CROSS SECTIONS FOR QUOTIENT MAPS OF LOCALLY COMPACT GROUPS

ESBEN T. KEHLET

1.

In this paper G denotes a locally compact group, H a closed subgroup and $p = p_H$ the quotient map of G on G/H.

It is shown that there exists a locally bounded Baire cross section for p, i.e. map q of G/H into G such that q(C) is relatively compact, when C is compact, $q^{-1}(B)$ is a Baire set, when B is a Baire set, and p(q(x)) = x, $x \in G/H$.

This has been proved by G. W. Mackey [11], when G has countable basis for the topology and by S. Graf and G. Mägerl [5], when G is compact, and follows easily from the results of J. Feldman and F. P. Greenleaf [3], when H is metrizable.

The stronger result that q can be obtained continuous in a neighbourhood of p(e) has been proved, when G/H has finite dimension by P. S. Mostert [13], cf. D. Montgomery and L. Zippin [12, section 4.15], and when H is a Lie group by A. M. Gleason, cf. [4], [13].

The method used here combines a proof from [3] and a Zorn's lemma argument, much like the argument in [12], on the set of cross sections $G/H \rightarrow G/K$, K compact normal subgroup of H.

The result was wanted in [14], cf. [10].

It follows that the bijection $(h, x) \mapsto q(x)h$ of $H \times G/H$ on G and its inverse are locally bounded Baire maps and preserve measurability of sets.

Finally it is shown that some results, e.g. that $C^*(G, G/H)$ is isomorphic to $C^*(H) \otimes \mathcal{K}(L^2(G/H))$, proved by Ph. Green under an extra condition [6, section 2], holds generally.

2.

When K and L are closed subgroups of G with $K \subseteq L$, we let p_K denote the quotient map of G on G/K, and $p_{K,L}$ the quotient map of G/K on G/L with $p_{K,L} \cdot p_K = p_L$. A cross section for $p_{K,L}$ is a map $q_{L,K}$ of G/L into G/K with $p_{K,L}(q_{L,K}(x)) = x$, $x \in G/L$.

Let R and S be locally compact spaces and f a map of R into S. We say that f is locally bounded if f(C) is relatively compact when C is compact; f is called a Baire map, if $f^{-1}(B)$ is a Baire set [8] in R for each Baire set B in S; f is called a local Baire map if $f^{-1}(B) \cap C$ is a Baire set when B and C are Baire sets.

Note that continuous maps are locally bounded local Baire maps and that composition of locally bounded local Baire maps gives a locally bounded local Baire map.

If f is open and continuous (like p) and C is compact of type G_{δ} then so is f(C); in fact C is by Urysohn's lemma intersection of a decreasing sequence $(C_n)_{n\in\mathbb{N}}$ of compact neighbourhoods and $f(C) = \bigcap_{n\in\mathbb{N}} f(C_n)$.

It is wellknown that Haar measures are completion regular [8]; so are quasi invariant measures on quotient spaces G/H [2]. In fact to a measurable relatively compact subset M of G/H, we can choose an open relatively compact subset U of G with $p(U) \supseteq M$ and a sequence $(C_n)_{n \in \mathbb{N}}$ of compact G_{δ} subsets of $p^{-1}(M) \cap U$ with measures increasing to the measure of $p^{-1}(M) \cap U$; then $M \setminus \bigcup_{n \in \mathbb{N}} p(C_n)$ has measure zero because any compact subset of $p^{-1}(M \setminus \bigcup_{n \in \mathbb{N}} p(C_n))$ is covered by finitely many translates $(U \cap p^{-1}(M))$ $\setminus \bigcup_{n \in \mathbb{N}} C_n H h, h \in H.$

Let v be a Radom measure on R. We call a map of R into a topological space measurable if for any compact set in R the restriction of the map to some compact subset with almost the same measure is continuous [1].

If f is a locally bounded local Baire map and φ is a continuous map of S into a metrizable space, then $\varphi \circ f$ is measurable [1].

If h is a measurable map of R into a Banach space E and ψ is a bounded map of R into the Banach space of bounded linear operators on E with $\psi(\cdot)e$ measurable for each $e \in E$, then $r \mapsto \psi(r)(h(r))$ is measurable. In fact any compact set in R has a compact subset K with almost the same measure, such that h(K) has a dense countable subset F; making K a little smaller we may assume that h and $\psi(\cdot)e$, $e \in F$, are continuous on K; then $\psi(\cdot)e$ is continuous on K for $e \in h(K)$ and $r \mapsto \psi(r)(h(r))$ is continuous on K.

