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TAKESAKI'S DUALITY FOR
A NON-DEGENERATE CO-ACTION

YOSHIKAZU KATAYAMA

Abstract.

Let 0 be a non-degenerate co-action of a locally compact group G on a C*-
algebra A. We can find an action § on a d-crossed product A x ;G and show
that a crossed product (4 x ;G)x ;G is isomorphic to 4® C(L*(G)) where
C(L*(G)) is the algebra of all compact operators on L?(G).

A and B are C*-algebras. We denote by M (A4) the multiplier algebra of A. If
A is a concrete C*-algebra, we may define M(A)={a e A"; ab+ca € A for
b,c € A}. Following [1] we put

M(A®B) = {x e M(A®B) ; x(1®b)+ (1®c)x € AQB for b,c € B},

where the symbol ® means the spatial tensor product.

Let G be a locally compact group. L%(G) is the Hilbert space of square
integrable functions on G with a left Haar measure ds on G. The left and right
regular representations of G on L?(G) are defined by

(AE)() = &(s™'t)
(@) (t) = 47 H(s)¢(ts)

for 5,t € G and & € L2(G), where 4 is the modular function of G. Let C¥(G) be
the C*-algebra generated by {A(f); f e L'(G)} where

MSf) = J f(s)A(s)ds ,
G
which is called the reduced group C*-algebra of G. We define a unitary
operator W on L%(G x G) by
(Wo)(s, 1) = &(s,s1)

for ¢eL*(GxG) and we set Jg(x)=W*x@1)W=AdW*(x®1) for
x € C*(G). Then we can show easily that d is an isomorphism of C}*(G) into
M(C*(G)®C*(G)). Since 85(C*(G))(1®C*(G)) generates C*(G)® C(G), for
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each approximate identity {e;} of C*(G), ds(e;) converges to 1 in the strict
topology of M(C*(G)® C}(G)).

Let 6 be a homomorphism of 4 into M (B) satisfying that 0 (u;) converges to 1
in the strict topology of M (B) for each approximate identity {u;} of 4. Then 0
extends uniquely to a homomorphism (also denoted by 6) of M(A) into M(B)
([8, Lemme 0.2.6]). The above &, has a property

(5G®’)5G = (l®5c)5a s

where 1 is the identity map of CX(G) (the above 6;®:! and 1®J; are
homomorphisms on M(C*(G)® C*(G))).

DEeFINITION. Let § be an isomorphism of 4 into M(A® C*(G)). The
isomorphism ¢ is called a co-action of G on 4 if for each approximate identity
{u;} of A, 6(u;) converges to 1 in the strict topology of M(4® C*(G)) and
O®1)0=(1®z)0.

We define a linear map 4, by d,(a)=L,d(a) for u € B,(G)=C}(G)*, aec A
where L, is the left slice map of u (see [2]). Since 6 is a map into M (A ® C*(G)),
by [7, Theorem 2.1] ¢, is a linear map of A4 into A.

LEmMMA 1. Let 6 be a co-action of G on A. For x=0,(a), ae A and
u € B,(G)N K(G), we have

" f O IOz ds = 29 (1 @A)

for @ € B(G)NK(G) and z e C*(G), where ¢(s)=¢(s™ ') and {z,pA(s)*)
={A(s)*z, 0> (K(G) is the family of continuous functions on G with compact
supports).

Proor. Both functions se€ G — A(s)z € C¥(G) and se G — @A(s)* €
CX(G)* are norm-continuous. The integrand:
seG— 5(,,1(5):()6)@1(8)2

is continuous in the norm topology of A® C*(G), whose support is contained
in a compact set (supp u)- (supp @)~ *. Hence [0, (x)®A(s)zds is contained
in AQ C*(G). For w € A*, y € B,(G)NK(G) and z=A(f), € K(G), we have

