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PROJECTIVE TENSOR PRODUCTS
OF C*-ALGEBRAS

STEN KAIJSER and ALLAN M. SINCLAIR

1. Introduction.

In this paper we investigate some properties of the projective tensor product
of two C*-algebras, bilinear forms on C*-algebras, and hermitian elements in
the projective tensor product of two unital Banach algebras. We shall show
that there are various natural relationships between these ideas.

G. Pisier [17] generalized Grothendieck’s inequality from commutative C*-
algebras to non-commutative C*-algebras that satisfy a suitable approxima-
bility hypothesis. This hypothesis on the approximability of the bilinear form
by suitable finite rank bilinear forms was removed by U. Haagerup [8], who
also fond the best value of the constant in the non-commutative case.
Haagerup’s proof falls into two parts. In the first half he obtains a constant,
5/2, in the inequality that is not best possible, and in the “end” of the proof he
obtains the best value by a complex analysis variational technique. In Theorem
2.1 we give a new proof of the first part of Haagerup’s theorem [8, Theorem
1.1], and thus also of Pisier’s result [17, Corollary 2.2]. Since a C(X)-space is a
commutative C*-algebra, the Haagerup-Pisier result contains Grothendieck’s
“fundamental theorem on the metric theory of tensor products”. We believe
that our proof of the Haagerup-Pisier result is also new as a proof of
Grothendieck’s theorem.

In one way or another all proofs of Grothendieck’s inequality are based on
the following fact. If p is a probability measure, if ¢> 2, and if E is a subspace of
L%(u) on which the Li-norm and the L2-norm are equivalent, then every f e E
can be decomposed f=g+h in such a way that g € L*(u) is the “significant
part” of f in the sense that the L?-norm of h € L*(u) is small. In the original
proof h is simply forgotten, in the proofs based on the disc algebra one exploits
the possibility of choosing g either analytic or antianalytic, and in proofs based
on interpolation this decomposition is only implicit. For the original proof see
Grothendieck [7], Lindenstrauss and Pelczynski [13], Lindenstrauss and
Tsafriri [14]; for proofs using the disc algebra see Fournier [3] and Pelczynski
[16]; and for proofs using interpolation see Krivine [11], Maurey [15], and
Pisier [17]. Once one realises that the decomposition is a common feature of
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these proofs, then a simple way to obtain the decomposition is to truncate the
function f at a suitable height, and this is what is done in our proof. The proofs
based on interpolation really use the fact that this truncation can be done at all
heights. One would expect that with this additional information proofs based
on interpolation should give better estimates of the constants than those based
on a single truncation. It is therefore somewhat surprising that in the non-
commutative case our proof gives an estimate of the constant (< 81/8) which is
slightly better than Pisier’s estimate (< 12). A comparison of our proof with the
proofs of Pisier and Haagerup shows certain similarities and differences. The
same basic facts about C*-algebras are used in all proofs but like Haagerup
our proof relies on C*-algebra techniques more heavily than Pisier’s proof. We
use spectral theory through the functional calculus for a hermitian element in a
C*-algebra. Haagerup’s detailed study of the imaginary part of the bilinear
forms [8, Lemmas 3.2 and 3.3] is avoided in our proof, though his Lemma 3.1
is crucial in our proof. The basic version of the proof was circulated in 1980 in
a preprint (Kaijser [10]). The new ingredient that gives Haagerup’s result [8,
Theorem 1.1] is the use of hermitian elements in the projective tensor products.

This use of hermitians suggests studying the nature of hermitian elements in
the projective tensor product of two unital Banath algebras. Recall that an
element h in a unital Banach algebra A is hermitian if and only if the numerical
range

V(h) = {f(h): fe A* |fl=f(1)=1}

is contained in the real line. If x and y are hermitian elements in unital complex
Banach algebras A and B, respectively, then x®1+1®y is a hermitian
element in the projective tensor product AQ B of A and B. This is a trivial
consequence of the isometric embeddings of 4 and B into A® B given by
a— a®1 and b+— 1®b. In Theorem 3.1 we show that all the hermitians in
A® B are of this type provided 4 or B has the approximation property. The
underlying reason for this result is that the unital Banach algebra 4A® B has
very many states and these states restrict the structure of the hermitian
elements.

This theorem on hermitians in 4A® B is closely related to the result that each
hermitian operator T defined on B(H), the space of all continuous linear
operators on a Hilbert space H, may be written in the form T=L,+R,, where
L, is left multiplication on B(H) by the hermitian element h and R, is right
multiplication by the hermitian element k [18, Remark 3.5]. The reason for the
close relationship between these two identifications of hermitian operators is
that for compact Hausdorff spaces Q and ¥ the projective tensor algebra
C(Q)® C(¥P) has a natural norm reducing bicontinuous monomorphism = into
B(B(H)) for a suitable Hilbert space H. In Theorem 4.1 the map = is



PROJECTIVE TENSOR PRODUCTS OF C*-ALGEBRAS 163

constructed and its bicontinuity is shown to be equivalent to Grothendieck’s
inequality. A more complicated non-commutative C*-algebra version of this
theorem is proved in Theorem 5.2. As an application of the bicontinuity of n
we show that the unital Banach subalgebra of B(B(H)) generated by the
derivation formed from a hermitian element in B(H) is isomorphic to a
subalgebra of a projective tensor product of commutative C*-algebras
(Corollary 4.6).

Let G br a (discrete) commutative group and let  be a faithful
*-representation of ['(G) in B(H) for some Hilbert space H. In 4.8 we show
that if n,: I'(G) - B(B(H)) is defined by

(m T = Y, b (@)* T (2)
g€

for all (a,) € I'(G) and T e B(H), then =, is a bicontinuous isomorphism with
Im; 1 £ Kg. This result is a partial generalization to arbitrary representations
of a theorem due to Stermer [20, Lemma 4.5] and Ghahramani [4, Theorem
5], who show that if i is the left regular representation of I'(G) on 1>(G), then
the representation m, above is isometric. Stgrmer [20] actually considers
locally compact abelian groups, and Ghahramani [4] considers general locally
compact groups; both replace I'(G) by the convolution measure algebra M (G).
Their methods of proof are different, and are different from our proof.

The relationship between the bicontinuity of n and Grothendieck’s
inequality was found independently by U. Haagerup (personal communication
with the authors), and a special form of it occurs in M. Ljeskovac’s thesis [12,
Theorem 7.4]. We are grateful to G. Pisier for bringing to our attention
reference [6] and the importance of Problem 3.3(b).

