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LOEB COMPLETION OF
INTERNAL VECTOR-VALUED MEASURES

RADE T. ZIVALJEVIC

0. Introduction.

Peter Loeb introduced in [8] a construction which to any internal measure
space (X, o/, n) with finitely additive measure pu associates a standard space
(X, o (=), [i), where a(2) is the o-algebra generated by </ and ji the unique o-
additive extension of st(u) on o(&). The completion of this space
(X,L(«),L(u) is called the Loeb space associated with (X,.s/,pn). This
construction turned out to be very useful so, as C. W. Henson and L. C.
Moore, Jr. suggest in their paper [5 (Problem 17)], it is potentially useful to
extend this construction to the case of measures u with values in internal
Banach spaces. We shall give in this paper a few results in this direction and it
will turn out, as it is natural to expect, that the Loeb completion of an internal
Banach space valued measure takes values in the nonstandard hull of the
Banach space (the last notion has been defined by W. A. J. Luxemburg in [10]
and this definition is repeated below). Horst Osswald in his forthcoming paper
[11] independently treated the same problem, but from a somewhat different
point of view. He starts with a hyperfinite “weighting” function with values in
*B, where B is a reflexive Banach space, and ends up with a measure on B,
Having in mind the continuous, linear map p: B — B which sends [x] € B to
st (x) € B, i.e. the map induced by the weak standard part map, it can be
checked that the B-valued measure, defined by H. Osswald, can be obtained
from the Loeb completion of the *B-valued internal measure which is
determined by the “weighting” function above. Let us note that a natural
projection q: B — B can be also defined for some non-reflexive Banach spaces,
e.g. for C(K) the space of continuous real functions on a compact K. Indeed by
the result of W. Henson [4], C(K) can be identified with C(K) for some
compact superspace K of K and q is simply the restriction map.

1. The main construction.

The general reference for all definitions and facts concerning vector-valued
measures will be N. Dunford, J. T. Schwartz [3]. Facts about Loeb completion
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of spaces with positive measure u can be found in Loeb’s original paper [8], K.
Stroyan’s and J. Bayod’s book [12] or elsewhere. Nevertheless, for the reader’s
convenience, we shall repeat the main definition.

DEerINITION 1.1. Let (X, o/, u) be an internal measure space with internal,
finitely-additive, finite measure u. A subset A= X is Loeb measurable if for
every standard &> 0 there exist B, C € & such that B A= C and st(u((C\ B)
<eé. The family of all Loeb measurable sets is denoted by L (o), whereas L(y)
denotes the natural extension of i=stu on L().

ProrosiTioN 1.2. (X, L(),L(w)) is a complete measure space with the a-
additive measure L(u).

Proor. See [8] or [12].

Let B be a Banach space and (X, .o, u, *B) an internal space with finitely
additive *B-valued measure p. Let us suppose that the total variation v(y, *)
(Dunford, Schwartz [3]), defined by

v(u, A) := *supp Y. {*IuD)| | D e #}

where 2 ranges over set of all *-finite, &/-measurable partitions of X, is a finite
internal positive measure on X. Recall that an element x € *B (particularly
x € *R) is finite (x € fin (*B)) if *||x||<m for some m € R. The measure |u|:
=var (u, ') is positive, hence let (X,L(2),L(Jul) be the completion of
(X, o, |ul). Our aim is to define Loeb completion (X,L(),L(u),?) of the
measure space (X, o, 4, *B). The natural candidate for ? is of course B, the
nonstandard hull of the Banach space B. Recall that

B := fin (*B)/~ ,

where x~ y means that x —y is of infinitesimal norm (see W. A. J. Luxemburg
[10] or C. W. Henson, L. C. Moore, Jr. [5]). To simplify notation, x| will
denote the norm of x for both x € B and x € B. Analogously to the case B=R,
the quotient map fin (*B) — B will be called the standard part map and
denoted by st. We need the following well-known proposition.

ProrosiTioN 1.3. Let (X,L(<),L(w) be the Loeb completion of the space
(X, o, p) with finitely-additive, positive, finite measure p. Then, if A € L(sf), then
there exists B € of such that L(u)(AAB)=0.

Proor. By the Definition 1.1, there exist sequences (B,|ne N) and
(C,| n € N) of sets in & such that st (u)(C,\ B,)<1/n and
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BycBic..cAc...cC c(C,.

Using saturation, these sequences can be extended to internal sequences and
then using the Internal Definition Principle we can select @ € *N\ N such that
B, C,€ &, B,cC, and (ViZw) (B;=B, A C,<=C,). Hence,

ANAB, = (ANB,)U (B,\4) < (C,\B,)U (B,\B,) = C,\B,,
for all ne N, and L(u)(AAB,)=0.