< J S pair M ®A()zds, ©® lﬁ>
G

= f (6(x), 0@ PA(s)*) KA(s)z, ¥ ds
G
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since the function

s€G — LAz Yy = ASAS),¥)

is continuous whose support is contained in a compact set
(supp¥)- (supp )77,

2 = <5(X),w®J </1(S)2,l//>¢/1(5)*dS> :
G

For g € L'(G), we get

</1(g), J CABS)z, ) A(s)* ds>

= | <Az Y><A)*Ag), @) ds

GxG

CAth)z, Y >g (D<A ™Y, @) dtdh (s7't=h"")
GxG

G
- j M)z, W8 (DA™ 1), @) deds

= < @AMz, Y><Ah™), ) dh

JG

»

= | ¢hKARAMzY>dh = (ARQA(P)z,¥)

(Mg, AM@)zyry
Therefore we have SG {A()z, Y ) pA(s)* ds = A(¢P)zy. Hence

2 = X, w@AP)Y) = ($(X)(1QAP)2), @Y .

Since B,(G)N K(G) is dense in the Fourier algebra A(G) (see [2]), we obtain

A3) L Spasr (X)@A(s)zds = S(x)(1®A($)z)

for z=A(f), f € K(G). Both sides in (3) are continuous with respect to z. Then
we have the equation (3) for all z € C¥(G).

LEMMA 2. Let 6 be as above. The closure I1(A) of {0,(a);a € A, ¢ € A(G)} isa
C*-subalgebra of A. Moreover for x € I1(A) and z e C¥(G) the element
0(x)(1®2) is contained in 1(A)® CX(G).
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Proor. Since K(G)NA(G) is norm-dense in A(G) and |4,|=<|el|l for
¢ € B,(G), I(A) is the closure of {J,(a); a € A, ¢ € K(G)N A(G)}. Since A(G)
is a regular ring (see [2]), we can find, for ¢,,¢, € K(G)N A(G), ¢, in
K(G)N A(G) with ¢3=1 on a neighbourhood of (supp ¢,): (supp¢,) and
supp ¢, Usupp ¢,. Then we obtain

09,(84,(x)04,(1) = 84,(x)04,(y)
39,(04,(x) +0,,(0) = 8y, (x) +3,,(y)

for all z,y € A. Therefore 1(A4) is a C*-subalgebra of A. When we choose an
approximate identity {¢;} of L'(G) in the set K(G)N B,(G)=K(G)N A(G), by
the equation (1) we have

limJ\ 0o (X)®A(s)zds = limd(x)(1@AP)2) = d(X)(1®2),

i G i

that is 4(x)(1®z) is contained in I(4)® C}(G) for x=4,(y), some y € A and
u e K(G)N A(G). Therefore 6(x)(1®z) is contained in [(A)®CX(G) for
x € I1(A).

LEMMA 3. Let & be as above. The closed subspace [(I(A))(1® C*(G))]
generated by 5(I1(A))(1® C*(G)) contains I(A)® C}(G).

Proor. Take x=46,(y), (v € A, u € A(G)NK(G)), and by (1) we have, for
¢ € A(G)NK(G),

O(x)(1®A(P) = j Opas(X)®A(s)ds  (in the strict topology) .
G

For v € A(G)N K(G), we obtain
1®LL1®6a){6(x)(1®A()}]

I®L, (J 0pa (s (X) ® A(S) @ A(s) ds)
G

- j Ve (V@A) s

On the other hand, we get, for w, € A*, w, € C}(G)*
GBLL(1®a)(3(x)(1 @ AP, 0 ®wy)
= {((1®8x5(x)(1 @A), 0, ®w; ®V)

= <(<5 ®1d(x), 0, ® (j P()A()RAls) dS) (0, ® v>
G
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= L ()X (6®1d(x), w; ®A(s)w, ®A(s)v) ds

= ‘[G ¢(s)<6(6l(s)v(x))(l ®2'(S))1 @y ®(D2> ds

= <JG P(8)0(0 350 (X)) (1 ® A(5)) ds, 4 ®w> .
Therefore

@ IQL,[(1®36)(6(x)(1®AP)]
= L P(5)6(0150 (X)) (1 ®A(s)) ds = j V(8)0 a5 (X) D A(s) ds .
G

For z € C¥(G) we obtain,

jo P (5)0(0 350 (X)) (1R A(s)z) ds = j ()0 pagsys (X) ® A(s) zds .
G

Since the integrands in the above equation are norm-continuous,

i [ 503(610,)(1 0202 ds = 6,9
v Jg

in the norm topology, when the measure v(s)ds tends to a Dirac measure at
the identity of G. Then [§(I(4))(1® C*(G))] contains I(4)® C}*(G).