2. The Grothendieck-Pisier-Haagerup inequality.

Recall that the projective tensor norm | - | is defined on the algebraic tensor
product X® Y of two Banach spaces X and Y by

l[ull = inf{z ;- sl s u =) X,~®y,}
1 1

for all ue X®Y, and that the projective tensor product X®Y is the
completion of the normed space (X®Y,|||). Let A, denote the set of
hermitian elements in a C*-algebra A.

2.1. THeoreM. [Haagerup, 8].

(a) There is a constant K(£81/8) such that for each continuous bilinear form
F on A x B, where A and B are C*-algebras, there are states ¢ and y on A and B
such that
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IF(a,b)l < K|Fl@((a*a+aa*)/2)'?-y((b*b+bb*)/2)!/?
for allae A and b € B.
(b) There is a constant K(<81/8) such that for all a,,...,a, € A, and
bi,...,b, € B,, where A and B are C*-algebras

2 4;®b;

1

I

1

1/2|| n

2 b
1

1/2

lIA

K

We shall prove (b) in Lemmas 2.6 and 2.9, and shall sketch the equivalence
of (a) and (b) in Remark 2.10(b) following Haagerup [8, Lemma 3.4]. The
quantity on the right of the inequality in (b) may be used to define a tensor
norm |||, on 4,® B,. In Lemma 2.6 we shall prove that the natural map 1
from A,® B, into the completion of 4,® B, in this tensor norm || - ||, is onto. If
either of the C*-algebras 4 or B satisfies the approximation property; then 1 is
one-to-one; thus Lemma 2.6 completes the proof of Theorem 2.1(b) in this
case. In Lemma 2.9 we show that 1 is one-to-one in general by using elementary
properties -of hermitian elements in a unital Banach algebra. If a is an element
in C*-algebra, let the modulus of a be |a| = ((a*a+ aa*)/2)"/* (see Pisier [17, p.
397]). If A and B are C*-algebras, the norm || ||, is defined on A® B by

;laﬂz ; bl cu = ;a,@bj}

1/2

1/2

ful, = inf{

for all u e A® B, and A®, B denotes the completion of A®Q B in || - || ,-norm.
The following lemma ensures that the natural map : from 4,® B, into 4,®, B,
is norm reducing. Lemma 2.9 shows that 1 is one-to-one, and Lemma 2.6 shows
that 1 is onto and |:~!| £81/16.

2.2. LeMMA. If A and B are C*-algebras then 4| ||, is an algebra norm on
A® B satisfying |la®bl,=|al-|b|l for all ae A, and be B,. If ue A,®B,
then

n

X 4]
1

1/2 n

X b
1

1/2

llull, = inf{

cu =y a;Qb;, a;eA,bje B,,}.
1 .

Proor. We begin by proving the last equality. We define the involution * on
A®B by (a®b)*=a*®b*, and observe that u*=u for all u € A,® B,.
Let u € A,®B,, and let

m=inf{

n

A

1

1/2 n

"2 bj

1

1/2

U = Z“i®bf’ ajeA,,, bjEBh}.
1
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Then |u]| <m because |a|*> =a? for each hermitian element a in a C*-algebra. If
u = ‘j;(aj+icj)®(bj+idj)
with a;, b, ¢;, d; hermitian, then
u=u* = (u+u*/2 = Z:: (a;®b;—c;®d))

so that
1Y laj+ici?1- 1Y b;+id)?| = 1Y (ai+cHI- 1Y, (b2 +d3)|

because |a;+ic|*=a} +cj. Thus |ul| Zm, and |ul|=m.
We now prove that 4| - ||, is an algebra seminorm. By multiplying the first
factor by a suitable t >0 and the second factor by ™!, we see that

Y laj? ; |3 ; laj*
1

1/2

1/2

m Aul, = inf{

tu =Y a;®b,
1

2 Ib?
1

!

for all ue A®B. If aj,c; € A and b, d; € B with

IX lal = 1X b2 and 1Y le,Pll = 12 14,1,
then
I ta2 + 30 le 2121 12+ 30 11212
< (X laP 1+ 12 le2DM2- A A2+ 1Y 14,2 1D
I a2 AR+ 0 e 2021 1202

IA

From this inequality and the equivalent definition of | - ||, given in (1), we see
that ||-|, is a seminorm on A® B.

Letu=Y a;®b;and v=3 c;®d;. Then uv=3 a;c;®b;d;. From the standard
C*-algebra inequality c*xc <c*c| x| for all hermitian x (see [17, p. 398]), we
have

Y (crafajc;+acctal
i

IIA

Y cke;
7

2. ata;
j

+2 aaf |y cckl
j

2
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’
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because x< || x+y|| and ||x|| £ ||x+y| for x and y positive elements in a C*-
algebra.
Thus

<4

Z |ajci|2
ij

Z |aj|2 ‘
J

Z |Cj|2
J

so that

1/2

1/2

1/2
X 1

luvll, = 4

Z Iaj|2 Z 'bj|2 : Z 'cilz
J j i

Hence |uv|,<4|ull,"|lv|l,, and 4| |, is an algebra seminorm on A® B.

Let a € 4, and b € By; then a®bll, < |lalll- bl =llal - |b]l. Let f and g be
states on 4 and B such that | f(a)|= ||a| and |g(b)|=||b]. [ a®b=3 a;®b; with
aje A, and b; € B, then

lall-lIbll = 13 f(apg(b)
S X @)X gy
s (X f@)' (X gb))'?
by the Cauchy Schwarz inequality

< 1Y af 2632

Thus |a|l-|b|| = |la®b|, and the proof is complete.

Is the || - | ,-norm an algebra norm on A® B and is |[a®b|, = a| - ||b|| for all
ae A and b € B?

Let r,,r,,... denote the sequence of Rademacher functions on [0, 1]: note
that the integrals in the following calculations are expectations over a finite
probability space, because at each stage we are concerned only with ry,....,r,
which are n independent random variables each taking values +1 with
probability 1/2. The following Lemma is a C*-algebra version of a lemma used
in Borel’s proof of the strong law of large numbers, and is proved in Pisier [17,

Lemma 1.1].

2.3. LeMMA. If ay,. . .,a, are hermitian elements in a C*-algebra A, then
(5a).

1

Lemma 2.3 is used in the proof of the following truncation result. If x is a
hermitian element in a C*-algebra and if fis a continuous function on the real

4

dt £ 3

n

1

2 4

1

2 riba;
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line, then f(x) denotes the element of the C*-algebra given by the action of fon
x induced by the Gelfand-Naimark functional calculus. If t> 0, the truncation
h, of the identity map, A(t)=t for all t € R, is defined by

t ift=1
h(t) = t ift=t
-1 iftg—-1.

2.4. LEMMA. Let a,,. . .,a, be hermitian elements in a C*-algebra, and let a(t)
=31r;j(ta; for all t € [0,1]. If ©>0, then
.

