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FINITE-DIMENSIONAL IRREDUCIBLE
REPRESENTATIONS OF C*-ALGEBRAS ASSOCIATED
WITH TOPOLOGICAL DYNAMICAL SYSTEMS

SHINZO KAWAMURA, JUN TOMIYAMA and YASUO WATATANI

Abstract.

Let X be a compact space, ¢ a homeomorphism of X and & the C*-
crossed product C(X) x Z of C(X) with respect to . It is proved that the space
o, of unitary equivalence classes of n-dimensional irreducible representations
of o is homeomorphic with the topological product (X,/~) x T, where X, is
the set of points x in X with ¢"(x)=x and ¢*(x) % x for 1 <k <n—1, where ~ is
the orbit equivalence relation, and where T={z € C: |z|=1}. As an application,
we obtain a complete classification of the C*-algebras associated with
Bernouilli shifts.

Introduction.

Let X be a compact (Hausdorff) space and ¢ a homeomorphism of X. Let
C(X) be the C*-algebra of all continuous functions on X. The *-automorphism
of C(X) induced by ¢ is denoted by ¢ again, i.e.,, a(f)(x)=f(o(x)) for fin C(X)
and x in X. Throughout this paper, &/ always denotes the C*-crossed product
of C(X) by the group Z of all integers with respect to the action {¢": n € Z} on
C(X), that is, # =C(X)x Z, and &, the space of equivalence classes of n-
dimensional irreducible representations of &/ (1<n<oo).

In this paper, we shall determine the topological structure of &, in terms of
the topological dynamical system (X, o). Let

X"={xeX: o"(x)=x} and X, = X"\ (J X"').

m=1

We say that two points x and y in X, are equivalent if the two orbits of x and y
coincide, i.e.,

{o*(x) : 0Sk=sn—1} = {o*(y) : 0=Sk=n—1}.

Let T be the unit circle in the complex plane. Then we have the following result.
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THEOREM A. The space S, is homeomorphic with the product space (X W/ ~)
xT.

The representations of &/ have been studied by many authors. Especially the
papers [3], [4], [7], and [9] are closely related to Theorem A. In [9: Theorem
5.3] Williams explicitly determined the topology on the primitive ideal space of
a class of C*-crossed products (E — H regular) associated with transformation
groups on a locally compact space [9: Theorem 5.3]. When X is second
countable, our theorem can be derived from his theorem, but we impose no
condition on the dynamics (X, o) to derive our result. The proof of Theorem A
is elementary and is given in Section 1.

In Section 2, the theorem is applied to classify the C*-algebras associated
with Bernoulli shifts, which were considered in [5] as a class of C*-algebras
associated with topologically transitive dynamics (Theorem B). Moreover we
discuss more general cases (Theorem C) and show that, in the case of Markov
chains, C*-isomorphism determines the topological entropy of ¢ (Theorem D).

1. Proof of Theorem A.

Let §, be a fixed n-dimensional Hilbert space. We denote by Irr, (&) the set
of irreducible representations ¢ of & on §, We consider Irr, (&) as a
topological space with the topology of weak pointwise convergence over &,
which is equivalent to the norm convergence topology in this case. Since &, is
homeomorphic with the quotient space Irr, (=#)/ ~ by the unitary equivalence
relation ([2: Theorem 3.5.8]), we consider the topological spaces Irr, (/) and
Irr, (of)/ ~ instead of o,

We now recall the product of covariant representations of the C*-crossed
product of =C(X) x Z . Let K(Z, C(X)) be the set of all functions F of Z into
C(X) such that F(n)=0 for all n in Z except finitely many n. Then K(Z, C(X))
is naturally and densely embedded in &. For a covariant representation (x, u)
of (C(X), ) on a Hilbert space §, the representation n x u of & on $ is defined
for K(Z, C(X)) as follows;

(rxu)(F) = Zz n(Fmu" (F e K(Z,C(X)),

and the set {(n x u)(F): F € K(Z,C(X))} is a dense subalgebra of (n x u) ().
Since every representation ¢ of o is of the form g== x u for some covariant
representation (n, u) of (C(X),0) ([6: Proposition 7.6.4]), we consider only the
set of covariant representations of (C(X),0) on $,. Let {es,e,,...,e,_,} be a
fixed basis for §, For x in X, and z in T, we denote by =, and u, the
representation of C(X) and the unitary operator on §j, defined by
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(e, = f(e*()er  (fe C(X), 0Sk=n-1),
ue = ¢,y (0=k=n-2) and ue, , = ze,.

Then the representation (m,u,) becomes a covariant representation of
(C(X),0) on 9, that is, u¥n, (N, =n,(a(f)) for fin C(X). In this paper, e;,
(respectively z,,,,) means e, (respectively z,) for every integer i and k (0<k<n
—1). For (x,z) in the product space X, x T, we put &(x,z)=n, x u,. Then &
becomes a map of X, x Tinto Irr, ().

LEMMA 1. The map ® is continuous.