Applying the last proposition to the measure space (X, #,|ul), where

lul = var (i, ),

we get that A € L (), iff there exists B € «f such that L(|u])(4AB)=0. Also, if
B,, B, € o/ are two sets which, in this sence, approximate A4, then

stlul(By ABy) < L(u)(AAB)+L(uNAAB,) =0,
which means that *||u(B,)— u(B,)| € m(0), because
*|w(B) —u(B)I = |ul(ByABy).
This allows us to give the following definition.

DerFiniTiON 1.4. Let (X, o/, 4, *B) be an internal measure space with a
finitely-additive * B-valued measure u so that the total variation |u|:=var (y, *)
is finite. Let (X, L(%), L(|u)) be the Loeb space associated with the internal
space (X, o, |u|). For A € L(«/) and B € o with the property L(|u|)(AAB)=0,
let

L(p)(A) := st (u(B)),
where

st: fin (*B) —» B

is the mapping defined above.

L(u) is obviously an additive B-valued measure. To prove its g-additivity we
need the following simple inequality.

Lemma 1.5. For all A € L(of) holds || L(u)(A)]l < L(|ul)(A).

Proor. Let B € o approximate A, that is L(|u|)(AAB)=0. Then
IL@AI = lIstuB)l = st*|u(B) < st|ul(B) = L(|u))(A) .

ProvosiTioN 1.6. L(u) is a g-additive nieasure.
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Proor. Let A;cAd,=...cA,c... be an increasing sequence of sets in
L(s#) and A=U, 4,. Let us show that

L(w)(A4) — L(p)(4)
ie.
IL@A)—Lp)(A4)] =0, n— oco.

Indeed,
IL()(ANA)] = L(Iu)(ANA4,)—> 0, n— oo,

because L(|u|) is a s-additive measure.

We are ready now to give the first application of above defined notions. The
well known result of Liapounoff states that the range of any R"-valued o-
additive nonatomic measure is compact and convex. The following proposition
is attributed to D. Brown in the paper of T. Armstrong and K. Prikry [2]. In
this paper T. Armstrong and K. Prikry establish the fact that the range of a
bounded finitely additive nonatomic measure is not only dense in a convex set
but actually convex.

ProrosiTioM 1.7. Let (X, 8, v,R") be a standard space with a finitely additive
R"-valued, nonatomic bounded measure v. Then the range of v, v(%), is dense in
some compact, convex set in R".

Proor. Let us show first that the total variation |v| of v is also a bounded
measure. It is enough to show that the variation |lov| of lov, where I: R” — R is
any linear function, is bounded. This is clear because if ||v(C)|<m for all
C € 4, then

llov|(4) = sup {|lov(B)|+|lov(A\B)| : BcA,Be #} < 2m-|I| .

By The Transfer Principle |*v|=*|v| hence, the total variation of *v is also
finite. Let us consider the measure space (*X, *#, *v, *R"). Since

st (*v(*®B)) = st (*v(#) = cl (v(®B))

it is enough to show that st (*v(*#)) is convex and compact. This follows
immediately from Liapounoff’s theorem if one knows that

st (*v(*®) = L(*)(L(*®))

which is a consequence of the fact that every element of L(*%) is
approximated, in the sense of Definition 1.4, by an element of *#.
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2. Lifting and pushing down.
A natural question to ask about the measure L(u) is whether there exists a
measurable function f e .# (X, L(&), L(Jul), B) such that for each

AelL(s), LpA4) = L SaL(lu) .

After that we can ask whether f has a lifting g: X — *B, because we would like
to think of integral as about hyperfinite sums. Recall that a function f: X — B
is measurable (because L(|u|) is finite), iff there exists a sequence j, of simple
measurable functions such that j, — falmost surely. The proof of the following
theorem is very close to the proof of R. Anderson’s lifting theorem in [1].
Nevertheless, it is worth mentioning that the new ingredient which makes the
proof go through is the fact that every measurable vector function is essentially
separably valued.

THEOREM 2.1. Let (X, o,v) be an internal space with a finitely additive,
positive measure v such that st(v)(X)<+oo and (X,L(),L(v)) the
corresponding Loeb space. If g: X — B is L(v)-measurable function then there
exists an internal function h: X — *B which satisfies the following conditions:

(1) The range of h, ran (h)< *B, is a hyperfinite set and for every t € ran (h),
h~1(f) e o; shortly, h is a *-simple function.
(2) For almost all x € X, st(h)(x)=g(x).