(i) J{ (a()}? gi and

n

24
1

n
A
1

( 3
(ii) J (A=h) @)} dt < =
PRrOOF. (i) Since h,(t)* <¢* for all t € R, we have h,(x)? < x? for all hermitian

elements x. Thus
o

J{ (a@)}*dt < Jpa(t)zdt
=2

aa; Jri(t)rj(t) dt

i,Jj

I
~M=
[
<

(i) The function A—h, is skew-symmetric and satisfies

t—1 ift=1
(A=h)ol = {0 fo<i<t.
Thus |(A—h,)(t)| St?/4t for all ¢t € R because
24t —(t—1) = (t—21)*/4t 2 0 forallt=7.

Hence |(A— h,)(x)|* £ x*/1672 for all hermitian elements in a C*-algebra. Using
this and Lemma 2.3 we have

j{(l—h,)(a(t))}ldt <. 6‘ j a(t)* di

3 n
1672 ? a

n
Y at.
1
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2.5. LEMMA. Let A and B be C*-algebra and let u € A,® B, If ||u|l, <1, there
are v,w € A,® B, such that u=v+w, |v|| <27/16, and |w|,<2/3.

Proor. By the equivalent definition of |u], given in (1) of Lemma 2.2 there
are a,,...,a, € A, and by,...,b, € B, such that

n

u=7y aQ®b,

1

n

2 q
1

n

)

1

PPl=M<«<1.

J

As in Lemma 2.4 let

n n

a(ty = Y ri(ta; and  b(t) = Y r,(0b;
1 1

for all t € [0,1]. Let t>0, let

.
v = Jh,(a(t))@h,(b(t))dt,

and let

r

w = J {(A=h)(a()®h,(b(1)+a()® (A—h)(b(1)} dt .

Then v,w € 4,® B, because the integrals are essentially finite averages over 2"
elements, and u=v+w because

u = Z a,-®bj jri(t)rj(t)dt
ij

r

= Ja(t)@b(t)dt.

Using the definition of the projective norm and the observations that the
integrals are finite averages, we have

IA

loll = Jllhr(a(t))ﬂ " (b(0)Il dt

7%,

IIA

because [|h.(x)|| <t for all hermitian x. Using the definition of || ||, norm, we
have



PROJECTIVE TENSOR PRODUCTS OF C*-ALGEBRAS 169

1/2 r 1/2

Iwll, = ” f (A=h)(a(0)* dr|| - Jh,(b(:))2 dt
r 1/2 1/2
+ Ja(t)2 dt|| - J(A—h,)(b(r))z dt

1/2

3 31/2
e AR HEEES DY a,g||”2"“4? 1> b7

31/2

v M3/2
21

I

IIA

by Lemma 2.4 and the choice of M. Taking t=3*>M'/2/4 gives |w|, <2/3 and
v <27/16 as required.

2.6. LEMMA. Let A and B be C*-algebras and let 1: A,®B, — A,®, B, be the
continuous linear operator defined by 1(a®b)=a®b. If u € A,®, By, then there
is z € A,® B, with 1iz=u and ||z|| £%|\ul|,. If A or B satisfy the approximation
property, then 1 is invertible with |1~ <81/16.

Proor. This lemma may be proved by a duality argument as in Kaijser
[10, p. 6] or by the following standard elementary technique.
It is sufficient to show that for each u € 4,® B, with |lul|, <1, there is a
z e A,®B, with |z|| <81/16 and 1z=u. By induction using Lemma 2.5 we
choose sequences v,,v,,...,wo, w,,w, ... in 4,® B, such that wy=u and w,_,
=v,+w, with
loall < Hliwa-illz  and  llw,ly < ZlIw,_4ll;

for n=1,2,... . Then

wo = u =3 v+w, vl <HE", and w,] = @

.-M:

foralln. If z=¥{v,, then z € A,® B, with |z|| £3Z(1-%)"'=81/16 and 1z=u.

If A or B satisfies the approximation property, then so does 4, or B, as a real
Banach space, because there is a continuous real projection from A4 onto A4,
(and B onto B,). Because || ‘||, is a cross norm on A,® B,, the map 1 is one-to-
one in this case.

2.7. LEMMA. Let A and B be unital C*-algebras, and let F be a continuous
bilinear form on A x B such that ||F||=F(1,1)=1. If F(x, y) is real valued for all
hermitian x € A and y € B, then

|F(a,b)| £ F(a?,1)'2-F(1,b%)'?

for all hermitian a € A and b € B.
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The proof of this useful elementary lemma is due to Haagerup [8, Lemma
3.1], and we omit the proof. The proof depends on expanding F(expita,
exp it b) as a power series in ¢t and investigating the behaviour of the real part of
the term in ¢* as t tends to zero using |lexpita| =1=|lexpitb| for all real t.
From the identification between continuous bilinear forms on 4 x B and
elements in the dual of 4® B, we see that the above lemma concerns a self-
adjoint state F on A® B. A linear functional F on A®B is self-adjoint if F
=F*, where * is defined on A® B by (x® y)*=x*® y*, and F*(u)=F (u*) for
all u e A® B. The following corollary is just another way of wording Lemma
2.7 and is essentially Haagerup’s Theorem [17, Theorem 1.1] for a self-adjoint
state of A® B: the proof is part of [17, Lemma 3.6].

2.8. COROLLARY. Let A and B be unital C*-algebras. If F is a self-adjoint state
on AQ B, then F is a continuous linear functional on A® ,B with |F||,<1.

ProoF. Let x € 4 and y € B. By multiplying x by ¢ for suitable a € R, we
have F(x,y)=F(x,y)=F(x*,y*. If x=a+ic and y=b+id with a, b, ¢, d
hermitian, then

F(x,y) = {F(x,y)+F(x* y*}/2 = F(a,b)—F(c,d)

so that
|F(x,y)| < {F(a®, D'2F(1,b)"2 + F(c?, 1)!'?F(1,d*)'?}
< F(a*+c D)'V2F(1, b2 +dH)'?
= F(xI%, D'2F(1,1y)" .
Hence

IFE x;@y)l £ Y Fxj% DV2F(,ly )"
< (X Fx 2 0)'2- (2 F(L Ly, M)
S IY e PIMRIY 20
This shows that I!F|I2§ 1.

In the proof of the following lemma we require the result that if h and ih? are
hermitian elements of a unital Banach algebra, then h=0. This may be deduced
from the theorem that the norm of a hermitian element is its spectral radius [1,
Theorem 11.17] or the result associated with states corresponding to the “end”
of the numerical range of a hermitian element [2, Corollary 26.10]. In either
case there is a state f on the Banach algebra such that |f(h)|=|h| and f(h")
=f(h)" for all n € N. Since f'(h) is real and f(h?) is imaginary by assumption,
Ikl =f (h)* = (h*)=0.
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2.9. LEMMA. If A and B are C*-algebras, the map 1: AQ B - A®, B is one-
to-one.

