TAKESAKI'S DUALITY FOR A NON-DEGENERATE CO-ACTION

YOSHIKAZU KATAYAMA

Abstract.

Let δ be a non-degenerate co-action of a locally compact group G on a C^* -algebra A. We can find an action $\hat{\delta}$ on a δ -crossed product $A \times_{\delta} G$ and show that a crossed product $(A \times_{\delta} G) \times_{\delta} G$ is isomorphic to $A \otimes C(L^2(G))$ where $C(L^2(G))$ is the algebra of all compact operators on $L^2(G)$.

A and B are C*-algebras. We denote by M(A) the multiplier algebra of A. If A is a concrete C*-algebra, we may define $M(A) = \{a \in A''; ab + ca \in A \text{ for } b, c \in A\}$. Following [1] we put

$$\tilde{M}(A \otimes B) = \{ x \in M(A \otimes B) ; x(1 \otimes b) + (1 \otimes c)x \in A \otimes B \text{ for } b, c \in B \},$$

where the symbol \otimes means the spatial tensor product.

Let G be a locally compact group. $L^2(G)$ is the Hilbert space of square integrable functions on G with a left Haar measure ds on G. The left and right regular representations of G on $L^2(G)$ are defined by

$$(\lambda(s)\xi)(t) = \xi(s^{-1}t)$$

$$(\rho(s)\xi)(t) = \Delta^{-\frac{1}{2}}(s)\xi(ts)$$

for $s, t \in G$ and $\xi \in L^2(G)$, where Δ is the modular function of G. Let $C_r^*(G)$ be the C*-algebra generated by $\{\lambda(f); f \in L^1(G)\}$ where

$$\lambda(f) = \int_G f(s)\lambda(s) ds,$$

which is called the reduced group C*-algebra of G. We define a unitary operator W on $L^2(G \times G)$ by

$$(W\xi)(s,t) = \xi(s,st)$$

for $\xi \in L^2(G \times G)$ and we set $\delta_G(x) = W^*(x \otimes 1)W = \operatorname{Ad} W^*(x \otimes 1)$ for $x \in C_r^*(G)$. Then we can show easily that δ_G is an isomorphism of $C_r^*(G)$ into $\widetilde{M}(C_r^*(G) \otimes C_r^*(G))$. Since $\delta_G(C_r^*(G))(1 \otimes C_r^*(G))$ generates $C_r^*(G) \otimes C_r^*(G)$, for

Received May 31, 1983.

each approximate identity $\{e_i\}$ of $C_r^*(G)$, $\delta_G(e_i)$ converges to 1 in the strict topology of $M(C_r^*(G) \otimes C_r^*(G))$.

Let θ be a homomorphism of A into M(B) satisfying that $\theta(u_i)$ converges to 1 in the strict topology of M(B) for each approximate identity $\{u_i\}$ of A. Then θ extends uniquely to a homomorphism (also denoted by θ) of M(A) into M(B) ([8, Lemme 0.2.6]). The above δ_G has a property

$$(\delta_G \otimes \iota)\delta_G = (\iota \otimes \delta_G)\delta_G,$$

where ι is the identity map of $C_r^*(G)$ (the above $\delta_G \otimes \iota$ and $\iota \otimes \delta_G$ are homomorphisms on $M(C_r^*(G) \otimes C_r^*(G))$).

DEFINITION. Let δ be an isomorphism of A into $\widetilde{M}(A \otimes C_r^*(G))$. The isomorphism δ is called a co-action of G on A if for each approximate identity $\{u_i\}$ of A, $\delta(u_i)$ converges to 1 in the strict topology of $M(A \otimes C_r^*(G))$ and $(\delta \otimes \iota)\delta = (\iota \otimes \delta_G)\delta$.

We define a linear map δ_u by $\delta_u(a) = L_u \delta(a)$ for $u \in B_r(G) \equiv C_r^*(G)^*$, $a \in A$ where L_u is the left slice map of u (see [2]). Since δ is a map into $\tilde{M}(A \otimes C_r^*(G))$, by [7, Theorem 2.1] δ_u is a linear map of A into A.

LEMMA 1. Let δ be a co-action of G on A. For $x = \delta_u(a)$, $a \in A$ and $u \in B_r(G) \cap K(G)$, we have

(1)
$$\int_G \delta_{\varphi \lambda(s)^*}(x) \otimes \lambda(s) z \, ds = \delta(x) (1 \otimes \lambda(\check{\varphi}) z)$$

for $\varphi \in B_r(G) \cap K(G)$ and $z \in C_r^*(G)$, where $\check{\varphi}(s) = \varphi(s^{-1})$ and $\langle z, \varphi \lambda(s)^* \rangle = \langle \lambda(s)^* z, \varphi \rangle$ (K(G) is the family of continuous functions on G with compact supports).

