elements of Hg
(respectively Hg) are characterized as those sending an x, in X into X.

3.

We close with two facts concerning unitary subspaces which emerged from
our original argument but were not used above, and may have independent
interest in the context of [1]. First, if € is a semigroup of operators on a
Banach space B, the sum of finitely many (S-)unitary subspaces is unitary.

Indeed it is clear that a direct sum is unitary. So suppose D, and D, are
unitary, so D, N D, is invariant. Relative to an inner product on D, which puts
S| D, into the unitary operators the orthogonal complement D, S (D, N D,) is
also invariant, hence unitary. Thus D, + D, =D, @ (D, & (D, N D,)) is unitary.

One consequence of this is that B, the closed span in B of all unitary
subspaces is just the closure of their union. Because of this we have

ProvrosiTiON 1. Suppose & is a uniformly bounded semigroup of operators on a
Banach space B and the span of the S-unitary subspaces is dense in B. Then its
strong operator closure S~ is a compact group of invertibles in the strong
operator topology.

Let |T|| =M, all Te &. For any unitary subspace D, because S| D lies in a
compact group whose identity is the identity operator on D, (SID)" is a
compact group of invertible operators on D, as a closed subsemigroup of a
compact group. But for ¢>0 and f € B thereis a D and f’ € D with || f—f'|| <e.
Thus since (T|D)™! € (S|D)” has norm <M for any Te S,

ITAl 2 TS| - Me 2 ~—llfll—Mﬁ 2 —Mllfll———Me

So M||TfIIZfIlZ1/M|Tf|, and this holds in fact for Te &~. Hence each
Te &~ is topological, with its necessarily closed range all of B since that
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contains each unitary subspace D. Thus &~ consists of invertibles with inverses
also bounded by M.

Now & is an almost periodic semigroup of operators on B so &~ is a
compact semigroup when taken in the strong operator topology [1]. Thus
0 e (Sf)” =S fimplies f=0, which says [f, 49] &~ has a unique minimal
left ideal. On the other hand the same remarks apply to the semigroup S~!
={T"':Te S} and (S7!)" since S-unitary subspaces are S~ '-unitary,
trivially, and 0 € (€7'f)"=(S"!)"f implies f=0. So (S~')” also has a
unique minimal left ideal.

But the anti-isomorphism T— T~ ! of S onto S~ ! trivially extends to take
S~ onto (S7')~ (as does its inverse, so it extends as an anti-isomorphism): for
multiplication is jointly continuous in the strong operator topology on
bounded sets of operators, so that if T; — T, T; € S, and S is a cluster point of
{T5'}, then ST is a cluster point of {T,; 'T,} and TS one of {T,;T; '} whence
S=T"1.

We now conclude from the uniqueness of the minimal left ideal in (&71)~
that S~ also has a unique minimal right ideal, and hence that its kernel K is a
compact group [1, 2.5]. By [1, 4.11 and 4.1] the identity E of K is the
projection of B onto the closed span of the unitary subspaces, so the identity
operator. Thus 8™ =ES " cKc&~ so &~ =K is a compact group, which
consists of invertibles since its identity is the identity operator, completing our
proof.

When & consists of operators of norm =<1 as earlier, our operators are all
isometries and we can avoid the ideal structure of &~ since we can
immediately claim the group of isometries generated by & is almost periodic
on B, being uniformly bounded. Just this last property to appear easily in the
more general case.

Finally, we should note an alternative argument in the general case. In terms
of [1, 4.11(iv)] we are assuming B=B,, and the first part of the preceding
argument show B, = {0}, so (iv) requires showing B,>B,=B. But for fe &g
and ¢>0 if we choose D so that it contains f', g’ with || f—f'|| <e and ||g—g'|
<g, then sincef=Tg, Te S, | f—Tg'|| <Meso | f'—Tg'|| <2Me. Now there
is an S in &~ for which S|D=(T|D)"! since & |D is compact and,
containing S| D, must contain (S| D), a group. So ||Sf' —g'|| <2M?e, whence
|Sf—gll < Me+2M?g+¢, and thus g € S~ f and we have shown any f € B lies
in B, as required.

In fact this last bit or argument immediately yields the following slight
improvement of (iv) = (ii) in [1, 4.11], eliminating the hypothesis that B,=B,,.
(The terminology is that of [1].)
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PROPOSITION 2. Suupose S is a weakly almost periodic semigroup of operators
on a Banach space B and the subset By is a closed S-invariant subspace while B
=B, ® B, Then the least ideal K(S~) of ©7, the weak operator closure of G, is
a compact group (in either the weak or strong operator topology) whose identity
E is the projection of B, ® B, onto B,

Indeed the preceding proof shows B, B,, and if f € B,, since f=f,+f, with
fo € By and f, € B,=B,, f, € B,N By, whicn is {0} just by definition. So B,< B,
and now (iv) of [1, 4.11] holds, so our proposition follows from (iv) implies (ii)
of [1, 4.11]. That says K(S7) is a compact group in the weak operator
topology; in fact it is a compact group in the strong operator topology, since
K(©7)| B, is compact in the (less fine) strong operator topology of B(B,) by
[1, 8.2].

We should also note that B, < B, always holds for a bounded semigroup &
(improving [1, 4.4], which asserts each unitary subspace Dc<B,), as a
consequence of the fact that a finite sum of unitary subspaces D is unitary. For
if ¢>0 and fe B, then there is an f’ lying in some D with | f—f"| <e, and,
since S~ | D< (S| D)~, while the latter is a group, for Te S~ thereisa T’ € &
for which | T'Tf" —f’|| <e. Thus | T'Tf—f || <3Me¢ where M bounds &, whence
feB,
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