Proor. We adjoin identities to A4 and B if necessary. Note that AQ B is a
closed subspace of (4 @C1)® (B®C1) because there is a natural projection
from A®CI1 onto A with kernel C1 so that the map

A®B - (A®CHR (BACL) > (A®C1)/C1R® (BOCI1)/Cl ~ A®B

is the identity. Now let 4 and B be unital and let u € Ker 1. Let F be a state on
A®B and let G=(F+F*)/2. Then G is a self-adjoint state on AR®B,
so is a continuous linear functional on A®, B by Corollary 2.8. Hence
Gi1(u)=G(u)=0 so that

F(u)+ﬁ1;"-) =0 and F(u+u"‘)+F_(u+u*) =0.
Hence i(u+u*) is hermitian in A® B. Note that the involution * defined on
A® B by (x®y)* =x*® y* induces an isometric involution on A®, B because
|x*|=|x| for all x. Thus u* € Ker 1. Now (i(u+u*)?= —u? —u** —uu* —u*u is
i times a hermitian because the elements u? +u?*, uu*, u*u are self-adjoint in
A®B and are in Ker1, since Ker: is an ideal In A® B — recall 4||- ||, is an
algebra norm on 4 ® B. By the note before this lemma it follows that u +u*=0

so that u=0 on replacing u by iu. This proves Lemma 2.9 and completes the
proof of Theorem 2.1(b).

2.10. REmARKS. (a) In the proof of Lemma 2.9, we are essentially proving that
each element in Ker 1 is the sum of a hermitian element plus i times a hermitian
clement. The Vidav-Palmer Theorem [1, Theorem 38.14] then ensures that
Ker: is a C*-algebra. This and the observation that the square of a hermitian
in Ker: is i times a hermitian provides another proof that 1 is one-to-one.

(b) Here we remark on the equivalence of 2.1 (a) and (b). If a,,. . .,q, € 4,,
by,...,b, € By, and u=3 a;®b;, then there is a continuous bilinear form F on
A x B such that |F||=1 and F(u)=|u|. If ¢ and { are the states given by
Theorem 2.1(a), then

flul

lIA

Y. [F(a byl
K'Y, p(a) 2y (b7
K(T o(@)- (% y (b))

by the Cauchy-Schwarz inequality. This shows that 2.1(a) implies 2.1(b). That
2.1(b) implies 2.1(a) is Lemma 3.4 in Haagerup [8] and the argument moving
from hermitians to general elements given in [8, Lemma 3.6] and Corollary 2.8.

IIA

IIA
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3. Hermitian elements in the projective tensor product.

If A and B are unital Banach algebras, then x® 1 and 1 ® y are hermitian in
A®B for all hermitian x € 4 and y € B because a—a®1: A - A®B and
b—1®b:B—> A®B are norm reducing unital homomorphisms. In the
following result we show that all hermitians in A ® B are a sum of these two
types provided the linear embedding of A® B into C(Q x ) is one-to-one,
where Q is the state space of 4 and ¥ that of B. The philosophy behind the
proof is that A® B has so many states that the structure of the hermitian
elements is severely restricted.

Recall that a state on a unital Banach algebra is a continuous linear
functional fsuch that || f||=f(1)=1, and that the state space is the set of all
states on the algebra.

3.1. THEOREM. Let A and B be unital Banach algebras such that the canonical
map from the projective tensor product A® B into the injective tensor product
AQ®B is one-to-one. If u is a hermitian element in the projective tensor product
A®B, then there are hermitian elements x in A and y in Bwithu=x®1+1®y.

PROOF. Let Q be the state space of 4 and ¥ be the state space of B each with
the weak *-topology, and let 0: AQ B — C( x ¥) be defined by 0(a®b)(w, )
=w(a)y (b). We begin by proving that

(1) Ou(wy, ¥r,) +0u(w,y, ;) = Ou(wy, )+ u(w,, ¥,y

for all w,,w, € 2 and ¥,,, € ¥, where u is the hermitian element in A& B.
Suppose that equality (1) does not hold for some w,,w, € Qand ¥, ¢, € V.
Let F be the continuous linear function defined on A® B by

2 F(v) = fi'_{00(‘”1,‘/’1)“i90(w1"//2)“i9”(w2’lpl)“"ov(wz,‘//2)}

for all v € AQ B. Then the imaginary part
ImF(u) = {O0u(w;, ) —0u(w,,¥,) — Ou(w,, Y1)+ O0u(wy, 5)}

of F(u) is non-zero. Once we have proved that F(u) is a state on A® B this
shows that u is not hermitian, which is the required contradiction. Clearly
F(1®1)=1. The matrix
1 —i
(i )

considered as an operator from the 2-dimensional [®-space [} into the 2-
dimensional I'-space [} has norm equal to Z‘ﬁ. This may be casily observed by
considering what this matrix does to the unit sphere in /°. which is partly a
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geometrical square. Alternatively one may evaluate the norm analytically by
examining the behaviour of the matrix on the extreme points of I3. Regarded
as an operator from IS into I} the matrix

A+ 1 —i
4 =i 1

has norm 1. From the definition of F in (2) and of 6, it follows that

U+ (o @\ 1 =i\ (¥, (b)
ruan = (N () (0e)
so that |[F(a®b)| < ||a|| - ||b] for alla € A and b € B. Hence F is a state on A® B

and we have shown that Ou satisfies (1).
Fix w, € Q and Y, € ¥, and define

P:A®B > A:a®b— y,(ba,
and

Q: A®B - B:a®b — w,(a)b .

Then |P|=1, |QI<1, P(1®1)=1. Using the state definition of numerical
range it follows that P and Q map hermitian elements in A® B into hermitian
elements in 4 and B, respectively. This is a folklore result that norm reducing
operators mapping the identity to the identity preserve hermitians: it follows
from the observation that if w is a state on A, then wP is a state on A& B so is
real valued on hermitian elements. Let x = Pu and y=Qu —0u(w,¥,)1. Then x
and y are hermitian, and

Ou—x@1-1®@y)(w,¥)
= Ou(w,y) —Ou(w, ) — Ou(w,, ) + 0u(w,, §y)
=0

for all w € Q and ¥ € ¥ by (1). The set of states on a unital Banach algebra
generates the dual space as a linear space [2, Theorem 31.1], and thus 0 is one-
to-one because the natural map from A® B into A® B is one-to-one. This
completes the proof.