3.

LEMMA 1. Assume G is σ -compact; let $(U_n)_{n \in \mathbb{N}}$ be a sequence of neighbourhoods of e in G. There exists a Baire subset T of G with the properties: Each coset gH, $g \in G$, intersets T in a non-empty compact set,

 $T \cap CH$ is relatively compact for each compact subset C of G,

 $T^{-1}T\cap H\subseteq \bigcap_{n\in\mathbb{N}}U_n$, and

 $p(B \cap T)$ is a Borel set, when B is closed, and a Baire set, when B is a closed Baire set.

PROOF. The proof closely follows Feldman and Greenleaf [3]; for the reader's convenience I reproduce it here.

We may assume that U_n is a compact Baire set and that $U_{n+1}^{-1}U_{n+1} \subseteq U_n$, $n \in \mathbb{N}$.

Choose a sequence $(g(i))_{i \in \mathbb{N}}$ from G such that the sets $g(i)p(U_2)$, $i \in \mathbb{N}$, give a locally finite covering of G/H, and define $V(i) = g(i)U_2$, $U(i) = g(i)U_1$, $i \in \mathbb{N}$.

Now assume that for some $n \in \mathbb{N}$ and m = 1, 2, ..., n we have chosen elements $g(i_1, i_2, ..., i_m) \in G$ and compact G_{δ} sets $U(i_1, i_2, ..., i_m)$ and $V(i_1, i_2, ..., i_m)$, $(i_1, i_2, ..., i_m) \in \mathbb{N}^m$, such that

$$G/H = \bigcup_{i \in \mathbb{N}} p(V(i)),$$

$$p(V(i_1, i_2, \dots, i_{m-1})) \subseteq \bigcup_{i \in \mathbb{N}} p(V(i_1, i_2, \dots, i_{m-1}, i)), \quad m = 2, 3, \dots, n,$$

 $U(i_1, i_2, \ldots, i_m)$ is contained in the interior of

$$U(i_1, i_2, ..., i_{m-1}) \cap g(i_1, i_2, ..., i_m)U_m, \quad m = 2, 3, ..., n$$

and $V(i_1,i_2,\ldots,i_m)$ is contained in the interior of $U(i_1,i_2,\ldots,i_m), m=1,2,\ldots,n$. Let $(i_1,i_2,\ldots,i_n)\in \mathbb{N}^n$. Choose for $g\in V(i_1,i_2,\ldots,i_n)$ two compact G_δ neighbourhoods $U(i_1,i_2,\ldots,i_n)(g)$ and $V(i_1,i_2,\ldots,i_n)(g)$ of g such that $U(i_1,i_2,\ldots,i_n)(g)$ is contained in the interior of $U(i_1,i_2,\ldots,i_n)\cap gU_{n+1}$ and $V(i_1,i_2,\ldots,i_n)(g)$ is contained in the interior of $U(i_1,i_2,\ldots,i_n)(g)$.

Choose a sequence $(g(i_1, i_2, \ldots, i_n, i))_{i \in \mathbb{N}}$ from $V(i_1, i_2, \ldots, i_n)$ such that, with the notation

$$V(i_1, i_2, \ldots, i_n)(g(i_1, i_2, \ldots, i_n, i_{n+1})) = V(i_1, i_2, \ldots, i_{n+1})$$

and correspondingly for $U(i_1, i_2, \ldots, i_{n+1})$, we have

$$p(V(i_1,i_2,\ldots,i_n)) \subseteq \bigcup_{i\in\mathbb{N}} p(V(i_1,i_2,\ldots,i_n,i))$$
.

So we can recursively choose such elements and sets for each $n \in \mathbb{N}$. Define B(1) = p(V(1)) and

$$B(i) = p(V(i)) \setminus \bigcup_{i < i} p(V(i)), \quad i > 1,$$

and recursively

$$B(i_1, i_2, \ldots, i_n, 1) = p(V(i_1, i_2, \ldots, i_n, 1)) \cap B(i_1, i_2, \ldots, i_n)$$

and

$$B(i_1, i_2, ..., i_n, i)$$

$$= B(i_1, i_2, ..., i_n) \cap p(V(i_1, i_2, ..., i_n, i)) \setminus \bigcup_{i \le i} p(V(i_1, i_2, ..., i_n, j)), \qquad i > 1.$$

This gives us Baire sets in G/H, pairwide disjoint for fixed $n \in \mathbb{N}$, with G/H $=\bigcup_{n\in\mathbb{N}}B(i)$ and

$$B(i_1, i_2, \ldots, i_n) = \bigcup_{i \in \mathbb{N}} B(i_1, i_2, \ldots, i_n, i), \quad n \in \mathbb{N}$$
.