PROOF. Both functions $s \in G \to \lambda(s)z \in C_r^*(G)$ and $s \in G \to \varphi\lambda(s)^* \in C_r^*(G)^*$ are norm-continuous. The integrand:

$$s \in G \to \delta_{\varphi \lambda(s)^*}(x) \otimes \lambda(s)z$$

is continuous in the norm topology of $A \otimes C_r^*(G)$, whose support is contained in a compact set $(\operatorname{supp} u) \cdot (\operatorname{supp} \varphi)^{-1}$. Hence $\int_G \delta_{\varphi \lambda(s)^*}(x) \otimes \lambda(s) z \, ds$ is contained in $A \otimes C_r^*(G)$. For $\omega \in A^*$, $\psi \in B_r(G) \cap K(G)$ and $z = \lambda(f)$, $\in K(G)$, we have

$$\left\langle \int_{G} \delta_{\varphi \lambda(s)^{*}}(x) \otimes \lambda(s) z \, ds, \ \omega \otimes \psi \right\rangle$$

$$= \int_{G} \left\langle \delta(x), \omega \otimes \varphi \lambda(s)^{*} \right\rangle \left\langle \lambda(s) z, \psi \right\rangle ds,$$

since the function

$$s \in G \to \langle \lambda(s)z, \psi \rangle = \langle \lambda(s)\lambda(f), \psi \rangle$$

is continuous whose support is contained in a compact set $(\text{supp } \psi) \cdot (\text{supp } f)^{-1}$,

(2)
$$= \left\langle \delta(x), \omega \otimes \int_{G} \langle \lambda(s)z, \psi \rangle \varphi \lambda(s)^* ds \right\rangle.$$

For $g \in L^1(G)$, we get

$$\left\langle \lambda(g), \int_{G} \langle \lambda(s)z, \psi \rangle \varphi \lambda(s)^{*} ds \right\rangle$$

$$= \int_{G} \langle \lambda(s)z, \psi \rangle \langle \lambda(s)^{*} \lambda(g), \varphi \rangle ds$$

$$= \iint_{G \times G} \langle \lambda(s)z, \psi \rangle g(t) \langle \lambda(s^{-1}t), \varphi \rangle dt ds$$

$$= \iint_{G \times G} \langle \lambda(th)z, \psi \rangle g(t) \langle \lambda(h^{-1}), \varphi \rangle dt dh \qquad (s^{-1}t = h^{-1})$$

$$= \int_{G} \langle \lambda(g)\lambda(h)z, \psi \rangle \langle \lambda(h^{-1}), \varphi \rangle dh$$

$$= \int_{G} \check{\varphi}(h) \langle \lambda(g)\lambda(h)z, \psi \rangle dh = \langle \lambda(g)\lambda(\check{\varphi})z, \psi \rangle$$

$$= \langle \lambda(g), \lambda(\check{\varphi})z\psi \rangle.$$

Therefore we have $\int_G \langle \lambda(s)z, \psi \rangle \varphi \lambda(s)^* ds = \lambda(\check{\varphi})z\psi$. Hence

$$(2) = \langle \delta(x), \omega \otimes \lambda(\check{\varphi}) z \psi \rangle = \langle \delta(x) (1 \otimes \lambda(\check{\varphi}) z), \omega \otimes \psi \rangle.$$

Since $B_r(G) \cap K(G)$ is dense in the Fourier algebra A(G) (see [2]), we obtain

(3)
$$\int_{G} \delta_{\varphi \lambda(s)^{*}}(x) \otimes \lambda(s) z \, ds = \delta(x) (1 \otimes \lambda(\check{\varphi}) z)$$

for $z = \lambda(f)$, $f \in K(G)$. Both sides in (3) are continuous with respect to z. Then we have the equation (3) for all $z \in C_r^*(G)$.

LEMMA 2. Let δ be as above. The closure I(A) of $\{\delta_{\varphi}(a); a \in A, \varphi \in A(G)\}$ is a C*-subalgebra of A. Moreover for $x \in I(A)$ and $z \in C_r^*(G)$ the element $\delta(x)(1 \otimes z)$ is contained in $I(A) \otimes C_r^*(G)$.