If A4 is a unital Banach algebra, let U(A) denote the unitary group

wedrued, lul=u""|=1},

and let U,(A) denote the subgroup of U (A) generated by the set {expih: h € A,
h hermitian}.
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3.2. CoroLLARY. Let A and B unital Banach algebras. If A or B has the
approximation property, then

Ug(A®B) = Uy(A®Uy(B) = {u®v:ue Uy(A), ve Uy(B)} .

The corollary follows directly from Theorem 3.1. If 4 and B are C*-algebras,
then the embedding 0 of the projective tensor product 4® B into the injective
tensor product A® B is one-to-one by Haagerup [8, Proposition 2.2]. ’

3.3. ProBLEMS. (a) If A and B are unital Banach algebras, are all hermitians
in A® B of the form x®1 + 1®y, where x € A and y € B are hermitian?

(b) An element x in a unital Banach algebra A is called hermitian equivalent if
there is an equivalent Banach algebra norm on A4 for which x is hermitian, or
equivalently if the set {|lexpitx| :t e R} is bounded. If 4 and B are unital
Banach algebras such that the natural map from A® B into A® B is one-to-
one, and if 4 and B have no non-trivial projections, is each hermitian
equivalent element in A®B of the form x®1+1®y, where x and y are
hermitian equivalent elements in A and B?

Note that some restriction on 4 and B is required here. For example, if 4
and B are finite dimensional semisimple commutative Banach algebras of finite
dimensions m and n, respectively, then A® B is a C*-algebra in an equivalent
norm, because it too is a finite dimensional commutative semisimple Banach
algebra. The real linear dimensions of the real linear spaces of hermitian
equivalent elements in 4, B, and A® B are m,n, and mn, respectively; note that
the commutativity of the algebras ensures that the hermitian equivalent
elements form a real linear space. However the dimension of the real linear
space of elements of the form x®1+1®y, where x and y are hermitian
equivalent in 4 and B, respectively, is m+n.

Note that problem 3(b) is related to problem 13.19 of [6, p. 412] (and see
also [22]).

(c) What additional hypotheses on 4 and B are required to ensure that
U(A®B) = U(A)®U(B)?

(d) What are the hermitians in the injective tensor product A® B, when
A®B is a Banach algebra? Under what addition additional conditions on A
and B does it follows that (A® B),=A4,®B,?

4. Representations of continuous bilinear forms on C(Q).

In this section we investigate a form of Grothendieck’s inequality associated
with the representation of C(2)® C(¥P) as a closed subalgebra of B(B(H)) for
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suitable Hilbert space H. This result, Theorem 4.1, we prove in detail proving
the required lemmas in full so that this section of the paper may be read
without reference to general results on C*-algebras. In section 5 we rapidly
study the corresponding problem for general C*-algebras. Theorem 4.1 is
strong enough to bring out the close relationship between the structure of the
hermitian elements in C(2)® C(¥) (Theorem 3.1) and in B(B(H)). We discuss
this point in detail in Remark 4.5(a). Theorem 4.1 may also be used to show
that the unital Banach subalgebras of B(B(H)) generated by *-automorphisms
on B(H) and by *-derivation are bicontinuously isomorphic to subalgebras of

(a(T))®C(o(T)) where T is the operator on H deﬁmng the automorphism
or derivation (Corollary 4.6).

Recall that Grothendieck’s inequality states that there is a constant K such
that if F is a continuous bilinear form on C(Q)x C(¥), then there are
probability measures p and v on the compact Hausdorff spaces  and Y,
respectively, such that

IF(x,p) < Kp(xI)'2-v(lyl?)'"?

for all x e C(2) and y € C(¥) (see [7] and [13]). The least such constant K
over all F, Q, ¥ is called (the complex) Grothendieck’s constant. An equivalent
form of the inequality is that there exists a constant K such that

AL et
1 1
forall fi,..., f, e C(Q)and g,,...,g, € C(Q). The least constants in these two

forms of Grothendieck’s inequality are the same. This is essentially proved in
[13] and is in Grothendieck [7] in different notation.

2
< K?

4.1. THEOREM. Let Q and ¥ be compact Hausdorff spaces, and let 6 and ¢ be

(continuous) faithful unital *-representations of C(2) and C(¥Y) on a Hilbert
space H. Let

n: C(Q®C(¥Y) - B(B(H))

be defined by n(f®g)T=0(f)TH(g) for all fe C(Q), g € C(¥), and Te B(H).
Then m is a monomorphism from C(Q)® C(¥) into B(B(H)) with |n|| <1 and
I~ ' <K, and K is the smallest constant K in general in the inequality ||n |
<K.

As we remarked we shall prove two little lemmas relating general states on
C(Q) with vector states arising from the representation in order to make the
proof of Theorem 4.1 self-contained. Lemma 4.2 is an easy special case of a
result of J. Glimm which is used in his C*-algebra Stone-Weierstrass Theorem
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[5]. The idea is to approximate convex combinations of pure states on C(Q)
(=unit point masses on ) by states arising from orthogonal vectors in the
Hilbert space. If for a state (=probability measure) u on C(Q) there is a unit
vector ¢ in the Hilbert space H such that u(x)={0(x)&, &) for all x € C(Q), then
u is said to be a vector state on C(Q) arising from the representation 6.

4.2. LEMMA. Let Q be a compact Hausdorff space and let 0 be a unital faithful
*-representation of C(Q) on a Hilbert space H. Then the set of vector states
arising from the representation 0 is weak *-dense in the set of all states on C(Q).

Proor. By the Krein-Milman Theorem the set of all convex combinations of
pure states on C(Q) is weak *-dense in the set of all states —a pure state is just
an extreme point in the set of all states. Further a pure state on C(Q) is the

functional of evaluation at some fixed point of Q. Let w,,...,w, € Q and
Bis- - B,>0with 37 B;=1. Lete>0and f},. . ., f,, € C(Q) with | f,| 1 for all
k. Then wy,...,w,, f;,...,f, determine the convex combination of pure states

which we shall approximate by a vector state within a neighbourhood
determined by ¢, f},. . ., f,. Let >0 be small with (36 —62)(1 —8) ! <e, and let
V; be disjoint neighbourhoods of w; For each j choose g; such that 0<g;<1,
gj(w)=1, g; is supported by V;, and || (f,—fi(w)1)g;ll <o for k=1,...,m. The
spectrum of g; is real, and 1 is in the spectrum of g; so 1 is in the approximate
point spectrum of 0(g;). Thus there is a {; € H with ||{;|| =1 and [|(0(g;) — 1)l
<o for j=1,...,n Let

& = 0 1051
for each j. Then
1(0g)—1)¢l < 6(1=0)7".
Hence
KOS5 €0 —Silw))
KO —filw)1)E;, €D

< 20LAll- 10(g) = DE; I + 1O () —flw)1)B(g)E 5, )
< 201(0(8) — D& + 11 (fe—filw)l)g;l
<20(1—8)"'+4

< &

for all j and k. Further (£, {,> =0 for j #k, because ; is in the range of the self-
adjoint operator 0(g;) and the supports of the functions g; and g, are disjoint.
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Thus
OUIE BI2EN, (X BI2E)> = Y BLOIELED

is within ¢ of 3; B;f,(w;) because 3 f;=1. This proves the lemma.

