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CROSS SECTIONS FOR QUOTIENT MAPS
OF LOCALLY COMPACT GROUPS

ESBEN T. KEHLET

In this paper G denotes a locally compact group, H a closed subgroup and
p=py the quotient map of G on G/H.

It is shown that there exists a locally bounded Baire cross section for p, i.e.
map q of G/H into G such that g(C) is relatively compact, when C is compact,
q~'(B) is a Baire set, when B is a Baire set, and p(q(x))=x, x € G/H.

This has been proved by G. W. Mackey [11], when G has countable basis for
the topology and by S. Graf and G. Migerl [5], when G is compact, and
follows easily from the results of J. Feldman and F. P. Greenleaf [3], when H is
metrizable.

The stronger result that g can be obtained continuous in a neighbourhood of
p(e) has been proved, when G/H has finite dimension by P. S. Mostert [13], cf.
D. Montgomery and L. Zippin [12, section 4.15], and when H is a Lie group
by A. M. Gleason, cf. [4], [13].

The method used here combines a proof from [3] and-a Zorn’s lemma
argument, much like the argument in [12], on the set of cross sections G/H
— G/K, K compact normal subgroup of H.

The result was wanted in [14], cf. [10].

It follows that the bijection (h, x) — q(x)h of H x G/H on G and its inverse
are locally bounded Baire maps and preserve measurability of sets.

Finally it is shown that some results, e.g. that C*(G, G/H) is isomorphic to
C*(H)® # (L*(G/H)), proved by Ph. Green under an extra condition [6,
section 2], holds generally.

When K and L are closed subgroups of G with K< L, we let py denote the
quotient map of G on G/K, and pg ; the quotient map of G/K on G/L with
Pk,L Pk=pP.- A cross section for py, is a map g, x of G/L into G/K with
PK,L(qL‘K(x))=x, x € G/L.
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Let R and S be locally compact spaces and f'a map of R into S. We say that f
is locally bounded if f(C) is relatively compact when C is compact; f'is called a
Baire map, if f ~!(B) is a Baire set [8] in R for each Baire set Bin S; fis called a
local Baire map if f~!(B)N C is a Baire set when B and C are Baire sets.

Note that continuous maps are locally bounded local Baire maps and that
composition of locally bounded local Baire maps gives a locally bounded local
Baire map.

If fis open and continuous (like p) and C is compact of type G, then so is
f(C); in fact C is by Urysohn’s lemma intersection of a decreasing sequence
(C,)nen Of compact neighbourhoods and f(C)=, N f(C,).

It is wellknown that Haar measures are completion regular [8]; so are quasi
invariant measures on quotient spaces G/H [2]. In fact to a measurable
relatively compact subset M of G/H, we can choose an open relatively compact
subset U of G with p(U)2M and a sequence (C,),.n Of compact G, subsets
of p Y(M)NU with measures increasing to the measure of p~'(M)NU;
then M\ U, yp(C,) has measure zero because any compact subset of
p~Y(M\U,_np(C,) is covered by finitely many translates (UNp~'(M)
N\ U,enC.H)h, h e H.

Let v be a Radom measure on R. We call a map of R into a topological space
measurable if for any compact set in R the restriction of the map to some
compact subset with almost the same measure is continuous [1].

If fis a locally bounded local Baire map and ¢ is a continuous map of S into
a metrizable space, then @of is measurable [1].

If h is a measurable map of R into a Banach space E and y is a bounded map
of R into the Banach space of bounded linear operators on E with (-)e
measurable for each e € E, then r — y(r)(h(r)) is measurable. In fact any
compact set in R has a compact subset K with almost the same measure, such
that h(K) has a dense countable subset F; making K a little smaller we may
assume that h and Y (-)e, e € F, are continuous on K; then y(-)e is continuous
on K for e € h(K) and r — y(r)(h(r)) is continuous on K.