Proor. According to Lemma I11.6.9 from [3] which gives a characterisation
of measurable functions we can assume the following:

(3) ran(g)< B is separable.
4) g7 '(V(a,¢) € L() for every open ball V(a, g cB.

Let (a,|n € N) be a sequence in B which is dense in ran(g) and (b,|n € N) a
sequence in *B such that (Vn e N) st(b,)=a, It is known that the last
sequence can be extended to an internal sequence (b,|n € *N). The family

{V(a,,, '—L-) N ran (g)}”’mEN

is a base for the space ran(g). Let (U, |k € N) be a sequence of internal sets
such that Uy =*B and (U, | k= 1) is any ordering of open balls V(b,, 1/m)<*B.
Let (V; |k € N) be defined in a similar way that is V=B and (V,|k>1) is the
ordering of {V(a,1/m)|n21,m21} such that U,=V(b,1/m), iff V,
=V(a, 1/m). We can assume that (U, |k € N) is extended to an internal
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sequence (U, |k € *N). Let us construct a sequence (4, |n € N) of elements in
& with the following properties:

A, = X,
L0)(A4,Ag" (V) =0, and

(Vne N)3f,: X — *B internal)(vSc{l,.. .,n})f,,('ﬂs Ai) < ns U;.

If Ay=2X, and all A4,, for i<n, are defined let A, € &/ be such that
Ly)(4,0g7' (V) = 0.

Now,

A, = AN U {Q A | Se{l,...,n} A QU,:Q}

is an internal set for which a corresponding function f, can be defined. Let us
extend sequences (f,|n € N), (4,|n € N) to internal sequences (f,|n e *N)
and (A4,|n € *N). Let

D = {ne *N|f, is a *-simple, *-measurable function and
for all k<n, f,(4)<U,} .

Obviously N < D, hence there exists m € DN (*N\ N). Let us show that the
function f,, satisfies both conditions (1) and (2) in the theorem. It is enough to
check (2). Let

X = X\ {J (4,A871V;
n=1

then X' e L(«/) and L(v)(X\ X")=0. Let x € X’. But from the condition
g(x) € V, follows x € A; and f,,(x) € U;. Hence, st(f,(x))=g(x).

Let us note that the range of the function h whose existence was proved in
the Theorem 2.1 is almost S-separable in the sense of the following definition.

DErFINITION 2.2. Let B be a Banach space. A set A< *B is called S-separable if
there exists a countable set C <fin (*B) Stweh that for every x € A and standard ¢
>0 there exists y € C so that *||x— y| <& holds. The range of a function h: X
— *B, defined on a measure space (X, 4, v), is said to be v-almost S-separable,
if there exists a null set D such that h(X \ D) is S-separable.

THEOREM 2.3. As before, let (X, s4,v) be an internal space with a finitely
additive positive measure v such that (stv)(X)< + oo and let (X, L(2f),L(v)) be

19
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the corresponding Loeb space. Let g: X — *B be an internal function which is
internally measurable with respect to the measure space (X, o, v). In other words
g satisfies the *-transform of the usual definition of measurability of vector
Junctions ([3]). Assume that the range of g is L(v)-almost S-separable. Under
these conditions h=st(g): X — B is a L(v)-measurable function.

Proor. Again, we shall use Lemma II1.6.9 from [3] which guarantees that
h: X — B is measurable if the following conditions are satisfied:

(1) There exists X' =X of measure zero such that h(X\ X’) is a separable
subset of B,
(2) h~*(V(a,7)) € L(«) for each open ball ¥(a,r)<B.

Since the function g is internally (X, s, v)-measurable there exist an internal
set AcX of infinitesimal measure and a *-simple function g’ such that
(V x € X\ A) st(g')(x)=st(g)(x). Let us work with the function g'. The first
condition is fulfilled because of the assumption on the range of g. Now, let
V(a,r), a € Band r>0, be an open ball in B. Let b € *B such that st (b)=a and
x € X\ A

xeh™(V(a,r) < |h(x)—al <r < IneN (*Ilg'(x)——b||<r—-%>

< X€ UN (g’)“("'V(b,r—%)).

The function g is *-simple, hence (g) !(*V(b,r—1/n)) € o, therefore
h~'(V(a,r)) € L() and the second condition is also fulfilled.

Theorem 2.1 permits us to obtain more information about the Loeb
completion of the measure space (X,,u, *B) in case B has the Radon-
Nikodym property (RN). Recall that a Banach space B has the RN-property if
for any o-additive, B-valued measure u defined on a g-algebra # of subsets of a
given set S, with finite total variation |u|, there exists a Bochner-integrable
function f such that

u(d) = I fd(u) forall & € #.
A

It is known that all reflexive Banach spaces, particularly all Hilbert spaces,
have the RN-property.