PROOF. Since $K(G) \cap A(G)$ is norm-dense in A(G) and $\|\delta_{\varphi}\| \leq \|\varphi\|$ for $\varphi \in B_r(G)$, I(A) is the closure of $\{\delta_{\varphi}(a); a \in A, \varphi \in K(G) \cap A(G)\}$. Since A(G) is a regular ring (see [2]), we can find, for $\varphi_1, \varphi_2 \in K(G) \cap A(G), \varphi_3$ in $K(G) \cap A(G)$ with $\varphi_3 \equiv 1$ on a neighbourhood of (supp φ_1) (supp φ_2) and supp $\varphi_1 \cup \text{supp } \varphi_2$. Then we obtain

$$\delta_{\varphi_3}(\delta_{\varphi_1}(x)\delta_{\varphi_2}(y)) = \delta_{\varphi_1}(x)\delta_{\varphi_2}(y)$$

$$\delta_{\varphi_3}(\delta_{\varphi_1}(x) + \delta_{\varphi_2}(y)) = \delta_{\varphi_1}(x) + \delta_{\varphi_2}(y)$$

for all $z, y \in A$. Therefore I(A) is a C*-subalgebra of A. When we choose an approximate identity $\{\varphi_i\}$ of $L^1(G)$ in the set $K(G) \cap B_r(G) = K(G) \cap A(G)$, by the equation (1) we have

$$\lim_{i} \int_{G} \delta_{\varphi_{i}\lambda(s)^{*}}(x) \otimes \lambda(s)z \, ds = \lim_{i} \delta(x) (1 \otimes \lambda(\check{\varphi}_{i})z) = \delta(x) (1 \otimes z) ,$$

that is $\delta(x)(1 \otimes z)$ is contained in $I(A) \otimes C_r^*(G)$ for $x = \delta_u(y)$, some $y \in A$ and $u \in K(G) \cap A(G)$. Therefore $\delta(x)(1 \otimes z)$ is contained in $I(A) \otimes C_r^*(G)$ for $x \in I(A)$.

LEMMA 3. Let δ be as above. The closed subspace $[\delta(I(A))(1 \otimes C_r^*(G))]$ generated by $\delta(I(A))(1 \otimes C_r^*(G))$ contains $I(A) \otimes C_r^*(G)$.

PROOF. Take $x = \delta_u(y)$, $(y \in A, u \in A(G) \cap K(G))$, and by (1) we have, for $\varphi \in A(G) \cap K(G)$,

$$\delta(x)(1 \otimes \lambda(\check{\varphi})) = \int_G \delta_{\varphi \lambda(s)^*}(x) \otimes \lambda(s) ds \quad \text{(in the strict topology)}.$$

For $v \in A(G) \cap K(G)$, we obtain

$$\iota \otimes L_{v}[(\iota \otimes \delta_{G})\{\delta(x)(1 \otimes \lambda(\check{\varphi}))\}]$$

$$= \iota \otimes L_{v}\left(\int_{G} \delta_{\varphi\lambda(s)} \star(x) \otimes \lambda(s) \otimes \lambda(s) ds\right)$$

$$= \int_{G} v(s)\delta_{\varphi\lambda(s)} \star(x) \otimes \lambda(s) ds.$$

On the other hand, we get, for $\omega_1 \in A^*$, $\omega_2 \in C^*_r(G)^*$

$$\langle \iota \otimes L_{v} [(\iota \otimes \delta_{G}) (\delta(x) (1 \otimes \lambda(\check{\phi})))], \omega_{1} \otimes \omega_{2} \rangle$$

$$= \langle ((\iota \otimes \delta_{G}) \delta(x)) (1 \otimes \delta_{G} (\lambda(\check{\phi}))), \omega_{1} \otimes \omega_{2} \otimes v \rangle$$

$$= \langle (\delta \otimes \iota) \delta(x), \omega_{1} \otimes \left(\int_{G} \varphi(s) \lambda(s) \otimes \lambda(s) ds \right) (\omega_{2} \otimes v) \rangle$$

$$= \int_{G} \check{\phi}(s) \langle (\delta \otimes \iota) \delta(x), \, \omega_{1} \otimes \lambda(s) \omega_{2} \otimes \lambda(s) v \rangle \, ds$$

$$= \int_{G} \check{\phi}(s) \langle \delta(\delta_{\lambda(s)v}(x)) (1 \otimes \lambda(s)), \omega_{1} \otimes \omega_{2} \rangle \, ds$$

$$= \left\langle \int_{G} \check{\phi}(s) \delta(\delta_{\lambda(s)v}(x)) (1 \otimes \lambda(s)) \, ds, \omega_{1} \otimes \omega_{2} \right\rangle .$$

Therefore

$$(4) \qquad i \otimes L_{v}[(i \otimes \delta_{G})(\delta(x)(1 \otimes \lambda(\check{\varphi})))]$$

$$= \int_{G} \check{\varphi}(s)\delta(\delta_{\lambda(s)v}(x))(1 \otimes \lambda(s)) ds = \int_{G} v(s)\delta_{\varphi\lambda(s)^{*}}(x) \otimes \lambda(s) ds .$$