LemMMA 1. Assume G is o-compact; let (U,),.n be a sequence of
neighbourhoods of e in G. There exists a Baire subset T of G with the properties:

Each coset gH, g € G, intersets T in a non-empty compact set,

TN CH is relatively compact for each compact subset C of G,

T 'TNHgN, U, and

p(BNT) is a Borel set, when B is closed, and a Baire set, when B is a closed
Baire set.
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Proor. The proof closely follows Feldman and Greenleaf [3]; for the
reader’s convenience I reproduce it here.
We may assume that U, is a compact Baire set and that U, },U,,,cU,,
ne N.
Choose a sequence (g(i));cn from G such that the sets g(i)p(U,), i € N, give a
locally finite covering of G/H, and define V(i)=g(i)U,, U(@=g(HU,, i e N.
Now assume that for some n € Nand m=1,2,. .., n we have chosen elements
gliy,is. .. i, € G and compact G, sets U(i,,iz. .. i, and V(i iy. .., i),
(i1sizs- - ., 0ip) € N™ such that
G/H = |J p(V(),
ie N
p(V(ig iz . vip_y) Y, p(Viiy in. . ipg_ni)), m=2,3,...,n,
ie
Ui, iy. .., i,) is contained in the interior of
Ulivsiygse o osim-g) N gliyig. . iU, m=23,...,n,

and V(i,i,,...,i,) is contained in the interior of U (i, i,,...,i,), m=12,...,n
Let (iy,ig...,i,) € N". Choose for ge V(i,i...,i,) two compact G,
neighbourhoods U (i, i,,...,i,)(g) and V(ii,,...,i,)(g) of g such that
U(i,,is. . .,i,)(g) is contained in the interior of U(i,,is,...,i,)NgU,,, and
V(i iy . .,i,)(g) is contained in the interior of U (iy,is,. . .,i,)(g)
Choose a sequence (g(iy, iz, - -y ipi))ien from V(i i,,. . .,i,) such that, with
the notation

Viigyigee o oo ig)(8lirs iz - sipins 1) = V0igsizse o oripgsy)

and correspondingly for U (i,,i5,. . .,i,4,), we have

pVlinsiz i) € U p(V Gz i)

So we can recursively choose such elements and sets for each n € N.
Define B(1)=p(V (1)) and

B = p(VvidN U p(V(), i>1,

Jj<i

and recursively

B(i19 il’- . -?im 1) = P(V(ll, i2,. . .,in, 1)) ﬂ B(il’ iz,. . .,i")

and

B(iy,ip. . .,i,0)

= Bliyyizs. - i) N p(Vlipsins. - i)\ U P(V(insizs. - o im ) » i>1.

j<i
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This gives us Baire sets in G/H, pairwide disjoint for fixed n € N, with G/H
=U,.nB(i) and

Blivsizy--osi) = U Bliniz. . ini)  neN.
ie

The sets Uiy, iy,. . .,i,) N p~ ' (Bliy,is,. . .,i,) are Baire sets in G, pairwise
disjoint for fixed n € N, with
pP(U(iyyigy. . oyig) N p~Y(Bliy,igy. . .yiy)) = Bliy, iz . .,i,) .
Define

=UU - UUlpie i) N p ' (Bliyaige. . i), neN,

and T=0,_\T, For g e G there is a unique sequence (i,,i, ...) such that
p(@) € N,en Bliysiz. . .,i,); we find

gHNT,=gHNUU(yiy....i,) S glij,iy-. iU, neN;

as (gHNU (i, iy - ., i,))en 18 @ decreasing sequence of non-empty compact
sets, gHNT=0,.ygHNT, is a non-empty compact set. For any y e gHNT
we have y e g(i,i5,...,i,)U, and

yAlg(ihilv"'vin)Un s Ur:lUn = Un—l ’

SO

gHNTc yH Ngliy,iy....igU, € yU,_, n>1,

and ‘
gHNTgcy ﬂN u,.
Equivalently T"'TN H=N, .U,

If C is compact in G, p(C) is covered by finitely many of the sets p(V (i) and
T,NCH is covered by the corresponding sets U (i). Thus T(VCH is relatively
compact.

Now assume B is a closed Baire set in G. By a compactness argument

p(BNT) = () P(BNT,).

As BN U(iy,i,,. . .,i,) is a compact Baire set, and

pBNT)=UU ... U p(BN Uiy, iz . i) N Blig, iz . yin) s
we see that p(BNT) is a Baire set.
In the same way it is seen that p(BNT) is a Borel set when B is closed.
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LemMA 2. Assume G is ag-compact; let K be a closed normal subgroup of H
with H/K metrizable. There exists a locally bounded Baire and Borel cross
section for pg p.

Proor. Choose a sequence (U,),.n Of neighbourhoods of e in G with
N,.~U,NH=K, and to this a Baire set T in G as in Lemma 1.