Proor. Let (x,z) and (y,w) be in X, x T. For fin C(X), we have
17 () @)™ Feo — 7, () (1,)" el
= |f(* )2 —f ([ MWel = If(e* ()7 ~f(* W] — 0

(as x —> yand z - w).

For F in K(Z,C(X)), we have
“ (nx X uz)(F)eO - (ny X uw)(F)eO "

Y. (me(F(m)(u,)eo —m, (F () (u,)e0)

neZ

ZZ "nx(F(n))(uz)"eO- y(F("))(“w)"eo” -0

(as x —» y and z — w).

Since e, is cyclic for (m,xu)(sf) and (m,xu,)(K(Z,C(X))) is dense in
(my X u) (), (m,xu)(T) converges to (m, xu,)(T)¢ for every T in o and
every ¢ in §, as (x,z) converges to (y,z) in X, x T.

For x in X, we put O(x)={d*(x): 0sk<n—1}. Now we consider an
equivalence relation in X, x T. Namely we say that (x,z) and (y,w) are
equivalent if O(x)=0(y) and z=w, and denote by ¢ the canonical map of X,
x T onto the quotient space (X, x T)/~ =(X,/~)xT. The quotient map of
Irr, () onto Irr,(s#)/ ~ is denoted by . Then, since the equivalence relations
in X, x T and Irr, («#) are open (cf. [2: 3.5.5]), ¢ and ¢ are open. In the
following, we prove that =, x u, and =, x u,, are unitarily equivalent if and only
if 0(x)=0(y) and z=w.

LEmMMA 2. Let (x,z) and (y,w) be in X, xT. Then
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Y(2(x,2)) = Y(2(y,w)
if and only if ¢(x,z)=0(y, w).
Proor. We first suppose that O(x)=0(y) and z=w. Then y=¢*(x) for some i

(0<iZn—1). In the case i+0, let v; and v, be the unitary operators on $,
defined by

vie, = e4; (0Sksn—1) and
vy, = ze, (0SksSn—i—1), vy =¢ (n—isSk<n-1).
By the definition of the operators v; and v,, one checks that
(010)* (e x u)(Toy0; = (m,xu,)(T) (Te ).

Conversely we suppose that O(x)=+0(y), which is equivalent to O(x)NO(y)
= . Then there exists a continuous function f on X such that f(x)=1 but
f(*(»)=0 for all k (0<k=<n-—1). Hence n,(f)+0 but n,(f)=0. When z+w,
we have that (u,)"=z1+$wl=(u,)" Therefore, in both cases, m,xu, is not
unitarily equivalent to m, x u,,.

By the two lemmas above, we get an injective and continuous map ¥ of (X,/
~)x Tto Irr, (£)/ ~, by defining

Y(p(x,2) = Y(P(x,2)) ((x,2)e X, xT).

Now, for a representation ¢ (respectively m) of o (respectively C(X)) on $, and
a unitary operator u on $,, we put

[Adu](@(T) = u*e(T)u (Te )
[Adu]l(m)(f) = u*n(flu (f € C(X)).
In the following, we prove that
{[Adul(n,xu,) : (x,2) e X,xT, ue U(H,)} = Irr, (),
where U($9,) is the set of all unitary operators on $,.

LEMMA 3. The map ¥ is surjective.

Proor. Let g== x u be in Irr, (=), where (m,u) is a covariant representation
of (C(X), g). Then n(C(X)) is of course an abelian C*-algebra on $,. Hence the
spectrum S of n(C(X)) consists of m-points {py, py,. . .,Pm-1} (1Sm=n). For
each characteristic function g, € C(S) of {p,}, there exists a function f; in C(X)
such that m(f,)=y,, where #(f,) is the Gelfand transform of =(f;,). Hence
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{n(fJ): 0Sk<m—1} are orthogonal projections of $, and =n(C(X)) is
generated by them. Since the map f — #n(f)(p,) is a character of C(X), there is
for each k a point x, in X such that z{f)(p,)=f(x,) for all fin C(X). It is easy
to see that o(x,) belongs to the set {x;: 0<i<m—1} and that u*n(f)u =n(f)if
and only if ¢(x,)=x; Moreover it follows that

O(x) = {x;: 0Zism—1} for all k,

because

m = Z@ n(j;)gn
x,€0(x))
is a non-zero invariant subspace for {n(C(X)), u,u*}, and g is irreducible. Hence,
rearranging the set {x,: 0<k<m— 1}, we can assume that ¢*(x,) = x, for each
k 0<k<m—1) and 6™(xg)=x,.

Next we shall show that m=n. For this, it is sufficient to prove that
dim n(fo)9,=1. Suppose that dim =n(fy)9,> 1. Since [Ad u™](n(f))=n(f) for
all f in C(X), n(f,) commutes with u™ Now consider the spectral
decomposition of u™ on §,, that is, u" =3\ | ¢E; Then E;n(f,)=n(f,)E, for
j=1,...,N and n(f,)E;+0 for some j. By the hypothesis of n(f;), there exists
a projection g on §, such that

@™)*qu™ =q, q = n(fE; and g < =n(fy).