The sets $U(i_1, i_2, \dots, i_n) \cap p^{-1}(B(i_1, i_2, \dots, i_n))$ are Baire sets in G, pairwise disjoint for fixed $n \in \mathbb{N}$, with

$$p(U(i_1,i_2,\ldots,i_n) \cap p^{-1}(B(i_1,i_2,\ldots,i_n))) = B(i_1,i_2,\ldots,i_n)$$

Define

$$T_n = \bigcup_{i_1} \bigcup_{i_2} \dots \bigcup_{i_n} U(i_1, i_2, \dots, i_n) \cap p^{-1}(B(i_1, i_2, \dots, i_n)), \quad n \in \mathbb{N},$$

and $T = \bigcap_{n \in \mathbb{N}} T_n$. For $g \in G$ there is a unique sequence $(i_1, i_2, ...)$ such that $p(g) \in \bigcap_{n \in \mathbb{N}} B(i_1, i_2, \dots, i_n)$; we find

$$gH \cap T_n = gH \cap U(i_1, i_2, \dots, i_n) \subseteq g(i_1, i_2, \dots, i_n)U_n, \quad n \in \mathbb{N};$$

as $(gH \cap U(i_1, i_2, \dots, i_n))_{n \in \mathbb{N}}$ is a decreasing sequence of non-empty compact sets, $gH \cap T = \bigcap_{n \in \mathbb{N}} gH \cap T_n$ is a non-empty compact set. For any $y \in gH \cap T$ we have $y \in g(i_1, i_2, \dots, i_n)U_n$ and

$$y^{-1}g(i_1, i_2, \ldots, i_n)U_n \subseteq U_n^{-1}U_n \subseteq U_{n-1}$$
,

so

$$gH \cap T \subseteq yH \cap g(i_1, i_2, \ldots, i_n)U_n \subseteq yU_{n-1}, \quad n>1$$
,

and

$$gH \cap T \subseteq y \bigcap_{n \in \mathbb{N}} U_n$$
.

Equivalently $T^{-1}T \cap H \subseteq \bigcap_{n \in \mathbb{N}} U_n$.

If C is compact in G, p(C) is covered by finitely many of the sets p(V(i)) and $T_1 \cap CH$ is covered by the corresponding sets U(i). Thus $T \cap CH$ is relatively compact.

Now assume B is a closed Baire set in G. By a compactness argument

$$p(B\cap T) = \bigcap_{n\in\mathbb{N}} p(B\cap T_n).$$

As $B \cap U(i_1, i_2, ..., i_n)$ is a compact Baire set, and

$$p(B \cap T_n) = \bigcup_{i_1} \bigcup_{i_2} \dots \bigcup_{i_n} p(B \cap U(i_1, i_2, \dots, i_n)) \cap B(i_1, i_2, \dots, i_n),$$

we see that $p(B \cap T)$ is a Baire set.

In the same way it is seen that $p(B \cap T)$ is a Borel set when B is closed.

Lemma 2. Assume G is σ -compact; let K be a closed normal subgroup of H with H/K metrizable. There exists a locally bounded Baire and Borel cross section for p_{KH} .

PROOF. Choose a sequence $(U_n)_{n \in \mathbb{N}}$ of neighbourhoods of e in G with $\bigcap_{n \in \mathbb{N}} U_n \cap H = K$, and to this a Baire set T in G as in Lemma 1.

From $T^{-1}T \cap H \subseteq K$ we get that $p^{-1}(x) \cap T$ is contained in one K coset $q_K(x)$, i.e. $q_K(x)$ is determined by $\{q_K(x)\} = p_K(p^{-1}(x) \cap T)$.

If M is compact in G/H, then $p^{-1}(M) \cap T$ and $q_K(M) = p_K(p^{-1}(M) \cap T)$ are relatively compact.

If B is a compact G_{δ} set in G/K, then $p_K^{-1}(B)$ is a closed Baire set in G so $q_K^{-1}(B) = p(p_K^{-1}(B) \cap T)$ is a Baire set.

In the same way it is shown that q_K is a Borel map.

THEOREM. Let G be a locally compact group and H a closed subgroup. There exists a locally bounded Baire cross section for the quotient map of G on G/H.