4.3. LEMMA. Let Q be a compact Hausdorff space and let 0 be a unital faithful
*-representation of C(Q) on a Hilbert space H. For each state u on C(Q), each ¢
>0, and each finite dimensional subspace M of C(Q), there is a unit vector & in H
such that p(|x)>)< (1+¢) <O(|x|?)E, EY for all x e M.

Proor. Because M is finite dimensional there is a state v on C() such that
x € M and v(]x|*)=0 implies that x =0: the state v may be taken to be a strict
convex combination of a finite number of pure states (=unit point masses) on
C(9Q). Let
o= (L4 Pt (1= (L +e)7 2.

The function x — u,(]x|?)"? is a norm on M and so is equivalent to the || | -
norm M inherits as a subspace of C(€). Thus
S ={xeM:pu(xH=1}
is a compact subset of M. Let §>0 be such that (1—=38)"!=(1+¢)"2
Then there are f},. .., f, € S such that

S

in

LIJ {ge M |Ifji*—Igl*l <o} .
By Lemma 4.2 there is a £ € H with ||£] =1 such that

(D) £ 00fDEE> +6
for 1<j<n If g € S, we choose f; so that |||f;|*—|g|*|l <6 and then
1

w1 (18l

(L f)+0
O(fIEE>+20
< 0(1gEE>+30 .

IIA

IIA

Thus
u(g) = (1+9)"2u,(1g

(1+¢)'?
= 1-35

S (1+e)0(1gl)E, &> -

<0(g"e, &>

Math. Scand. 55 - 12
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This proves the lemma.

4.4. Proor oF THEOREM 4.1. The properties of = all follow directly from its
definition except for n being an injection and |n~!|| <K To prove these
properties it is sufficient to show that for an algebraic tensor u € C(Q)® C(P)
and an ¢>0 there is a Te B(H) such that |T| < (1+¢&)Kgand |n)T| = |ul.
By the Hahn-Banach Theorem and the identification of the dual of
C(Q)&®C(P) with the space of continuous bilinear forms, there is a bilinear
form F on C(Q)x C(¥) with |F||=1 and F(u)=|u|. By Grothendieck’s
inequality there are probability measures u and v on Q and Y, respectively,
such that

IF(x, )| < Kgu(lx®)!2v(Iy1?)'?

for all x e C(Q) and y e C(¥). f u=31x;®y;, let M, be the linear span of
X15. - -5 X, in C(2) and M, be the linear span of y,,...,y, in C(¥). By Lemma
4.3 there are unit vectors £ and # in H such that

p(xl?) < (1+8)"<0(x1Pm, n>
and
v(iyP) £ (1+8)' 2 oy)E, &>
for all x e M, and y € M,. Thus
[F(x,y)l < Kg(1+8I0(x)*n]- o)l

for all x e M, and y € M,.

If H, =0(M)*n and H, =@ (M,)¢, then there is a linear operator T, from H,
into H, such that | T, <(1+6)Kg and F(x,y)=(To@()&0(x)*n)> for all
x € M, and y € M,. Let P be the orthogonal projection from H onto H,, and
let T=T,P. Then |T| < (1+¢)K and

lull = F(u) = Z F(x;y)

= ; O(x,)TO(y))¢, n>

(r@T)E,n>
Im@T] .

I\

This shows that n~! exists and that |z~ !| <K
To show that the least constant K in Theorem 4.1 is Grothendieck’s
constant we shall prove that
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2
< K?

Z x;®y;
1

2 x| ti?
1 1

for all x; € C(Q) and y; € C('¥). From this it follows that K > K ; because this is
one of the standard equivalent forms of Grothendieck’s inequality. Let u
=2"1x;®y; and let ¢>0. Then there are Te B(H) and unit vectors &,n € H
such that ||[T|| =1 and

lul < (K+e)l(n(@T)E,n) .
Thus

n 2

2 X ®y;

1

n 2
= (K+8)2(Z I(O(XI)T<P(yj)€,'7>I>

n 2
< (K+8)2<Z llg(xj)*ﬂll'H(P(yj)fll)

= (K+8)2<$ ||9(xj)*'1llz>(2n: ||9(y,-)él|2)

by the Cauchy-Schwarz inequality,

(K +e)? <\; 0(1x,*m, '1> <Z ct;(lyj|2)é,€>
1

21: P2 (| |2 tvil?
1

lIA

lIA

(K +e¢)?

This completes the proof of Theorem 4.1.

4.5. REMARKS. (a) Let Q and ¥ be compact Hausdorff spaces and let n-be the
representation of C(Q)® C(') defined in Theorem 4.1 corresponding to the
unital faithful *-representations 6 and ¢ of C(Q) and C(¥) on a Hilbert space
H. Since n(1®1)=1 and ||n|| =1, ®# maps the space of hermitian elements in
C(Q)® C(¥) into the space of hermitian elements in B(B(H)) (see the proof of
Theorem 3.1). The hermitian operators on a unital C*-algebra are each a sum
of left multiplication by a hermitian in the algebra and a hermitian derivation
[18, Remark 3.5]. Because the derivations on B(H) are all inner, the hermitians
in B(B(H)) are of the form L,+ R,, where h and k are hermitian elements in
B(H), and L,x=hx and R,x=xk for all x € B(H). Thus a hermitian element u
in C(Q)® C(¥) gives n(u)=L,+ R, for some hermitians h and k in B(H). It is
then straight forward to show that h € 0(C(Q)) and k € 0(C(¥)). This gives the
close relationship between hermitians in C(Q)C(¥) and B(B(H)) mentioned
earlier.
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(b) A corollary of Theorem 4.1 is that the unital Banach subalgebra of
B(B(H)) generated by a hermitian is semisimple (see [9, Theorem 1]). This is
because a hermitian in B(B(H)) is of the form L,+ R,, where h and k are
hermitians in B(H), and so the unital Banach algebra generated by L, and R, is
bicontinuously isomorphic to a subalgebra of C(a(h))® C(a(k)) — take 6 and ¢
in Theorem 4.1 to be the *-monomorphisms given by the Gelfand-Naimark
Theorem. A consequence of this semi-simplicity is that there are hermitians in
unital Banach algebras which cannot be bicontinuously represented in
B(B(H)). The reason is that there are hermitians, which generated non-semi-
simple Banach algebras (see [19]).