REeMARK. The restriction d|1(4) of § to I(A) is a co-action of G on I(A).

LEMMA 4. Let & be as above. The closed linear span [6(4)(1® CX(G))] is
coincided with I(A)® CX(G).

Proor. Without the condition x=4§,(y) in the proof of the former equality in
(4), we have, for v, € A(G)NK(G), x € A4,

1® (06),((x)(1®A(P))) = JG G(8)0(0 150 (X)) (1 ®A(s)) ds .
Since A®C*(G) contains J4(x)(1®A(p)), the norm closure of

{(1® (35),)(0(x)(1®A(P))); v € A(G) N K(G)} contains (x)(1® A(¢)). The norm
closure of

{L P()9(19oX)(1®A(s)2)ds ; ve AG)NK (G)}

Math. Scand. 55 — 10
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contains d(x)(1®A(@)z), (z € C¥(G)). Since the element J,),(x) is in I(A),
Lemma 2 implies that [ @ (5)0(9,),(¥))(1 ® A(s)z) ds is in I(A)® C*(G), that is

S(x)(1®A(@)2) € I(ARCH(G) .

By taking ¢ as an approximate identity of L!'(G), we get
0(x)(1®2z) € I(A)®C*(G) for x € A and z € C¥(G). By Lemma 3, we have
[6(A(1®CHGNI=1(AH®CF(G).

THEOREM 5. Let 6 be as above. The following statements are equivalent.

(i) A=1(A), ,
(i) [P(A(I®CHG)=A4®CH(G),
(i) [8(A)(1®C(L*(G))]=A®C(L*(G)),
(iv) 0 is non-degenerate in Landstad’s sence, i.e. for each non-zero linear
functional w in A*, we can find u € B,(G) with (w®u)d +0.

Proor. The equivalence of (i) and (ii) follows from Lemma 4. Since
C*(G)-Co(G) generates C(L*(G)), we have (ii) = (ii). We shall prove
(iii) = (i). We define a rank one operator £®n° with (£®n°)(()={{,n)¢ for
&n and { € L2(G). For &,n; (i=1,2), {,n e L*(G) and elements p,q of the
universal Hilbert space for A, we have

K1® (&, ®n7)}0(@){1® (£, ®15)}pRE, q®n)
= 3(@)(p®LEn0E:),9a@n, Eony

= B@(p®E).q®ny &myy &y
= O, @P,a><E 20801
where
gy, (2) = 281D
= {0y, (@R (£, ®N3)(p®C)q®n) -
Then

[1® ¢, @)@ ® (€:®19)] = 6, (@@ (E:®ns) .

Since the family of finite rank operators on L%*(G) generates C(L*(G)),
3(A)(1®C(L*(G))) is contained in I(4)® C(L*(G)). Then by (iii), we have
A®C(L*(G))=1(A)® C(L?*(G)), which implies A=1I(A). If (i) holds, for non
zero functionals w in A* and u in B,(G), we can find a in A with (0 ® au)d +0.
Suppose that I(A4) is a proper C*-subalgebra of A. We can find a non zero
linear functional w in A* with w(I(A4))=0. Then it follows from Lemma 4 and
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[7, Theorem 2.1] that (w®u)0=0 for all u € B,(G), which is a contradiction
with non-degeneracy of .

It is found in [4, Lemma 3.8] that a co-action é of a discrete or amenable
group G is automatically non-degenerate. Also a canonical co-action on a
reduced crossed product for a C*-dynamical system is automatically non-
degenerate. The author has been unable to prove the automatical non-
degeneracy of o for arbitrary locally compact group. For convenience of
readers, we prove the automatical non-degeneracy for a discrete or amenable
group. We prove the condition (i) in Theorem 5 in a slight different way.

ProrosiTiON 6 ([4]). Let G be a discrete or amenable group. A co-action 6 of
G on A is automatically non-degenerate.