PROOF. Assume first that G is σ -compact. Let \mathcal{M} denote the set of pairs (K, q_K) where K is a compact normal subgroup of H and q_K is a locally bounded Baire cross section for $p_{K,H}$.

Let \mathscr{K} denote the set of compact normal subgroups K of H with H/K metrizable; then $\bigcap_{K \in \mathscr{K}} K = \{e\}$ [7, Corollary A [10] and for each $K \in \mathscr{K}$ there exists by Lemma 2 a locally bounded Baire cross section for $p_{K,H}$. Thus \mathscr{M} is not empty.

Define when (K, q_K) and (L, q_L) belong to \mathcal{M} that $(K, q_K) \leq (L, q_L)$ if $L \subseteq K$ and $p_{L,K} \circ q_L = q_K$. This gives a partial ordering of \mathcal{M} . We show that \mathcal{M} is inductively ordered.

Let \mathscr{Z} be a completely ordered non-empty subset of \mathscr{M} , let \mathscr{L} denote the set of first components of the pairs (L,q_L) in \mathscr{Z} , and set $K = \bigcap_{L \in \mathscr{L}} L$; K is a compact normal subgroup of H.

Now G/K is projective limit of the spaces G/L, $L \in \mathcal{L}$, that is $x \mapsto (p_{K,L}(x))_{L \in \mathcal{L}}$ defines a homeomorphism φ of G/K onto the closed subset

$$\left\{ (x_L)_{L \in \mathcal{L}} \in \prod_{L \in \mathcal{L}} G/L \mid L, M \in \mathcal{L}, \ L \subseteq M \Rightarrow p_{L, M} x_L = x_M \right\}$$

of $\prod_{L \in \mathscr{L}} G/L$.

Therefore $x \mapsto \varphi^{-1}(q_L(x))_{L \in \mathscr{L}}$ defines a map q_K of G/H into G/K. If $q_K(x) = y$, then for $(L, q_L) \in \mathscr{L}$ we have $p_{K,L}(y) = q_L(x)$ and

$$p_{K,H}(y) = p_{L,H} \circ p_{K,L}(y) = p_{L,H} \circ q_L(x) = x$$
,

so $p_{K,L} \circ q_K = q_L$ and $p_{K,H} \circ q_K(x) = x$, $x \in G/H$.

When C is a compact subset of G/H, then $\varphi(G/K) \cap \prod_{L \in \mathscr{L}} \overline{q_L(C)}$ is compact, so q_K is locally bounded.

To show that $q_K^{-1}(B)$ is a Baire set, when B is a Baire set in G/K, it is enough to show that $f \circ q_K$ is a Baire function on G/H for each function f in a dense subalgebra of $C_{\infty}(G/K)$. By the Stone-Weierstrass Theorem it is enough to observe that $F \circ p_{K,L} \circ q_K = F \circ q_L$ is a Baire function for $L \in \mathcal{L}$, $F \in C_{\infty}(G/L)$.

Thus (K, q_K) is a majorant for \mathcal{Z} , and \mathcal{M} is inductively ordered.

Next let (K, q_K) denote some maximal element in \mathcal{M} . It only rests to show that $K = \{e\}$, and for this it is enough to show that $K \cap L = K$ for all $L \in \mathcal{K}$.

For $L \in \mathcal{K}$ we have that KL = LK is a compact normal subgroup of H and that KL/L is metrizable.

Let q_{KL} denote $p_{KKL} \circ q_K$; then q_{KL} is a locally bounded Baire cross section for $p_{KL,H}$.

Choose by Lemma 2 a locally bounded Baire cross section $q_{KL,L}$ for $p_{L,KL}$ and set $q_L = q_{KL,L} \circ q_{KL}$; then q_L is a locally bounded Baire map of G/H into G/L with

$$\begin{aligned} p_{L,H} \circ q_L(x) &= p_{KL,H} \circ p_{L,KL} \circ q_{KL,L} \circ q_{KL}(x) \\ &= p_{KL,H} \circ q_{KL}(x) = x, \quad x \in G/H \ . \end{aligned}$$

Note also that $p_{K,KL} \circ q_K = q_{KL} = p_{L,KL} \circ q_L$.