(c) Using the technique of the proof of Theorem 4.1 one can show that, if F is
a continuous bilinear form on C(Q)x C(¥), then there exist cyclic
representations 6 of C(Q) and ¢ of C(¥) on Hilbert spaces H and K with unit
cyclic vectors 5 and &, respectively, and a continuous linear operator T from K
into H such that | T|| £ KG|F| and F(x,y)=<0(x)TO(y)&,n) for all x € C(Q)
and y € C(¥). This result was found independently by U. Haagerup (personal
communication to the authors) and M. Ljeskovac [12], and may be known to
others.

(d) The following corollary of Theorem 4.1 identifies the unital Banach
algebra generated by a *-derivation on B(H), and there is a corresponding
corollary for *-automorphisms. Corollary 4.6 implies that the unital Banach
algebra generated by a *-derivation on B(H) arising from a hermitian element
T is completely determined by the spectrum of T (up to translation).

4.6. COROLLARY. Let H be a Hilbert space and lgt T be a continuous hermitian
operator on H with spectrum a(T). Let D be the derivation on B(H) defined by
D(x)=Tx—xT for all x € B(H), and let A be the unital Banach subalgebra of
B(B(H)) generated by D. There is a continuous unital isomorphism n from the
closed subalgebra of C(o(T))® C(a(T)) generated by z®1—1®z onto A such
that 1(z®1—-1®2z)=D, |n| =1, and |n~'| £ K where z(t)=t for all t € a(T).

Proor. The Gelfand-Naimark continuous functional calculus for the
hermitian element T in B(H) gives a unital continuous faithful *-representation
0 of C(a(x)) in B(H) with 6(z)=T. The result follows directly from this and
Theorem 4.1.

4.7. ProBLEM. There is a natural norm reducing unital homomorphism y
from the extremal algebra Ea[—1,1] defined in numerical range (see [2,
Section 24] for a definition) into C[0,1]&® C[0, 1] such that the generator u of
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Ea[—1,1] is mapped to z® 1 —1®z, because the numerical range of z®1
—1®zis [—1,1]. Does y have a continuous inverse?

The following corollary is a partial generalization of a result in F.
Ghahramani [4] and E. Stermer [20, Proposition 4.6] concerning the
representation of L'(G) in B(B(L*(G)) induced by the left regular
representation of G on L?(G). In the corollary below the result is for discrete
groups but the representation is any faithful representation rather than the left
regular representation.

4.8. CorOLLARY. Let G be a commutative discrete group and let : I'(G)
- B(H) be a faithful *-representation of I'(G) in B(H). If n,: I'(G) —> B(B(H))
is defined by

7tl((“g))T = Z ag‘//(ég)*’np(ég)
ge G
for all (a,) € I'(g) and T € B(H), where d, is the delta function, then m is a norm
reducing monomorphism with ||n; | < KG

Proor. The idea is to use the natural isometry I'(G) — A(G) — C(G)@C(G}
studied by Varapoulos [21, p. 96] combined with the natural representation of
C(G) in B(H) and Theorem 4.1. Here G denotes the dual group of G, and G is
compact.

The norm reducing *-representation y induces a *-representation 6 of C(G)
into B(H) with the property that 0((ozg)j= ¥ ((ap) for all (x,) € I'(G). The
reason for this is that i is continuous in the spectral radius norm of /' (G), and
that C(G) is the completion of ['(G) in the spectral radius norm —an
equivalent form is that C(G) is the enveloping C*-algebra of I'(G). Let

n: C(G®C(G) — B(B(H)

be the monomorphism defined in Theorem 4.1 from the faithful *-
representation 0: C(G) — B(H) by n(f®g)T=0(f)TH(g). Let

M: I'(G) = A(G) —» C(G)®C(G)
be the Varapoulos map defined by
(M(xp)(x, ) = (o) (x+)

forall x,y € G and (a,) € I'(G), where " is the Fourier transform from I' (G) into
C(G) (onto A(G)). The map M is initially defined into C(G x G) but is in fact
into C(G)® C(G) and is isometric (see Varapoulos [21, p. 96] and [6, p. 309]).
Let y: C(G) —» C(G) be the dual of the inverse in the group: y(f)(x)=f(—x)
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for all fe C(G) and all x € G. Then y®1I is an isometry on C(G)&® C(G), and so
M, : '(G) - C(G)Y®C(G) defined by M,=(y®I)M is isometric. Because
In~'|£K; by Theorem 4.1, the proof will be complete if we show that =,
=nM,. For §, € I'(G), we have

(M,3)(x,y) = x(g) y(8) = §_,®5,(x,)

so that
(M )(G)(T) = n(6_,®8)T
= 0(5_,)T0(5,)
= Y(0_p)*Ty(5,)
= m,(0)T
for Te B(H).

4.9. ProBLEM. (a) Is the map =, in Corollary 4.1 isometric?

(b) Let G be a locally compact group, let y be a strongly continuous unitary
representation of G in B(H), and let n,: L'(G) —» B(B(H)) be defined by

()T = j S W (x)* T (x) dA(x)
G

for all f € L'(G) and T € B(H), where 4 is left Haar measure on G. Then n, is a
norm reducing homomorphism, and let J denote the kernel of n,. Under what
conditions on G and ¢ does =, drop to a bicontinuous monomorphism from
L'(G)/J into B(B(H))?

5. Representation of bilinear forms on a C*-algebra.

The occurrence of the products xx* and x*x in the Grothendieck-Pisier-
Haagerup inequality (Theorem 2.1) means that the homomorphism in the
representation of a bilinear form on a commutative C*-algebra must be
replaced by a Jordan homomorphism in general (Theorem 5.2). The action of
the C*-algebra on the left of the Hilbert space is no longer sufficient and it is
essential to consider action on the right too. There are several equivalent ways
of wording this. A representation of a C*-algebra 4 in B(H), for a Hilbert space
H, turns H into a left Banach A-module with the involution in the algebra and
module marching. The converse holds. An antirepresentation 6 from A4 into
B(H) may be defined as a representation of the reversed algebra A", where the
product o in A" is defined by aob=ba, in B(H); or we may regard H as a right
Banach A-module with the involution in 4 matching that in B(H).
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Recall that a vector state ¢ on a C*-algebra A arising from a representation
0 (or antirepresentation) of 4 on a Hilbert space H is of the form ¢(a)
= {0(a)é, &) for some unit vector £ € H. The hypothesis int the following lemma
and theorem that each state on A may be weakly approximated by vector
states arising from the representation 6 (or antirepresentation) is satisfied if
60(A)NCL (H)={0} by Glimm’s Lemma (see [5]), where CL (H) is the algebra
of compact operators on H.