For $z \in C_r^*(G)$ we obtain,

$$\int_{G} \check{\varphi}(s) \delta(\delta_{\lambda(s)v}(x)) (1 \otimes \lambda(s)z) ds = \int_{G} v(s) \delta_{\varphi \lambda(s)^{*}}(x) \otimes \lambda(s) z ds.$$

Since the integrands in the above equation are norm-continuous,

$$\lim_{v} \int_{G} \check{\varphi}(s) \delta(\delta_{\lambda(s)v}(x)) (1 \otimes \lambda(s)z) ds = \delta_{\varphi}(x) \otimes z$$

in the norm topology, when the measure v(s)ds tends to a Dirac measure at the identity of G. Then $[\delta(I(A))(1 \otimes C_r^*(G))]$ contains $I(A) \otimes C_r^*(G)$.

REMARK. The restriction $\delta|_{I(A)}$ of δ to I(A) is a co-action of G on I(A).

LEMMA 4. Let δ be as above. The closed linear span $[\delta(A)(1 \otimes C_r^*(G))]$ is coincided with $I(A) \otimes C_r^*(G)$.

PROOF. Without the condition $x = \delta_{\mathbf{u}}(y)$ in the proof of the former equality in (4), we have, for $v, \varphi \in A(G) \cap K(G)$, $x \in A$,

$$\iota \otimes (\delta_G)_v \big(\delta(x) \big(1 \otimes \lambda(\check{\phi}) \big) \big) = \int_G \check{\phi}(s) \delta(\delta_{\lambda(s)v}(x)) \big(1 \otimes \lambda(s) \big) ds.$$

Since $A \otimes C_r^*(G)$ contains $\delta(x)(1 \otimes \lambda(\check{\phi}))$, the norm closure of $\{(\iota \otimes (\delta_G)_v)(\delta(x)(1 \otimes \lambda(\check{\phi}))); v \in A(G) \cap K(G)\}$ contains $\delta(x)(1 \otimes \lambda(\check{\phi}))$. The norm closure of

$$\left\{\int_G \check{\phi}(s)\delta\big({}_{\lambda(s)v}(x)\big)\big(1\otimes\lambda(s)z\big)\,ds\ ;\ v\in A(G)\cap K(G)\right\}$$

Math. Scand. 55 - 10

contains $\delta(x)(1 \otimes \lambda(\check{\phi})z)$, $(z \in C_r^*(G))$. Since the element $\delta_{\lambda(s)v}(x)$ is in I(A), Lemma 2 implies that $\int_G \check{\phi}(s)\delta(\delta_{\lambda(s)v}(x))(1 \otimes \lambda(s)z) ds$ is in $I(A) \otimes C_r^*(G)$, that is

$$\delta(x)(1 \otimes \lambda(\check{\phi})z) \in I(A) \otimes C_r^*(G)$$
.

By taking φ as an approximate identity of $L^1(G)$, we get $\delta(x)(1 \otimes z) \in I(A) \otimes C_r^*(G)$ for $x \in A$ and $z \in C_r^*(G)$. By Lemma 3, we have $\lceil \delta(A)(1 \otimes C_r^*(G)) \rceil = I(A) \otimes C_r^*(G)$.

Theorem 5. Let δ be as above. The following statements are equivalent.

- (i) A = I(A),
- (ii) $[\delta(A)(1 \otimes C_r^*(G))] = A \otimes C_r^*(G)$,
- (iii) $[\delta(A)(1 \otimes C(L^2(G)))] = A \otimes C(L^2(G)),$
- (iv) δ is non-degenerate in Landstad's sence, i.e. for each non-zero linear functional ω in A^* , we can find $u \in B_r(G)$ with $(\omega \otimes u)\delta \neq 0$.

PROOF. The equivalence of (i) and (ii) follows from Lemma 4. Since $C_r^*(G) \cdot C_0(G)$ generates $C(L^2(G))$, we have (ii) \Rightarrow (iii). We shall prove (iii) \Rightarrow (i). We define a rank one operator $\xi \otimes \eta^c$ with $(\xi \otimes \eta^c)(\zeta) = \langle \zeta, \eta \rangle \xi$ for ξ, η and $\zeta \in L^2(G)$. For ξ_i, η_i (i = 1, 2), $\xi, \eta \in L^2(G)$ and elements p, q of the universal Hilbert space for A, we have