We put p=q+u*qu+...+ W™ ')*qu™~!. Then we have p<1 and up=pu,
so that the subspace M=p$H, is invariant for {n(C(X)),u,u*}. This is a
contradiction. Hence

dimz(fy)9, = dim=n(f)9, =1 forall k 0Sks=m-1).

Since 37=4 n(f,) =1, we have m=n. Let d,, be a unit vector in n(f,)$, and put
dy=u*d, for k (0Lk<n—1). Then d, belongs to the subspace =(f})$, for each
k, and ud,_, =zd, for some z in T. Let v be the unitary operator on §, defined
by ve,=d, for k (0<k=<n—1). Then we have [Adv](n x u)=n,, x u,.

LEMMA 1.4. The map ¥ is open.

Proor. Since ¢ is a continuous map, it is sufficient to show that Yo is an
open map of X, x Tonto Irr, (s#)/~. Let U be an open set in X, x T. To prove
that (®(U)) is an open set, we shall show that W=y~ (y(®(U)) is an open set
in Irr, (o). Since

W= {[Adu](n,xu,) : (x,2)e U, ue U(9H,)},

Wis [Ad u)-invariant, so that ¢ =[Ad u](n, X u,) is an interior point of Wif and
only if 7, x u, is an interior point of W.
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Let (x,z) be in U. Then there exist ¢ >0 and a neighbourhood U (x) of x in X
such that

U° = {()w)eX,xT: ye U(x), |z—w|<e} = U.

For this U(x), there exists a continuous function fon X such that f(x)=1 and
f(»=0 for y¢ U(x). Let W° be the set of representations g in Irr, (&)
satisfying the following two conditions, in which F and G are functions in
K(Z, C(X)).

(1) le(Feg — (m, x u)(Fleoll < 1,
where F(0)=f and F(m)=0 for m=+0,
(2) "Q(G)eo - (nx X uz) (G)eo" <e,

where G(n)=1 and G(m)=0 for m=n.
Let ¢=[Ad u](m, x u,) be in W°. Condition (1) implies that [|¢(F)e, — e, <1,
so that o(F)=u*n,(f)u+0. Hence n,(f)+0, that is,

n,(f)e, = f(c*(¥)e, £ 0  for some k (0SkSn—1).

This means that ¢*(y) belongs to U(x). On the other hand, Condition (2)
implies that

7, (1) (u,)"eo —m (D)(w,)"eoll = llweg—zeoll = [w—2|.
Since ©, x u,, and 7., X u,, are unitarily equivalent, () belongs to Y(2(U%).
Hence W° is a neighbourhood of &(x,z) such that W° <y~ (y(@(U%)) = W.

The preceding lemmas complete the proof of Theorem A.

2. Applications.
We consider three kinds of dynamical systems and C*-crossed products
associated with them.

(2—1). Let X(k)=TT;cz{0;...,k—1} and g, be the Bernoulli shift on X (k),
that is, 6,((x);cz) = (X;-1)iez- Then

X(k)y, = {xe X(k) : op(x)=x} = {x=(x);ez : X;=x, for allieZ}.

Let o (k)=C(X (k) %X Z By Theorem A, o (k), is homeomorphic with the
topological sum of k-copies of the unit circle T, i.e.,

AW, =1Q. . OT.

Therefore the C*-algebras «f (k)’'s are completely classified.
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THEOREM B. (k) is C*-isomorphic with o/ (j) if and only if k=j.

(2—2). Let K be a compact space. Let Xx=[T;.zK and og((x))ic2)
= (Xi-1)icz O Xg. Let o =C(Xg)x Z. Since (Xg), is homeomorphic with
K x T, we have the following theorem by Theorem A.

THEOREM C. Let K and L be compact spaces. If oy and of; are C*-
isomorphic, then K x T and L x T are homeomorphic.

The above theorem is of course a generalization of Theorem B. Moreover we
find that o/ ¢ (respectively & ) is C*-isomorphic with o/ gw (respectively o qm)
if and only if n=m. However, from Theorem C one cannot conclude that K
and L are homeomorphic. Indeed, there exist topological spaces K and L
which are not homeomorphic but have homeomorphic product spaces, K x T
and L x T (cf. [1: Theorem 4.1 and 6.6]).

(2—3). Let X (k) and o, be as in (2—1). For a k x k matrix M = (a; )} 72, with
a; ;€ {0,1}, let

XM = {(xi)isZ € X(k) : ax‘,x,“:l}

and gy the restriction of g, to X . Let o yy=C(X ) 3 Z. Then, for each n21,
(X)), is a finite set and by Theorem A the cardinal numbers of (X,,)" are
determined by the C*-algebra & ,. Under the condition that M is irreducible,
the topological entropy k(o)) is determined by the cardinal numbers N (o) of
X)) ie.,

h(opy) = lim (1/n)log N, (o)
(cf. [9: Theorem 8.17]). Hence we have the following theorem.

THeOREM D. Let M and N be irreducible matrices. If oy and o y are C*-
isomorphic, then h(oy)=h(oy).
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