Now $x \mapsto (p_{K \cap L, K}(x), p_{K \cap L, L}(x))$ defines a homeomorphism ψ of $G/K \cap L$ onto the closed subspace

$$\{(y, z) \in (G/K) \times (G/L) | p_{K, KL}(y) = p_{L, KL}(z) \}$$

of $(G/K) \times (G/L)$, so $x \mapsto \psi^{-1}(q_K(x), q_L(x))$ defines a map $q_{K \cap L}$ of G/H into $G/K \cap L$. If $q_{K \cap L}(x) = y$, then $p_{K \cap L,K}(y) = q_K(x)$ and

$$p_{K \cap L, H}(y) = p_{K, H} \circ p_{K \cap L, K}(y) = p_{K, H} \circ q_{K}(x) = x ,$$

so $p_{K \cap L, K} \circ q_{K \cap L} = q_K$ and $p_{K \cap L, H} \circ q_{K \cap L}(x) = x$, $x \in G/H$.

It is easily seen that $q_{K \cap L}$ is a locally bounded Baire map. Thus $(K \cap L, q_{K \cap L}) \in \mathcal{M}$ and $(K, q_K) \leq (K \cap L, q_{K \cap L})$. Maximality of (K, q_K) gives the wanted relation $K = K \cap L$.

Now drop the assumption that G is σ -compact. Since G/H is paracompact we can choose a family $(M_i)_{i \in I}$ of pairwise disjoint open σ -compact (hence Baire) subsets with $G/H = \bigcup_{i \in I} M_i$.

To $i \in I$ we can choose an open σ -compact subgroup G_i of G with $M_i \subseteq p(G_i)$; set $H_i = H \cap G_i$. Since G_i is σ -compact and G_iH is closed $p \mid G_i$ defines a homeomorphism of G_i/H_i onto $p(G_i)$, so there exists a locally bounded Baire map q_i of $p(G_i)$ into G_i with $p \circ q_i(x) = x$, $x \in p(G_i)$.

Define $q: G/H \to G$ by $q(x) = q_i(x)$, $x \in M_i$, $i \in I$. Since a compact set in G/H has empty intersection with all but finitely many M_i , $i \in I$, q is locally bounded. Since a compact Baire set in G has empty intersection with all but finitely many of the open and closed sets $p^{-1}(M_i)$, $i \in I$, q is a Baire map.

4.

Let q be a locally bounded Baire cross section for p. We may assume, substituting $qq(p(e))^{-1}$ for q, that q(p(e)) = e.

Define a map $P: G \to H$ by $P(g) = q \circ p(g)^{-1}g$; then P is a locally bounded local Baire map with P(e) = e and P(gh) = P(g)h, $g \in G$, $h \in H$. This gives a generalization of a result of M. Takesaki and N. Tatsuuma, cf. [9].

The map $\varphi: G \to H \times G/H$ given by $\varphi(g) = (P(g), p(g))$ and the inverse map $(h, x) \mapsto q(x)h$ are both locally bounded local Baire maps, hence they are both Baire maps.

Let μ and β be left Haar measures on G and H respectively and let λ be a quasi invariant measure on G/H, so $\lambda = \varrho \mu$ for some measurable function $\varrho: G \to]0, \infty[$; we may assume that ϱ and $1/\varrho$ are bounded on compact sets [2].

From

$$\int_{G} f \varrho \, d\mu = \int_{G/H} \int_{H} f(q(x)h) \, d\beta(h) \, d\lambda(x)$$

$$= \int_{H \times G/H} f \circ \varphi^{-1} \, d\beta \times \lambda, \quad f \in C_{c}(G) ,$$

we get that $\varrho\mu(B) = \beta \times \lambda(\varphi(B))$ for any relatively compact Baire set B in G.

The measures $\varrho\mu$ and $\beta \times \lambda$ are quasi invariant on the quotient spaces $G/\{e\}$ and $(H \times G)/(\{e\} \times H)$, therefore completion regular. It follows that a subset B of G is μ measurable if and only if $\varphi(B)$ is $\beta \times \lambda$ measurable, and $\varrho\mu(B) = \beta \times \lambda(\varphi(B))$ when B is measurable.

For any map f of $H \times G/H$ into a metrizable space, f and $f \circ \varphi$ are simultaneously measurable. So for any Banach space E the spaces $\mathcal{B}_c(H \times G/H, E)$ and $\mathcal{B}_c(G, E)$ of bounded measurable maps of compact support are isomorphic, and isometric in any L^p norm, so $L^p(\beta \times \lambda, E)$ is linearly isometric to $L^p(\varrho\mu, E)$; a further multiplication with $\varrho^{1/p}$ gives a linear isometry onto $L^p(\mu, E)$ (when p=2 this is known from the theorem on induction in stages).