$$\langle \{1 \otimes (\xi_1 \otimes \eta_1^c)\} \delta(a) \{1 \otimes (\xi_2 \otimes \eta_2^c)\} p \otimes \xi, \ q \otimes \eta \rangle$$

$$= \langle \delta(a) (p \otimes \langle \xi, \eta_2 \rangle \xi_2), q \otimes \langle \eta, \xi_1 \rangle \eta_1 \rangle$$

$$= \langle \delta(a) (p \otimes \xi_2), q \otimes \eta_1 \rangle \langle \xi, \eta_2 \rangle \overline{\langle \eta, \xi_1 \rangle}$$

$$= \langle \delta_{\omega_{\xi_2, \eta_1}}(a) p, q \rangle \langle \langle \xi, \eta_2 \rangle \xi_1, \eta \rangle$$

where

$$\begin{split} &\omega_{\xi_2\eta_1}(z) = \langle z\xi_2, \eta_1 \rangle \\ &= \langle \delta_{\omega_{\xi_2,\eta_1}}(a) \otimes (\xi_1 \otimes \eta_2^c)(p \otimes \xi), q \otimes \eta \rangle \;. \end{split}$$

Then

$$[1 \otimes (\xi_1 \otimes \eta_1^c)] \delta(a) [1 \otimes (\xi_2 \otimes \eta_2^c)] \; = \; \delta_{\omega_{\xi_2,\eta_1}}(a) \otimes (\xi_1 \otimes \eta_2^c) \; .$$

Since the family of finite rank operators on $L^2(G)$ generates $C(L^2(G))$, $\delta(A)(1\otimes C(L^2(G)))$ is contained in $I(A)\otimes C(L^2(G))$. Then by (iii), we have $A\otimes C(L^2(G))=I(A)\otimes C(L^2(G))$, which implies A=I(A). If (ii) holds, for non zero functionals ω in A^* and u in $B_r(G)$, we can find a in A with $(\omega\otimes au)\delta \neq 0$. Suppose that I(A) is a proper C^* -subalgebra of A. We can find a non zero linear functional ω in A^* with $\omega(I(A))=0$. Then it follows from Lemma 4 and

[7, Theorem 2.1] that $(\omega \otimes u)\delta = 0$ for all $u \in B_r(G)$, which is a contradiction with non-degeneracy of δ .

It is found in [4, Lemma 3.8] that a co-action δ of a discrete or amenable group G is automatically non-degenerate. Also a canonical co-action on a reduced crossed product for a C*-dynamical system is automatically non-degenerate. The author has been unable to prove the automatical non-degeneracy of δ for arbitrary locally compact group. For convenience of readers, we prove the automatical non-degeneracy for a discrete or amenable group. We prove the condition (i) in Theorem 5 in a slight different way.

Proposition 6 ([4]). Let G be a discrete or amenable group. A co-action δ of G on A is automatically non-degenerate.

PROOF. By [7, Theorem 2.1], for $u \in B_r(G)$, we find a in A and $v \in B_r(G)$ with u = av. Then we have

$$\delta_{u}(g) = \delta_{av}(x) = L_{v}(\delta(x)(1 \otimes a))$$

in I(A) by Lemma 4. We have

(5)
$$\begin{cases} \delta(\delta_{u}(x)) = \delta L_{u}(\delta(x)) = (\iota \otimes L_{u})(\delta \otimes \iota)\delta(x) \\ = \iota \otimes L_{u}((\iota \otimes \delta_{G})(\delta(x))) = \iota \otimes (\delta_{G})_{u}(\delta(x)) \ . \end{cases}$$

Suppose that G is amenable, we take the identity $u_1(s) \equiv 1$ in $B_r(G) = B(G)$. Since $\iota \otimes (\delta_G)_{u_1}$ is an identity map of $M(A \otimes C_r^*(G))$, we have $\delta(\delta_{u_1}(x)) = \delta(x)$ for $x \in A$, which implies $x = \delta_{u_1}(x) \in I(A)$ by the injectivity of δ . Suppose that G is discrete. Then $\delta(x)$ is contained in $A \otimes C_r^*(G)$. Therefore it is easy to prove that the closure of $\{\iota \otimes (\delta_G)_u(\delta(x)); u \in B_r(G)\}$ contains $\delta(x)$. By (5), $\delta(I(A))$ contains $\delta(x)$ for $x \in A$, that is $x \in I(A)$. In the both cases we have A = I(A).