5.1. LEMMA. Let A be a C*-algebra and let 6 be a faithful representation of A on
a Hilbert space H such that each state on A is in the weak *-closure of the set of
vector states arising from the representation 0. If ¢>0, if M is a finite
dimensional linear subspace of A, and if u is a state on A, then there are unit
vectors & and n € H such that

1+e)KO(x*x)E,E>  and

p(x*x) = (
p(xx*) £ (1+e)<0(xx*m,n>  foral xe M .
The proof is the same as that of Lemma 4.3 provided that the modulus in the
proof is interpreted as (x*x)'/?> when constructing ¢ and as (xx*)'/? when
constructing n — rather than our usual modulus ((xx* +x*x)/2)"/.

5.2. THEOREM. Let A be a C*-algebra, let 0 be a representation of A on a
Hilbert space H, and let \y be a representation of the reversed algebra A" on a
Hilbert space K. Let

n: A® A — B(B(H®K))
be defined by
t(x@NT = (0DY)X)TODY)(y)

forall x,y € Aand Te B(H®K). Then n is a continuous Jordan homomorphism
with |z|| £ 1. If each state in A is in the weak *-closure of the set of vector states
on A arising from 0 and in the weak *-closure of those arising from , then ||n ™|
<2

Proor. The direct sum in the statement is the Hilbert space direct sum so
|0+y||=1, and = is norm reducing. The map = is a Jordan homomor-
phism because 6 is a representation and y is an anti-representation of A.

Now suppose that the state space of 4 is the weak *-closure of the set of
vector states of A4 arising from 6 and from . Let u € A® A with |u| =1, and
let F € (A® A)* such that F(u)= |u and ||F| = 1. By the Grothendieck-Pisier-
Haagerup inequality (see Haagerup [8, Theorem 1.1] or Theorem 2.1) there
are states @, ¢,, ¥,, ¥, on A such that
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IF(x,y)l < (@1 (x*X)+ @3 (xx¥)2- (Y, (y*p) + ¥, (yy*)'72

forall x,y e A. lf u=31x;®y), let M, be the linear span of x,,...,x, and M,
be the linear span of y,,...,y, By Lemma 5.1 there are unit vectors &,,&, € H
and 7n,,n, € K such that

P1(x*x) £ (1+e)0(xx*)¢, &),
@, (xx*) £ (L4+ey(x*xny,n,) ,
Yi(*y) £ (1 +eX0(*y)E, ¢8>,  and

Yalyy®) < L+ (yy*Ina,na
for all xe M, and y e M,.

Let
= {(0DY)X)* (& ®ny): x e My,
and
H, = {0@V)0(&:®ny):y e My} .
Then

IF(x, ) £ (@1 (x*3)+ @5 (xx*)"2 (Y (V*W) + ¥, (yy*)'?
S (1+91O0DYEHE D) 1ODYIW(E, D)l

for all x e M, and y € M,. Thus there is a continuous linear operator T, from
H, into H, such that | Ty||<1+¢ and

F(x,y) = (T,(0@y) (0, @n5), (0@Y)(x*(E,@ny)>

for all x e M, and y € M,. Let P be the orthogonal projection from H@®K
onto H,, and let T=T,P. Then |T|<1+e¢, and

llull

I

= Z F(x;y)
1

(T (&, Dn,), (&, D))
2|m ()T} .

I\

Hence n~!

exists and ||~ !|| £2. This completes the proof.

5.3. REMARKS. (a) There is a result corresponding to Remark 4.5(d) that
applies to general C*-algebras and its proof is a minor modification of part of
the proof of Theorem 5.2. If F is a continuous bilinear form on a C*-algebra
A, then there are cyclic representations 0, and 6, [anti-representations y, and
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¥, ] on Hilbert spaces H, and H, [K, and K,] with unit cyclic vectors ¢, and

&, [n, and 5,] and a continuous linear operator T: H, ®K, — H,® K, with
IT| <||F] such that

F(x,y) = {(0;®Y,)X)TODY)(W)(EDny), &, Dny)
for all x,y € A.

(b) Let 4 and B be C*-algebras. We shall define four sets of bilinear forms
LL, LR, RL, RR on A x B as follows. A continuous bilinear form F is in class
LL, LR, RL, RR if and only if there are states ¢ on A and ¥ on B such that

(LL)  [Fep)l = [IFl@(c*x)! 2y (y*y)'?
(LR)  [F(x, ) < [Fl@(x*x)! 2y (yy*)'?
(RL)  [F, ) = IFl@(ex*)! 2y (y*y)'?2
(RR)  [F(x, )l = [IFll@Cex*)! 2y (yy*)'2

for all x e A and y € B. An equivalent way to formulate this is in terms of
representations, either cyclic ones or the universal representations.

Let-0, and 65 denote the universal representations of 4 and B on Hilbert
spaces H 4, and Hp, and let ¥ 4, and {5 denote the universal representations of
the reversed algebras 4" and B" on Hilbert spaces K, and Kp, respectively.
Then a continuous bilinear form F on 4 x B is in the respective class if and
only if there is a continuous linear operator T with || T| = | F{l and unit vectors
& and 7 such that

Class T e | ne F(x,y) =

RL | Hy > H, | Hy | Hy | <0,0T050)En>
RR KB I HA KB HA <0A(X)TII’B(Y)§, '7>
LL | Hg— K, | Hp | K | <Y ,(x)TOg(y)E,n>

LR Kg— Ky KI_B K4 | <Y4(x)TY ()¢, n>
for all x € 4 and y € B.
Note that the compactness of the state spaces of A and B shows that the four
classes are all closed in (4® B)*.
Writing the operator T occuring in Theorem 5.2 and Remark (a) in matrix

form
T — (Tll Tl 2)
Ty Ty

the bilinear form F on 4 x A with |[F||=1 may be written in the form
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F(x,y) = <0()T,0(y)c, &> +<O(x)Ty9 (), &
+ WYX T510(0E 0> + Y (X) o (y)n, 1)

for all x,y € A. Thus Haagerup’s Theorem [8, Theorem 1.1] may be worded as
follows: if F is a continuous bilinear form on A x 4 with ||F|| =1 then there are
four bilinear forms Fy; € LL, F\ g € LR, Fg, € RL, Fpp € RR each of norm
<1 such that

F = FLL+FLR+FRL+FRR .

5.4. ProBLEM. Under what additional conditions on the norms of Fy;, Fy,
Fri, Frr and the algebras A and B, is this decomposition unique in some
fashion? Clearly the decomposition is highly non-unique for commutative
algebras but this is because LL=LR=RL=RR.
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