Proor. By [7, Theorem 2.1], for u € B,(G), we find a in 4 and v € B,(G) with
u=av. Then we have

0,(8) = 04(x) = L,(6(x)(1®a))
in I(A) by Lemma 4. We have

) {5(5..()6)) = 0L,(0(x)) = (1QL,)(E®1(x)
= 1QL((1®86)(6(x)) = 1®(36)u(0(x)) -

Suppose that G is amenable, we take the identity u,(s)=1 in B,(G)=B(G).
Since 1® (), is an identity map of M (4® C}¥(G)), we have 4(3,,(x))=(x) for
x € A, which implies x=4, (x) € I(A) by the injectivity of 6. Suppose that G is
discrete. Then &(x) is contained in 4 ® C*(G). Therefore it is easy to prove that
the closure of {1® (§4),(0(x)); u € B,(G)} contains d(x). By (5), 6((A)) contains
d(x) for x € A, that is x € I(A). In the both cases we have 4=1I(A).

Let C*(G) be the envelopping C*-algebra of L!(G), and U be the universal
representation of G. We can define an isomorphism 5_G of C*(G) into

M(C*(G)® C*(G)) such that
6_6([ fOU(s) ds>
G

f SOUE®U(s)ds
G

36(U(f)

for fe L'(G). Moreover (1®%)%=(52®1)§G— and

[65(C*(G)(1®C*(G)] = C*(GRC*(G)
(see [3, Theorem 3.9]).
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Let & be an injective homomorphism of A into M(A® C*(G)) and d(e,)
convergens 1 in the strict topology of 4 ® C*(G) for each approximate identity
{e,} of Aand (6®1)0=(1 ®5;)5. Let n be a canonical homomorphism of C*(G)
onto C}*(G). Note that § automatically satisfies the statements in Theorem 5 by
the same proof as in the case of an amenable group G (Proposition 6). Set

(x) = 1®mn)d(x) for xe A.
Since &' is not in general injective, set
I = Keré' and 6(0(x) = (0®1)é'(x) for xe 4,

where 0 is a canonical homomorphism of 4 onto A/I.
ProposITION 7. The map &" is a non-degenerate co-action of G on A/l.

Proor. For fe L'(G) and x € A, we have
F(OX))A®AS)) = @10 (x)(1®A(S))
= [(0®1(®mM3(x)](1®A(S) = 0@n(3(x)(1®U(S)),
because of n(U(f))=A(f). Then ¢"(6(x))(1®2) is contained in A/I® C*(G) for

x € A and z € C*(G). Suppose 8 (0(x))=0 (x € A). Then for w € C}*(G)*, we
have

o
I

L,(0"(0(x) = L,((0®1)3' (x))
0(Ly6" (x) = 0(05(x) -

Therefore 62 (x) is contained in I. Since
(1®L,)('®1d' (x) = 8'(d,(x)) = 0 for w e CHG)*,
we have (6! ®1)6!(x)=0. Since
('@ = 1®T®N(EO®YI[(1®T)J]
= (1®T®MO®YS = (1®T®M)(1®IG)
= (1®5(®M = (1SN
because of (n®n)§{;=6con, then we obtain (1®6G)61(3§)=0. Since (1®9,) is

an isomorphism of M(4® C*(G)) (see [1, Proposition 2.4]), we get §'(x)=0,
that is 6" is an isomorphism of 4/I. We have, on A4,

(@1 (0(x) = [((0®16")®11(B®1)d* (x)
= {[(®1)8'0]1®1}6'(x) = {(0®1)d' ®1}5"(x)
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= 0®1®1)('®1)d'(x) = 1R N(1®)d" (x)
= (1Q85)(0® 1) (x) = (1®5)"(0(x)) .

Since d(e,) converges to 1 in the strict topology of M(A® C*(G)) for each
approximate identity {e,} of 4, it follows from [8, Lemme 0.2.6] that " has the
same property for A/I. Then we have proved that " is a co-action of G on A/l
Also 8},(0(x))=6(5,(x)) for x € A and u € A(G) and by the same proof as in the
case of an amenable group G (Proposition 6), A is generated by {J,(x);

u € A(G), x € A}. Therefore {d}(x); u € A(G), x € A/I} generated A/I, that is &
is non-degenerate.