PROPOSITION 2.4. Let (X, o, u, *B) be as before. If B has the RN-property,
then there exists a *-simple function f: X — *B such that
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L()(4) = st ( J ) f dlul) .

In other words if f=Y L, a,p 4, where {A}!L, is a hyperfinite of-partition of X,
and @ 4 the characteristic function of A, then

H
LG = st 3. (AN A)-a;.

Proor. From B € RN follows the existence of a bounded L (Ju|)-measurable
function g: X — B such that for all B € L(s/)

L gdL(jul) = L(p)(B) .
Note that we used here unproved but e.asily checkable fact

var (L(u), 4) = L(lp)(4) .

Let f: X — *B be a function which (Theorem 2.1) satisfies the following
conditions:

(1) f=31 194, b, where (b;|1<i< H) is a hyperfinite sequence of elements
in *B and {4,;}{L, a hyperfinite o/-measurable partition of X,
(2) for almost all x € X, st (f(x))=g(x).

Obviously, it is enough to check the equality

J gdL(lul) = stj Sfdlul .
A A

Choose m € R such that
VxeX (lgIsma*|f(x)]=m)

and ¢>0 be a standard real number. Then there exists Z € o and j: X — B a
simple function of the form

K
J= ‘Z,l Pp,"Ci

such that L(|u|)(Z)<¢, D;e o and Yx € X\ Z, (|g(x)—j(x)| <e). If d; € *B
are chosen so that st (d)=c,, then the function

~ K
Jj= i; ‘PD,’di

satisfies Vx € X\ Z, (*||f(x)—j(x)| <¢). Without loss of generality we can
assume that both |c,| Sm and *||d;|| <m. Hence,
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K
” f edL(u- 3 ci-L(lul)wi)‘ < o L(u)(X)+ 2me

*

K
[ rau-3 4 1D)| S x4 2ma

Hence,

Mx gdL(u)—st f ) deuIH < 2L () (X)+4me

which proves the desired equality for A=X. For any 4 € L(sf) the proof goes
analogously.

3. The Riesz Representation Theorem.

The proof of the Riesz Representation Theorem given below does not really
depend on the results in the previous sections. We should note that the basic
facts about integration of complex-valued functions w.r.t. complex-valued
measures, required in the proof, can be easily derived from P. Loeb’s results
from [8]. Nevertheless, we take this opportunity to give a short proof of the
general (complex-valued) case of the Riesz theorem which is much better than
the clumsy proof of the author given in [13]. Note that P. Loeb has given a
proof of the case of a positive linear functional, which is based on the first
principles, in [9].

As in the first proof, [13], we assume basic facts about representations of
Radon spaces by suitable Loeb spaces as given in R. Anderson [1].

THEOREM 3.1. Let X be a compact Hausdorff space and C(X,C) the complex
Banach space of all continuous complex functions on X. If L: C(X,C) — C is
any bounded linear functional on C(X,C), then there exists a complex Radon
measure v on X such that

L(f)=j fdv for fe C(X,C).
x

ProoF. Let F={ j}] 1 <i< D} be a hyperfinite partition of unity, that is 0 f;
<1 for all 1ZisD and YP,fi=1, such that (Vi)(3@xeX)
(supp (f)cm(x)). Let { y,l 1<i<D} be an internal set such that
y; € supp (f), if the last set is nonempty, and u the measure defined by

#(B) =Y {*L(H)| e B}
for internal B< *X. Let L(u) be the Loeb completion of u, defined on *X, and
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v=st(L(u)) the projection of L(u) which is by [1] a Radon measure. Let us
prove that v is the desired measure. Let fe C(X,C).

D

L(f) = *L(*) = iZ L)

hence
‘L(f)—-j v =|L(f)—f st(*f)dL(u)I
X X
D D
- | sLern-s 3 orru

The function f'is uniformly continuous on X, hence the oscilation of *f on any
of the sets supp (f;), 1 <i< D, is smaller than a fixed infinitesimal ». Hence,

IC* () =*f ()1fi(x) = n-£i(x)
and therefore

*

D
T (0= 016

D
Y - *f(yi)]f.-” = *sup
i=1 xe*X

D D
< *sup 3 1/ ()=S0l = “sup X =n.
Since ||L||=*|*L| < + oo,
D D

Y L*fH- X *L(*f(y'i)'ﬁ)l =

i=1 i=1

D
‘; [ =* (i

D
1[5, v |f)

*

= L) snlLl = 0.

Therefore, |L(f)—{x fdv|=0 and we are done.
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