Let $C^*(G)$ be the envelopping C^* -algebra of $L^1(G)$, and U be the universal representation of G. We can define an isomorphism $\overline{\delta}_G$ of $C^*(G)$ into $\widetilde{M}(C^*(G) \otimes C^*(G))$ such that

$$\overline{\delta_G}(U(f)) = \overline{\delta_G}\left(\int_G f(s)U(s)\,ds\right)$$
$$= \int_G f(s)U(s) \otimes U(s)\,ds$$

for $f \in L^1(G)$. Moreover $(\iota \otimes \overline{\delta_G})\overline{\delta_G} = (\overline{\delta_G} \otimes \iota)\overline{\delta_G}$ and

$$[\overline{\delta_G}(C^*(G))(1 \otimes C^*(G))] = C^*(G) \otimes C^*(G)$$

(see [3, Theorem 3.9]).

Let δ be an injective homomorphism of A into $\widetilde{M}(A \otimes C^*(G))$ and $\delta(e_n)$ convergens 1 in the strict topology of $A \otimes C^*(G)$ for each approximate identity $\{e_n\}$ of A and $(\delta \otimes \iota)\delta = (\iota \otimes \overline{\delta_G})\delta$. Let π be a canonical homomorphism of $C^*(G)$ onto $C_r^*(G)$. Note that δ automatically satisfies the statements in Theorem 5 by the same proof as in the case of an amenable group G (Proposition 6). Set

$$\delta^1(x) = (\iota \otimes \pi) \delta(x)$$
 for $x \in A$.

Since δ^1 is not in general injective, set

$$I = \operatorname{Ker} \delta^1$$
 and $\delta^r(\theta(x)) = (\theta \otimes \iota)\delta^1(x)$ for $x \in A$,

where θ is a canonical homomorphism of A onto A/I.

Proposition 7. The map δ^r is a non-degenerate co-action of G on A/I.

PROOF. For $f \in L^1(G)$ and $x \in A$, we have

$$\delta^{r}(\theta(x))(1 \otimes \lambda(f)) = (\theta \otimes \iota)\delta^{1}(x)(1 \otimes \lambda(f))$$

= $[(\theta \otimes \iota)(\iota \otimes \pi)\delta(x)](1 \otimes \lambda(f)) = \theta \otimes \pi(\delta(x)(1 \otimes U(f)))$,

because of $\pi(U(f)) = \lambda(f)$. Then $\delta^r(\theta(x))(1 \otimes z)$ is contained in $A/I \otimes C_r^*(G)$ for $x \in A$ and $z \in C_r^*(G)$. Suppose $\delta^r(\theta(x)) = 0$ $(x \in A)$. Then for $\omega \in C_r^*(G)^*$, we have

$$0 = L_{\omega}(\delta^{r}(\theta(x))) = L_{\omega}((\theta \otimes \iota)\delta^{1}(x))$$
$$= \theta(L_{\omega}\delta^{1}(x)) = \theta(\delta^{1}_{\omega}(x)).$$

Therefore $\delta_{\omega}^{1}(x)$ is contained in I. Since

$$(\iota \otimes L_{\omega})(\delta^1 \otimes \iota)\delta^1(x) = \delta^1(\delta^1_{\omega}(x)) = 0 \quad \text{for } \omega \in C^*_{\star}(G)^*$$

we have $(\delta^1 \otimes \iota)\delta^1(x) = 0$. Since

$$\begin{split} (\delta^1 \otimes \iota)\delta^1 &= [\iota \otimes \pi \otimes \iota)(\delta \otimes \iota)][(\iota \otimes \pi)\delta] \\ &= (\iota \otimes \pi \otimes \pi)(\delta \otimes \iota)\delta = (\iota \otimes \pi \otimes \pi)(\iota \otimes \overline{\delta_G})\delta \\ &= (\iota \otimes \delta_G)(\iota \otimes \pi)\delta = (\iota \otimes \delta_G)\delta^1 \end{split}$$

because of $(\pi \otimes \pi)\overline{\delta_G} = \delta_G \circ \pi$, then we obtain $(\iota \otimes \delta_G)\delta^1(x) = 0$. Since $(\iota \otimes \delta_G)$ is an isomorphism of $\tilde{M}(A \otimes C_r^*(G))$ (see [1, Proposition 2.4]), we get $\delta^1(x) = 0$, that is δ^r is an isomorphism of A/I. We have, on A,

$$(\delta^r \otimes \iota)\delta^r(\theta(x)) = [((\theta \otimes \iota)\delta^1) \otimes \iota](\theta \otimes \iota)\delta^1(x)$$
$$= \{[(\theta \otimes \iota)\delta^1\theta] \otimes \iota\}\delta^1(x) = \{(\theta \otimes \iota)\delta^1 \otimes \iota\}\delta^1(x)$$

$$= (\theta \otimes \iota \otimes \iota)(\delta^1 \otimes \iota)\delta^1(x) = (\theta \otimes \iota \otimes \iota)(\iota \otimes \delta_G)\delta^1(x)$$
$$= (\iota \otimes \delta_G)(\theta \otimes \iota)\delta^1(x) = (\iota \otimes \delta_G)\delta^r(\theta(x)).$$