The isomorphism & of A into M(A® C*(G)) (respectively M(A® C*(G))
satisfying (6®z)6=(1®5_6)5 (respectively (0®1)0=(1®0)d) is related with
crossed product (respectively reduced crossed product).

Before we prove Takesaki’s duality for a co-action, we need some notations
and definitions. And we note that the discussion which we make below is the

same which Landstad [5], Nakagami and Takesaki [6] and Van Heeswijck [9]
do.

Let 6 be a co-action of G on A and let C,(G) be the family of continuous
functions on G vanishing at infinity. The crossed product 4 x ;G by ¢ is the C*-
algebra generated by §(4)(1 ® C,(G)) in the full operator algebra B(L?(G, #))
(¢ is the universal Hilbert space for 4 and C,(G) acts as multiplication on
L?(G)). Let V be a unitary operator on L?(G x G, #) satisfying

(VO(s,0) = A@*E(st™0)
for £ € L*(G x G, #) and 4 is the modular function of G. Set a dual action )
of G,
5(x) = Vx@1V*

for x€ Ax;G. Then §(0(x)=0(x)®1 (xe A) and S(1®f)=1®ags(f)
(f € Co(G)), where

a(f)s,1) = f(st™).

Therefore § is an isomorphism of 4 x;G into M(A x;G® Cy(G)) such that
d(e,) converges to 1 in the strict topology of M(A x;G® C,(G)) for each
approximate identity {e,} of Ax,;G and (8®1)d=(1®agd. The crossed
product (4 x;G)x35G by the action 5 is the C*-algebra generated by
3(4 x,G)(1®1®C*(G)). Set a co-action § of G on (4 x;G) x 3G,

) = 1R UAWHE® DI 1QW)

for x € (A x,;G)x;G. Then Sis easily proved to be a non-degenerate co-action
of G. :
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THEOREM 8. Let & be a non-degenerate co-action of G on A. The C*-algebra
&A X 5 G) X §G is isomorphic to A® C(L*(G)), moreover its isomorphism transfers
0 to 8, where

5(x) = 1MW (1®0)(6@ (XN @ W*
and ¢ is a flip map of C¥(G)® C(L*(G)) onto C(L*(G))® CX*(G).

Proor. Let D be the C*-algebra generated by
SARW)((1@W*(3(AHRNI®W)(1®1RC(L*(G))(1@W*)S*,
where S is a unitary operator defined by
(SO(s,0) = A" ¥(s,t7) (£ e LX(GxG, ).
Then
1@W*(5(A)®1)(1®W)(1®1®C(L*(G)

= (1®350(A)(1®1®C(L(G)))

= (6®14(4)(1®1®C(L*(G))

= (6®)(6(A)(1®C(LX(G))) -
Since & is non-degenerate, by Theorem 5 (iii), (A4)(1® C(L*(G))) generates

A® C(L*(G)). Then D is isomorphic to A ® C(L*(G)). Therefore we have only
to prove that D coincides (4 x ;G) x §G. We prove easily the following facts:

S(O@R1S* = d(a®1 (ae A)
SURW)(1R1Rv(E)(I®W*)S* = 191®A) (g€ L'(G)
©6) where v is the right regular representation of G
SIIW)(1RL1® H1RW*S* = 1®as(f) (fe Co(G)
C(L*(G)) is generated by {fv(g); f € Co(G), g € L' (G)}.

.By extending § and § to their multipliers, we have

5(6(a) = s(a)®1 (@ae A)
0 51®f) = 10 /®1 (feCo(0)
S(v) = f g(SV(s)®v(s)ds (g € LY(G)
G

and
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$3®1) = $a®1®1 (a € A)
®) S(1®ag(f) = 1®ag(NH®1 (f € Co(G))

3101®A@) = f (BOI®1®AI®A)ds (g L'(G).

By (6), D is isomorphic to (4 x;G) x 5G. By (7), (8) its isomorphism transfers 5
to J.

When G is a discrete or amenable group, Takesaki’s duality by co-action of
G holds true without non-degeneracy of 6. If G is compact, Landstad has
already solved it in [5, Theorem 3].
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