From T 'TNH<K we get that p~!(x)N T is contained in one K coset
gk (x), i.e. gx(x) is determined by {qx(x)}=pg(p~'(x)N T).

If M is compact in G/H, then p~'(M)N Tand qx(M)=p(p~ " (M)NT) are
relatively compact.

If B is a compact G set in G/K, then pg'(B) is a closed Baire set in G so
g (By=p(px'(BYNT) is a Baire set.

In the same way it is shown that ¢ is a Borel map.

THEOREM. Let G be a locally compact group and H a closed subgroup. There
exists a locally bounded Baire cross section for the quotient map of G on G/H.

Proor. Assume first that G is o-compact. Let .# denote the set of pairs
(K,qx) where K is a compact normal subgroup of H and g is a locally
bounded Baire cross section for pg .

Let ¢ denote the set of compact normal subgroups K of H with H/K
metrizable; then Nk , K ={e} [7, Corollary A [10] and for each K € .#" there
exists by Lemma 2 a locally bounded Baire cross section for pg . Thus .# is
not empty. ’

Define when (K, qg) and (L,q,) belong to .# that (K,q)<(L,q,) if LK
and p; xoq, =qy. This gives a partial ordering of .#. We show that .# is
inductively ordered.

Let Z be a completely ordered non-empty subset of .#, let £ denote the set
of first components of the pairs (L,q;) in 2, and set K=, _,L; K is a
compact normal subgroup of H.

Now G/K is projective limit of the spaces G/L, L e &, that is
x > (pg. (X)) c o defines a homeomorphism ¢ of G/K onto the closed
subset

{(x,),_eye [1GL| LMeg, LgM::»pL‘MxL=xM}
Le¥?

of [1..#G/L.
Therefore x +— ¢ ~'(g.(x)),.. » defines a map g, of G/H into G/K. If qx(x)

=y, then for (L,q,) € & we have py , (y)=gq,(x) and

PK,H(,V) = PL,H°PK,L(}’) = PL,H°qL(x) =X,
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$0 pg 1°dx =4 and pg yoqg(x)=x, x € G/H.

When C is a compact subset of G/H, then ¢(G/K)N [T, . ym is compact,
s0 gk is locally bounded.

To show that g !(B) is a Baire set, when B is a Baire set in G/K, it is enough
to show that foq is a Baire function on G/H for each function fin a dense
subalgebra of C_(G/K). By the Stone-Weierstrass Theorem it is enough to
observe that Fopy ;oqg=Foq, is a Baire function for L € &, F € C,(G/L).

Thus (K, gg) is a majorant for 2, and .# is inductively ordered.

Next let (K, gg) denote some maximal element in .#. It only rests to show
that K ={e}, and for this it is enough to show that KNL=K for all L € %"

For L € " we have that KL =LK is a compact normal subgroup of H and
that KL/L is metrizable.

Let gg; denote py g, oq; then gy, is a locally bounded Baire cross section
for pxr u-

Choose by Lemma 2 a locally bounded Baire cross section qg; ;. for p; g,
and set q; =qk; L °qky; then q; is a locally bounded Baire map of G/H into
G/L with

PLu°q9.(X) = Pk u°PL k1°9kL,1°9kL(X)
= pkruodxL(x) = x, xeG/H.
Note also that pg x;0qx=qg; =P x1°q;-

Now x + (pgnp x(X), Py, (¥) defines a homeomorphism ¢ of G/KNL
onto the closed subspace

{(y, 2) € (G/K) x (G/L)lpK,KL(y) = pl,,KL(Z)}

of (G/K) x (G/L), so x +— ¥~ (gg(x),q,(x)) defines a map gy, of G/H into
G/KNL.If g (x)=), then pgn; x(y)=gg(x) and

PKnL,n(Y) = PK,H°PKnL,K(,V) = PK,H“IK(X) =X,

50 pxnLk°dknL=4k and pgnr podrnL()=x x € G/H.
It is easily seen that gy, is a locally bounded Baire map. Thus

(KNL,qgn,) € # and (K,q )< (KNL,ggn ) Maximality of (K, gi) gives the
wanted relation K=K N L.

Now drop the assumption that G is g-compact. Since G/H is paracompact
we can choose a family (M));.; of pairwise disjoint open g-compact (hence
Baire) subsets with G/H=U; ; M,.