Since $\delta(e_n)$ converges to 1 in the strict topology of $M(A \otimes C^*(G))$ for each approximate identity $\{e_n\}$ of A, it follows from [8, Lemme 0.2.6] that δ' has the same property for A/I. Then we have proved that δ' is a co-action of G on A/I. Also $\delta'_u(\theta(x)) = \theta(\delta_u(x))$ for $x \in A$ and $u \in A(G)$ and by the same proof as in the case of an amenable group G (Proposition 6), A is generated by $\{\delta_u(x); u \in A(G), x \in A\}$. Therefore $\{\delta'_u(x); u \in A(G), x \in A/I\}$ generated A/I, that is δ' is non-degenerate.

The isomorphism δ of A into $\widetilde{M}(A \otimes C^*(G))$ (respectively $\widetilde{M}(A \otimes C^*(G))$) satisfying $(\delta \otimes \iota)\delta = (\iota \otimes \overline{\delta_G})\delta$ (respectively $(\delta \otimes \iota)\delta = (\iota \otimes \delta_G)\delta$) is related with crossed product (respectively reduced crossed product).

Before we prove Takesaki's duality for a co-action, we need some notations and definitions. And we note that the discussion which we make below is the same which Landstad [5], Nakagami and Takesaki [6] and Van Heeswijck [9] do.

Let δ be a co-action of G on A and let $C_0(G)$ be the family of continuous functions on G vanishing at infinity. The crossed product $A \times_{\delta} G$ by δ is the C*-algebra generated by $\delta(A)(1 \otimes C_0(G))$ in the full operator algebra $B(L^2(G, \mathcal{H}))$ (\mathcal{H} is the universal Hilbert space for A and $C_0(G)$ acts as multiplication on $L^2(G)$). Let V be a unitary operator on $L^2(G \times G, \mathcal{H})$ satisfying

$$(V\xi)(s,t) = \Delta(t)^{\frac{1}{2}}\xi(st^{-1},t)$$

for $\xi \in L^2(G \times G, \mathcal{H})$ and Δ is the modular function of G. Set a dual action $\hat{\delta}$ of G,

$$\hat{\delta}(x) = V(x \otimes 1)V^*$$

for $x \in A \times_{\delta} G$. Then $\hat{\delta}(\delta(x)) = \delta(x) \otimes 1$ $(x \in A)$ and $\hat{\delta}(1 \otimes f) = 1 \otimes \alpha_{G}(f)$ $(f \in C_{0}(G))$, where

$$\alpha_G(f)(s,t) = f(st^{-1}).$$

Therefore $\hat{\delta}$ is an isomorphism of $A \times_{\delta} G$ into $\tilde{M}(A \times_{\delta} G \otimes C_0(G))$ such that $\hat{\delta}(e_n)$ converges to 1 in the strict topology of $M(A \times_{\delta} G \otimes C_0(G))$ for each approximate identity $\{e_n\}$ of $A \times_{\delta} G$ and $(\hat{\delta} \otimes \iota)\hat{\delta} = (\iota \otimes \alpha_G)\hat{\delta}$. The crossed product $(A \times_{\delta} G) \times_{\delta} G$ by the action $\hat{\delta}$ is the C*-algebra generated by $\hat{\delta}(A \times_{\delta} G)(1 \otimes 1 \otimes C_{\bullet}^*(G))$. Set a co-action $\hat{\delta}$ of G on $(A \times_{\delta} G) \times_{\delta} G$,

$$\hat{\delta}(x) = (1 \otimes 1 \otimes W^*)(x \otimes 1)(1 \otimes 1 \otimes W)$$

for $x \in (A \times_{\delta} G) \times_{\delta} G$. Then $\hat{\delta}$ is easily proved to be a non-degenerate co-action of G.

Theorem 8. Let δ be a non-degenerate co-action of G on A. The C*-algebra $(A \times_{\delta} G) \times_{\delta} G$ is isomorphic to $A \otimes C(L^2(G))$, moreover its isomorphism transfers $\hat{\delta}$ to δ , where

$$\delta(x) = (1 \otimes W) [(\iota \otimes \sigma)(\delta \otimes \iota)(x)] 1 \otimes W^*$$

and σ is a flip map of $C_r^*(G) \otimes C(L^2(G))$ onto $C(L^2(G)) \otimes C_r^*(G)$.