In the same way $f \mapsto f \circ \varphi^{-1}$ defines a linear homeomorphism between the spaces $L_c^p(\beta \times \lambda, E)$ and $L_c^p(\varrho \mu, E)$ with inductive limit topologies and, since ϱ and $1/\varrho$ are bounded on compact sets, between $L_c^p(\beta \times \lambda, E)$ and $L_c^p(\mu, E)$.

5.

Let A be a C*-algebra and α a homeomorphism of G into the group of *automorphisms of A with $g \mapsto \alpha(g)a$ continuous for each $a \in A$.

The following theorem was proved in [6] under assumption of the existence of a measurable locally bounded cross section.

THEOREM (Ph. Green). The C*-algebra $C^*(G, C_{\infty}(G/H) \otimes A)$ of the diagonal action of G on $C_{\infty}(G/H) \otimes A$ is isomorphic to the C*-tensor product of the C*algebra $C^*(H, A)$ of the action of H on A with the compact operators on $L^2(G/H)$.

PROOF. Let q be a locally bounded Baire cross section with q(p(e)) = e. Define P and φ as in section 4.

Define a function $T(f \otimes g)$ on G when $f \in \mathcal{B}_c(H,A)$ and $g \in \mathcal{B}_c(G/H,C)$ by

$$T(f \otimes g)(s) = g(p(s))\alpha(q(p(s)))(f(P(s))), \quad s \in G;$$

thus

$$T(f \otimes g) \circ \varphi^{-1}(h, x) = g(x) \alpha(q(x))(f(h))$$

and

$$T(f \otimes g) \circ \varphi^{-1} \in \mathscr{B}_c(H \times G/H, A)$$

(cf. section 2), and so $T(f \otimes g) \in \mathcal{B}_c(G, A)$.

Extend T by linearity to a map of $\mathscr{B}_c(H,A)\otimes\mathscr{B}_c(G/H,C)$ into $\mathscr{B}_c(G,A)$.

The only part of Green's proof in doubt under the altered assumption on q is the proof that the range of T is dense in $L_c^2(\mu, A)$.

Now $(UF)(h, x) = \alpha(q(x))(F(h, x))$ defines a linear homeomorphism U of $L_c^2(\beta \times \lambda, A)$. Since $C_c(H, A) \otimes C_c(G/H)$ is dense in $L_c^2(\beta \times \lambda, A)$, so is the subspace spanned by the functions $U(f \otimes g) = T(f \otimes g) \circ \varphi^{-1}$; it follows that the range of $T \mid C_c(H, A) \otimes C_c(G/H)$ is dense in $L_c^2(\mu, A)$.

REFERENCES

- 1. N. Bourbaki, Intégration, Chap. 1-4, 2me éd. (Actualités Sci. Indust. 1175), Hermann, Paris,
- 2. N. Bourbaki, Intégration, Chap. 7-8 (Actualités Sci. Indust. 1306), Hermann, Paris 1963.
- 3. J. Feldman and F. P. Greenleaf, Existence of Borel transversals in groups, Pacific J. Math. 25 (1968), 455–461.
- 4. A. M. Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43.
- 5. S. Graf and G. Mägerl, Baire sections for group homomorphisms, Proc. Amer. Math. Soc. 85 (1982), 615-618.
- 6. Ph. Green, The structure of imprimitivity algebras, I, Funct. Anal. 36 (1980), 88-104.

- 7. F. P. Greenleaf and M. Moskowitz, Cyclic vectors for representations associated with positive definite measures: Nonseparable groups, Pacific J. Math. 45 (1973), 165-186.
- 8. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
- E. T. Kehlet, A non-separable measurable choice principle related to induced representations, Math. Scand. 42 (1978), 119–134.
- 10. E. T. Kehlet, On extensions of locally compact groups and unitary groups, Math. Scand. 45 (1979), 35-49.
- G. W. Mackey, Induced representations of locally compact groups I, Ann. of Math. 55 (1952), 101-139.
- D. Montgomery and L. Zippin, Topological transformation groups (Interscience Tracts in Pure and Applied Mathematics 1), Interscience Publ. Inc., New York, 1955.
- 13. P. S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23 (1956), 57-71.
- 14. M. A. Rieffel, On extensions of locally compact groups, Amer. J. Math. 88 (1966), 871-880.

MATEMATISK INSTITUT KOBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 DK-2100 KOBENHAVN O DENMARK