To iel we can choose an open o-compact subgroup G; of G with
M,<cp(G); set H;=HNG, Since G, is o-compact and G;H is closed p|G;
defines a homeomorphism of G,/H; onto p(G), so there exists a locally
bounded Baire map g; of p(G)) into G; with pog;(x)=x, x € p(G)).
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Define q: G/H — G by q(x)=gq;(x), x € M, i € I. Since a compact set in G/H
has empty intersection with all but finitely many M, i € I, q is locally bounded.
Since a compact Baire set in G has empty intersection with all but finitely many
of the open and closed sets p~'(M,), i € I, q is a Baire map.

4.

Let ¢ be a locally bounded Baire cross section for p. We may assume,
substituting gq(p(e))~! for g, that g(p(e))=e.

Define a map P: G — H by P(g)=qop(g) 'g; then P is a locally bounded
local Baire map with P(e)=e and P(gh)=P(g)h, g € G, h € H. This gives a
generalization of a result of M. Takesaki and N. Tatsuuma, cf. [9].

The map ¢: G — H x G/H given by ¢(g)=(P(g), p(g)) and the inverse map
(h, x) — g(x)h are both locally bounded local Baire maps, hence they are both
Baire maps.

Let u and B be left Haar measures on G and H respectively and let A
be a quasi invariant measure on G/H. so A=ou for some measurable function
0: G = ]0,00[; we may assume that ¢ and 1/p are bounded on compact
sets [2].

From

r

.
J fodp = J J 1(q()h) dB(h) dA(x)
G G/H JH
= J foo Ydfx2,  feC.G),
HxG/H

we get that gu(B)=f x A(¢(B)) for any relatively compact Baire set B in G.

The measures gu and f x A are quasi invariant on the quotient spaces G/{e}
and (H x G)/({e} x H), therefore completion regular. It follows that a subset B
of G is u measurable if and only if @(B) is fx A measurable, and ou(B)
=f x A(¢(B)) when B is measurable.

For any map f of HxG/H into a metrizable space, f and foq
are simultaneously measurable. So for any Banach space E the spaces
#A.(H x G/H,E) and 4.(G, E) of bounded measurable maps of compact support
are isomorphic, and isometric in any LP norm, so LP(ffx A E) is linearly
isometric to LP(ou, E); a further multiplication with o'/? gives a linear isometry
onto LP(u, E) (when p=2 this is known from the theorem on induction in
stages).

In the same way f— fop ™! defines a linear homeomorphism between the
spaces L?(f x A, E) and LP(ou, E) with inductive limit topologies and, since g
and 1/p are bounded on compact sets, between L?(f x A, E) and L?(y, E).
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Let 4 be a C*-algebra and « a homeomorphism of G into the group of *-
automorphisms of A with g +— a(g)a continuous for each a € A.

The following theorem was proved in [6] under assumption of the existence
of a measurable locally bounded cross section.

THeOREM (Ph. Green). The C*-algebra C*(G,C . (G/H)® A) of the diagonal
action of G on C_(G/H)® A is isomorphic to the C*-tensor product of the C*-
algebra C*(H, A) of the action of H on A with the compact operators on
L?(G/H).

PRrooF. Let g be a locally bounded Baire cross section with g(p(e))=e. Define
P and ¢ as in section 4.

Define a function T(f®g) on G when fe %.(H, A) and g € #4.(G/H,C) by

T(f®2)(s) = glp@a(a(p))(f(P©), se€G;
thus

T(f®g)oo ' (h,x) = g(x)a(q(x))(f(h)

and
T(f®g)op ™" € B.(H x G/H, A)

(cf. section 2), and so T(f®g) € 4.(G, A).

Extend T by linearity to a map of #.(H, A)®%.(G/H,C) into #.(G, A).

The only part of Green’s proof in doubt under the altered assumption on q is
the proof that the range of T is dense in LZ(u, A).

Now (UF)(h,x)=a(q(x))(F(h,x)) defines a linear homeomorphism U of
L2(B x 4, A). Since C.(H,A)®C.(G/H) is dense in L2(Bx A, A), so is the
subspace spanned by the functions U(f®g=T(f®goe '; it follows that
the range of T|C.(H, A)® C.(G/H) is dense in LZ(y, A).
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