PROOF. Let D be the C*-algebra generated by

$$S(1 \otimes W)((1 \otimes W^*)(\delta(A) \otimes 1)(1 \otimes W)(1 \otimes 1 \otimes C(L^2(G))))(1 \otimes W^*)S^*$$

where S is a unitary operator defined by

$$(S\xi)(s,t) \;=\; \varDelta(t)^{-\frac{1}{2}}\xi(s,t^{-1}) \qquad \left(\xi\in L^2(G\times G,\mathcal{H})\right)\;.$$

Then

$$(1 \otimes W^*)(\delta(A) \otimes 1)(1 \otimes W)(1 \otimes 1 \otimes C(L^2(G)))$$

$$= (\iota \otimes \delta_G)\delta(A)(1 \otimes 1 \otimes C(L^2(G)))$$

$$= (\delta \otimes \iota)\delta(A)(1 \otimes 1 \otimes C(L^2(G)))$$

$$= (\delta \otimes \iota)(\delta(A)(1 \otimes C(L^2(G)))).$$

Since δ is non-degenerate, by Theorem 5 (iii), $\delta(A)(1 \otimes C(L^2(G)))$ generates $A \otimes C(L^2(G))$. Then D is isomorphic to $A \otimes C(L^2(G))$. Therefore we have only to prove that D coincides $(A \times_{\delta} G) \times_{\delta} G$. We prove easily the following facts:

$$S(\delta(a) \otimes 1)S^* = \delta(a) \otimes 1 \qquad (a \in A)$$

$$S(1 \otimes W)(1 \otimes 1 \otimes \nu(g))(1 \otimes W^*)S^* = 1 \otimes 1 \otimes \lambda(g) \qquad (g \in L^1(G))$$
where ν is the right regular representation of G

$$S(1 \otimes W)(1 \otimes 1 \otimes f)(1 \otimes W^*)S^* = 1 \otimes \alpha_G(f) \qquad (f \in C_0(G))$$

$$C(L^2(G)) \text{ is generated by } \{f \cdot \nu(g); f \in C_0(G), g \in L^1(G)\}.$$

. By extending $\widetilde{\delta}$ and $\widehat{\delta}$ to their multipliers, we have

(7)
$$\begin{cases} \delta(\delta(a)) = \delta(a) \otimes 1 & (a \in A) \\ \delta(1 \otimes f) = 1 \otimes f \otimes 1 & (f \in C_0(G)) \end{cases}$$
$$\delta(v(g)) = \int_G g(s)v(s) \otimes v(s) ds & (g \in L^1(G))$$

and

(8)
$$\begin{cases} \hat{\delta}(\delta(a) \otimes 1) = \delta(a) \otimes 1 \otimes 1 & (a \in A) \\ \hat{\delta}(1 \otimes \alpha_G(f)) = 1 \otimes \alpha_G(f) \otimes 1 & (f \in C_0(G)) \\ \hat{\delta}(1 \otimes 1 \otimes \lambda(g)) = \int_G g(s) (1 \otimes 1 \otimes \lambda(s) \otimes \lambda(s)) ds & (g \in L^1(G)) \end{cases}.$$

By (6), D is isomorphic to $(A \times_{\delta} G) \times_{\delta} G$. By (7), (8) its isomorphism transfers $\hat{\delta}$ to δ .

When G is a discrete or amenable group, Takesaki's duality by co-action of G holds true without non-degeneracy of δ . If G is compact, Landstad has already solved it in [5, Theorem 3].

REFERENCES

- 1. C. A. Akemann, G. K. Pedersen, and J. Tomiyama, *Multipliers of C*-algebras*, J. Funct. Anal. 13 (1973), 277-301.
- 2. P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- 3. V. M. Iorio, Hopf-C*-algebras and locally compact groups, Pacific J. Math. 87 (1980), 75-96.
- M. B. Landstad, Duality theory for covariant systems, Trans. Amer. Math. Soc. 248 (1979), 223– 269
- M. B. Landstad, Duality for dual C*-covariance algebras over compact groups, preprint, University of Trondheim, 1978.
- Y. Nakagami and M. Takesaki, Duality for crossed products of von Neumann algebras (Lecture Notes in Math. 731), Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- 7. D. C. Taylor, The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970), 633-643.
- 8. J. M. Vallin, C*-algebres de Hopf spatiales C*-algebres de Kac, preprint, Université d'Orléans.
- 9. L. Van Heeswijck, Duality in the theory of crossed products, Math. Scand. 44 (1979), 313-329.

OSAKA UNIVERSITY
FACULTY OF ENGINEERING SCIENCE
TOYONAKA, OSAKA
JAPAN